1
|
Jo WS, Kang S, Jeong SK, Bae MJ, Lee CG, Son Y, Lee HJ, Jeong MH, Kim SH, Moon C, Shin IS, Kim JS. Low Dose Rate Radiation Regulates M2-like Macrophages in an Allergic Airway Inflammation Mouse Model. Dose Response 2022; 20:15593258221117349. [PMID: 36003321 PMCID: PMC9393681 DOI: 10.1177/15593258221117349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
We investigated the effects of low dose rate radiation (LDR) on M1 and M2
macrophages in an ovalbumin-induced mouse model of allergic airway inflammation
and asthma. After exposure to LDR (1 Gy, 1.818 mGy/h) for 24 days, mice were
euthanized and the changes in the number of M1 and M2 macrophages in the
bronchoalveolar lavage fluid and lung, and M2-associated cytokine levels, were
assessed. LDR treatment not only restored the M2-rich microenvironment but also
ameliorated asthma-related progression in a macrophage-dependent manner. In an
ovalbumin-induced mouse model, LDR treatment significantly inhibited M2, but not
M1, macrophage infiltration. M2-specific changes in macrophage polarization
during chronic lung disease reversed the positive effects of LDR. Moreover, the
levels of cytokines, including chemokine (C-C motif) ligand (CCL) 24, CCL17,
transforming growth factor beta 1, and matrix metalloproteinase-9, decreased in
ovalbumin-sensitized/challenged mice upon exposure to LDR. Collectively, our
results indicate that LDR exposure suppressed asthmatic progression, including
mucin accumulation, inflammation, and Type 2 T helper (Th2) cytokine
(interleukin (IL)-4 and IL-13) production. In conclusion, LDR exposure decreased
Th2 cytokine secretion in M2 macrophages, resulting in a reduction in
eosinophilic inflammation in ovalbumin-sensitized/challenged mice.
Collapse
Affiliation(s)
- Wol Soon Jo
- Dongnam Institute of Radiological
& Medical Sciences, Busan, Republic of Korea
| | - Sohi Kang
- College of Veterinary Medicine and
BK21 Plus Project Team, Chonnam National
University, Gwangju, Republic of Korea
| | - Soo Kyung Jeong
- Dongnam Institute of Radiological
& Medical Sciences, Busan, Republic of Korea
| | - Min Ji Bae
- Dongnam Institute of Radiological
& Medical Sciences, Busan, Republic of Korea
| | - Chang Geun Lee
- Dongnam Institute of Radiological
& Medical Sciences, Busan, Republic of Korea
| | - Yeonghoon Son
- Korea Institute of Radiological &
Medical Sciences, Seoul, Republic of Korea
| | - Hae-June Lee
- Korea Institute of Radiological &
Medical Sciences, Seoul, Republic of Korea
| | - Min Ho Jeong
- Department of Microbiology, Dong-A University College of
Medicine, Busan, Republic of Korea
| | - Sung Ho Kim
- College of Veterinary Medicine and
BK21 Plus Project Team, Chonnam National
University, Gwangju, Republic of Korea
| | - Chongjong Moon
- College of Veterinary Medicine and
BK21 Plus Project Team, Chonnam National
University, Gwangju, Republic of Korea
| | - In Sik Shin
- College of Veterinary Medicine and
BK21 Plus Project Team, Chonnam National
University, Gwangju, Republic of Korea
- In Sik Shin, College of Veterinary Medicine
and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Republic
of Korea.
| | - Joong Sun Kim
- Dongnam Institute of Radiological
& Medical Sciences, Busan, Republic of Korea
- College of Veterinary Medicine and
BK21 Plus Project Team, Chonnam National
University, Gwangju, Republic of Korea
- Joong Sun Kim, College of Veterinary
Medicine and BK21 Plus Project Team, Chonnam National University, 77
Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Lou P, Liu S, Wang Y, Pan C, Xu X, Zhao M, Liao G, Yang G, Yuan Y, Li L, Zhang J, Chen Y, Cheng J, Lu Y, Liu J. Injectable self-assembling peptide nanofiber hydrogel as a bioactive 3D platform to promote chronic wound tissue regeneration. Acta Biomater 2021; 135:100-112. [PMID: 34389483 DOI: 10.1016/j.actbio.2021.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023]
Abstract
Chronic wounds remain a worldwide clinical challenge, and bioactive materials that can promote skin regeneration are required. Self-assembling peptide (SAP) hydrogels have shown great potential in tissue repair, but their regenerative efficacy and possible mechanism in chronic wound healing are unclear. Here, we report an SAP (KGH) that enhances extracellular matrix (ECM) remodeling and angiogenesis, thereby promoting chronic wound healing in diabetic mice. In vivo, the KGH hydrogel was retained in wounds up to 7 days after injection, and it was effective in speeding up wound closure by ∼20% compared to the control groups and enhancing angiogenesis (e.g., VEGFA, CD31+ capillaries), cell proliferation (e.g., PCNA+ cells), formation of granulation tissue (e.g., α-SMA), and ECM deposition/remodeling (e.g., collagen I, fibronectin). In vitro, the KGH hydrogel created a 3D microenvironment for skin cells, maintained the sustained growth of cell spheroids, and increased the secretion of ECM proteins (e.g., laminin) and growth factors (e.g., PDGFB, VEGFA, and TGF-β) in skin keratinocytes compared to the conventional 2D culture. Mechanistically, the KGH hydrogel might promote wound tissue regeneration by activating the Rho/ROCK and TGF-β/MEK/MAPK pathways. As a type of designed material, SAP can be further re-engineered with biological motifs, therapeutic reagents, or stem cells to enhance skin regeneration. This study highlights that SAP hydrogels are a promising material platform for advanced chronic wound healing and might have translational potential in future clinical applications. STATEMENT OF SIGNIFICANCE: Chronic wounds are a common and serious health issue worldwide, and bioactive dressing materials are required to address this issue. SAP hydrogels have shown certain tissue repair potential, but their regenerative efficacy and underlying mechanism in chronic wound healing remain elusive. Herein, we report that SAP hydrogels create a native 3D microenvironment that can remarkably stimulate angiogenesis and ECM remodeling in diabetic wounds. Mechanistically, the SAP hydrogel promoted ECM proteins and GFs secretion in skin cells through the activation of the Rho/ROCK and TGF-ß/MEK/MAPK pathways. Additionally, SAP can be readily engineered with various bioactive motifs or therapeutic drugs/cells. This work highlights SAP hydrogels as a promising biomaterial platform for chronic wound healing and the regeneration of many other tissues.
Collapse
Affiliation(s)
- Peng Lou
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Yizhuo Wang
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Cheng Pan
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Guangneng Liao
- Animal Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guang Yang
- Animal Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China.
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China.
| |
Collapse
|
3
|
Blocking C-Raf alleviated high-dose small-volume radiation-induced epithelial mesenchymal transition in mice lung. Sci Rep 2020; 10:11158. [PMID: 32636458 PMCID: PMC7341876 DOI: 10.1038/s41598-020-68175-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/12/2020] [Indexed: 11/08/2022] Open
Abstract
The goal of this study was to develop a potential druggable target for lung injury after SABR through the small animal model. Utilising the model, a radiation dose of 70 Gy or 90 Gy was focally (small volume) delivered to the left lung of mice. The highly expressed phosphorylation form of C-Raf was discovered through a protein array experiment, with the protein being extracted from the area of radiated mouse lung tissue, and was confirmed by IHC and western blot. C-Raf activation, along with morphological change and EMT (Epithelial to Mesenchymal Transition) marker expression, was observed after radiation to the mouse type II alveolar cell line MLE-12. C-Raf inhibitor GW5074 was able to reverse the EMT in cells effectively, and was found to be dependent on Twist1 expression. In the animal experiment, pretreatment of GW5074 alleviated EMT and lung injury after 70 Gy radiation was focally delivered to the lung of mice. Conclusively, these results demonstrate that C-Raf inhibitor GW5074 inhibits high-dose small-volume radiation-induced EMT via the C-Raf/Twist1 signalling pathway in mice. Therefore, pharmacological C-Raf inhibitors may be used effectively as inhibitors of SABR-induced lung fibrosis.
Collapse
|
4
|
Ruan Q, Wang H, Burke LJ, Bridle KR, Li X, Zhao CX, Crawford DHG, Roberts MS, Liang X. Therapeutic modulators of hepatic stellate cells for hepatocellular carcinoma. Int J Cancer 2020; 147:1519-1527. [PMID: 32010970 DOI: 10.1002/ijc.32899] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary tumor in the liver and is a leading cause of cancer-related death worldwide. Activated hepatic stellate cells (HSCs) are key components of the HCC microenvironment and play an important role in the onset and progression of HCC through the secretion of growth factors and cytokines. Current treatment modalities that include chemotherapy, radiotherapy and ablation are able to activate HSCs and remodel the tumor microenvironment. Growing evidence has demonstrated that the complex interaction between activated HSCs and tumor cells can facilitate cancer chemoresistance and metastasis. Therefore, therapeutic targeting of activated HSCs has emerged as a promising strategy to improve treatment outcomes for HCC. This review summarizes the molecular mechanisms of HSC activation triggered by treatment modalities, the function of activated HSCs in HCC, as well as the crosstalk between tumor cells and activated HSCs. Pathways of activated HSC reduction are discussed, including inhibition, apoptosis, and reversion to the inactivated state. Finally, we outline the progress and challenges of therapeutic approaches targeting activated HSCs in the development of HCC treatment.
Collapse
Affiliation(s)
- Qi Ruan
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Haolu Wang
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Leslie J Burke
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kim R Bridle
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Xinxing Li
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Darrell H G Crawford
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michael S Roberts
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Xiaowen Liang
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Bárcena C, Aran G, Perea L, Sanjurjo L, Téllez É, Oncins A, Masnou H, Serra I, García-Gallo M, Kremer L, Sala M, Armengol C, Sancho-Bru P, Sarrias MR. CD5L is a pleiotropic player in liver fibrosis controlling damage, fibrosis and immune cell content. EBioMedicine 2019; 43:513-524. [PMID: 31076347 PMCID: PMC6558273 DOI: 10.1016/j.ebiom.2019.04.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Chronic hepatic inflammation leads to liver fibrosis, which may progress to cirrhosis, a condition with high morbidity. Our aim was to assess the as yet unknown role of innate immunity protein CD5L in liver fibrosis. METHODS CD5L was measured by ELISA in plasma samples from cirrhotic (n = 63) and hepatitis (n = 39) patients, and healthy controls (n = 7), by immunohistochemistry in cirrhotic tissue (n = 12), and by quantitative RT-PCR in mouse liver cell subsets isolated by cell sorting. Recombinant CD5L (rCD5L) was administered into a murine model of CCl4-induced fibrosis, and damage, fibrosis and hepatic immune cell infiltration, including the LyC6hi (pro-fibrotic)-LyC6low (pro-resolutive) monocyte ratio were determined. Moreover, rCD5L was added into primary human hepatic stellate cells to study transforming growth factor β (TGFβ) activation responses. FINDINGS Cirrhotic patients showed elevated plasma CD5L concentrations as compared to patients with hepatitis and healthy controls (Mann-Whitney test p < 0·0001). Moreover, plasma CD5L correlated with disease progression, FIB4 fibrosis score (r:0·25, p < 0·0001) and tissue expression (r = 0·649; p = 0·022). Accordingly, CCl4-induced damage increased CD5L levels in total liver, particularly in hepatocytes and macrophages. rCD5L administration attenuated CCl4-induced injury and fibrosis as determined by reduced serum transaminase and collagen content. Moreover, rCD5L inhibited immune cell infiltration and promoted a phenotypic shift in monocytes from LyC6hi to LyC6low. Interestingly, rCD5L also had a direct effect on primary human hepatic stellate cells promoting SMAD7 expression, thus repressing TGFβ signalling. INTERPRETATION Our study identifies CD5L as a key pleiotropic inhibitor of chronic liver injury. FUND: Fundació Marató TV3, AGAUR and the ISCIII-EDRF.
Collapse
Affiliation(s)
- Cristina Bárcena
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Gemma Aran
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Luís Perea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Lucía Sanjurjo
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain; Network for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain
| | - Érica Téllez
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Anna Oncins
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Helena Masnou
- Gastroenterology Dept., University Hospital Germans Trias i Pujol (HUGTiP), Badalona, Spain
| | - Isabel Serra
- Gastroenterology Dept., University Hospital Germans Trias i Pujol (HUGTiP), Badalona, Spain
| | - Mónica García-Gallo
- Protein Tools Unit and Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Leonor Kremer
- Protein Tools Unit and Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Margarita Sala
- Gastroenterology Dept., University Hospital Germans Trias i Pujol (HUGTiP), Badalona, Spain; Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Spain
| | - Carolina Armengol
- Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Spain; Childhood Liver Oncology Group, Program of Predictive and Personalized Medicine of Cancer (PMPCC), IGTP, Spain
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Spain
| | - Maria-Rosa Sarrias
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Spain; Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Spain.
| |
Collapse
|
6
|
Huang M, Zhang J, Xu H, Ding T, Tang D, Yuan Q, Tao L, Ye Z. The TGFβ-ERK pathway contributes to Notch3 upregulation in the renal tubular epithelial cells of patients with obstructive nephropathy. Cell Signal 2018; 51:139-151. [PMID: 30081092 DOI: 10.1016/j.cellsig.2018.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 01/01/2023]
Abstract
Renal interstitial fibrosis is a common renal injury resulted from a variety of chronic kidney conditions and an array of factors. We report here that Notch3 is a potential contributor. In comparison to 6 healthy individuals, a robust elevation of Notch3 expression was observed in the renal tubular epithelial cells of 18 patients with obstructive nephropathy. In a rat unilateral ureteral obstruction (UUO) model which mimics the human disease, Notch3 upregulation closely followed the course of renal injury, renal fibrosis, TGFβ expression, and alpha-smooth muscle actin (α-SMA) expression, suggesting a role of Notch3 in promoting tubulointerstitial fibrosis. This possibility was supported by the observation that TGFβ, the major renal fibrogenic cytokine, stimulated Notch3 expression in human proximal tubule epithelial HK-2 cells. TGFβ enhanced the activation of ERK, p38, but not JNK MAP kinases in HK-2 cells. While inhibition of p38 activation using SB203580 did not affect TGFβ-induced Notch3 expression, inhibition of ERK activation with a MEK1 inhibitor PD98059 dramatically reduced the event. Furthermore, enforced ERK activation through overexpression of the constitutively active MEK1 mutant MEK1Q56P upregulated Notch3 expression in HK-2 cells, and PD98059 reduced ERK activation and Notch3 expression in HK-2 cells expressing MEK1Q56P. Collectively, we provide the first clinical evidence for Notch3 upregulation in patients with obstructive nephropathy; the upregulation is likely mediated through the TGFβ-ERK pathway. This study suggests that Notch3 upregulation contributes to renal injury caused by obstructive nephropathy, which could be prevented or delayed through ERK inhibition.
Collapse
Affiliation(s)
- Mei Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Nephrology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Ting Ding
- Department of Nephrology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University, Canada; The Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; State Key Laboratory of Medical Genetics of China, Central South University, Changsha, Hunan 410008, China
| | - Zunlong Ye
- 1717 Class, ChangJun High School of Changsha, Changsha, Hunan 410002, China
| |
Collapse
|
7
|
Yoshida K, Matsuzaki K, Murata M, Yamaguchi T, Suwa K, Okazaki K. Clinico-Pathological Importance of TGF-β/Phospho-Smad Signaling during Human Hepatic Fibrocarcinogenesis. Cancers (Basel) 2018; 10:cancers10060183. [PMID: 29874844 PMCID: PMC6025395 DOI: 10.3390/cancers10060183] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic viral hepatitis is a global public health problem, with approximately 570 million persons chronically infected. Hepatitis B and C viruses increase the risk of morbidity and mortality from liver cirrhosis, hepatocellular carcinoma (HCC), and extrahepatic complications that develop. Hepatitis virus infection induces transforming growth factor (TGF)-β, which influences microenvironments within the infected liver. TGF-β promotes liver fibrosis by up-regulating extracellular matrix production by hepatic stellate cells. TGF-β is also up-regulated in patients with HCC, in whom it contributes importantly to bringing about a favorable microenvironment for tumor growth. Thus, TGF-β is thought to be a major factor regulating liver fibrosis and carcinogenesis. Since TGF-β carries out regulatory signaling by influencing the phosphorylation of Smads, we have generated several kinds of phospho-specific antibodies to Smad2/3. Using these, we have identified three types of phospohorylated forms: COOH-terminally phosphorylated Smad2/3 (pSmad2C and pSmad3C), linker phosphorylated Smad2/3 (pSmad2L and pSmad3L), and dually phosphorylated Smad3 (pSmad2L/C and pSmad3L/C). TGF-β-mediated pSmad2/3C signaling terminates cell proliferation; on the other hand, cytokine-induced pSmad3L signaling accelerates cell proliferation and promotes fibrogenesis. This review addresses TGF-β/Smad signal transduction in chronic liver injuries and carcinogenic processes. We also discuss the reversibility of Smad signaling after antiviral therapy.
Collapse
Affiliation(s)
- Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| | - Koichi Matsuzaki
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| | - Miki Murata
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| | - Takashi Yamaguchi
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| | - Kanehiko Suwa
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| | - Kazuichi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
8
|
Li J, Wang Y, Meng X, Liang H. Modulation of transcriptional activity in brain lower grade glioma by alternative splicing. PeerJ 2018; 6:e4686. [PMID: 29780667 PMCID: PMC5957051 DOI: 10.7717/peerj.4686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/10/2018] [Indexed: 01/14/2023] Open
Abstract
Proteins that modify the activity of transcription factors (TFs) are often called modulators and play a vital role in gene transcriptional regulation. Alternative splicing is a critical step of gene processing, and differentially spliced isoforms may have different functions. Alternative splicing can modulate gene function by adding or removing certain protein domains and thereby influence the activity of a protein. The objective of this study is to investigate the role of alternative splicing in modulating the transcriptional regulation in brain lower grade glioma (LGG), especially transcription factor ELK1, which is closely related to various disorders, including Alzheimer’s disease and Down syndrome. The results showed that changes in the exon inclusion ratio of proteins APP and STK16 are associated with changes in the expression correlation between ELK1 and its targets. In addition, the structural features of the two modulators are strongly associated with the pathological impact of exon inclusion. The results of our analysis suggest that alternatively spliced proteins have different functions in modifying transcription factors and can thereby induce the dysregulation of multiple genes.
Collapse
Affiliation(s)
- Jin Li
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Yang Wang
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Xianglian Meng
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Hong Liang
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Li S, Liu J, Tan J, Li L, Kaltreider MJ, Zhao J, Kass DJ, Shang D, Zhao Y. Inhibition of Raf1 ameliorates bleomycin-induced pulmonary fibrosis through attenuation of TGF-β1 signaling. Am J Physiol Lung Cell Mol Physiol 2018; 315:L241-L247. [PMID: 29722566 DOI: 10.1152/ajplung.00093.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disease associated with aberrant activation and differentiation of fibroblasts, leading to abnormal extracellular matrix production. Currently, it is still an untreatable disease (except for lung transplantation). Here, we demonstrate that the Raf1 inhibitor GW5074 ameliorates lung fibrosis in bleomycin-induced pulmonary fibrosis. Posttreatment with GW5074 reduced fibronectin (FN) expression, collagen deposition, and inflammatory cell infiltration in bleomycin-challenged mice, suggesting an antifibrotic property of GW5074. To determine the molecular mechanisms by which inhibition of Raf1 ameliorates lung fibrosis, we investigated the role of Raf1 in TGF-β1 signaling in human lung fibroblasts. GW5074 or downregulation of Raf1 by siRNAs significantly attenuated TGF-β1-induced smooth muscle actin, FN, and collagen I expression, whereas overexpression of Raf1 promoted the effects of TGF-β1 in lung fibroblasts. Furthermore, we found that Raf1-promoted TGF-β1 signaling was through the Raf1/ERK/Smad pathway and contributed to the cell proliferation and migration in human lung fibroblasts. This study provides preclinical and mechanistic evidence for development of Raf1 inhibitors as potential antifibrotic drugs for the treatment of IPF.
Collapse
Affiliation(s)
- Shuang Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University , Dalian, Liaoning , China.,Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jia Liu
- Department of Thyroid Surgery, The First Hospital of Jilin University , Changchun, Jilin , China.,Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jiangning Tan
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Lian Li
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mary J Kaltreider
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jing Zhao
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Daniel J Kass
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University , Dalian, Liaoning , China
| | - Yutong Zhao
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Li J, Ghazwani M, Liu K, Huang Y, Chang N, Fan J, He F, Li L, Bu S, Xie W, Ma X, Li S. Regulation of hepatic stellate cell proliferation and activation by glutamine metabolism. PLoS One 2017; 12:e0182679. [PMID: 28797105 PMCID: PMC5552314 DOI: 10.1371/journal.pone.0182679] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/21/2017] [Indexed: 12/20/2022] Open
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix proteins, which is mainly caused by accumulation of activated hepatic stellate cells (HSCs). The mechanisms of activation and proliferation of HSCs, two key events after liver damage, have been studied for many years. Here we report a novel pathway to control HSCs by regulating glutamine metabolism. We demonstrated that the proliferation of HSCs is critically dependent on glutamine that is used to generate α-ketoglutarate (α-KG) and non-essential amino acid (NEAA). In addition, both culture- and in vivo-activated HSCs have increased glutamine utilization and increased expression of genes related to glutamine metabolism, including GLS (glutaminase), aspartate transaminase (GOT1) and glutamate dehydrogenase (GLUD1). Inhibition of these enzymes, as well as glutamine depletion, had a significant inhibitory effect on HSCs activation. In addition to providing energy expenditure, conversion of glutamine to proline is enhanced. The pool of free proline may also be increased via downregulation of POX expression. Hedgehog signaling plays an important role in the regulation of glutamine metabolism, as well as TGF-β1, c-Myc, and Ras signalings, via transcriptional upregulation and repression of key metabolic enzymes in this pathway. Finally, changes in glutamine metabolism were also found in mouse liver tissue following CCl4-induced acute injury. CONCLUSION Glutamine metabolism plays an important role in regulating the proliferation and activation of HSCs. Strategies that are targeted at glutamine metabolism may represent a novel therapeutic approach to the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiang Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail: (JL); (SL)
| | - Mohammed Ghazwani
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ke Liu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Na Chang
- Department of Cell Biology,Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Jie Fan
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Fengtian He
- Department of Biochemistry and Molecular Biology (F.H.), College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Liying Li
- Department of Cell Biology,Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Shizhong Bu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail: (JL); (SL)
| |
Collapse
|
11
|
The stellate cell system (vitamin A-storing cell system). Anat Sci Int 2017; 92:387-455. [PMID: 28299597 DOI: 10.1007/s12565-017-0395-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 01/18/2023]
Abstract
Past, present, and future research into hepatic stellate cells (HSCs, also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells) are summarized and discussed in this review. Kupffer discovered black-stained cells in the liver using the gold chloride method and named them stellate cells (Sternzellen in German) in 1876. Wake rediscovered the cells in 1971 using the same gold chloride method and various modern histological techniques including electron microscopy. Between their discovery and rediscovery, HSCs disappeared from the research history. Their identification, the establishment of cell isolation and culture methods, and the development of cellular and molecular biological techniques promoted HSC research after their rediscovery. In mammals, HSCs exist in the space between liver parenchymal cells (PCs) or hepatocytes and liver sinusoidal endothelial cells (LSECs) of the hepatic lobule, and store 50-80% of all vitamin A in the body as retinyl ester in lipid droplets in the cytoplasm. SCs also exist in extrahepatic organs such as pancreas, lung, and kidney. Hepatic (HSCs) and extrahepatic stellate cells (EHSCs) form the stellate cell (SC) system or SC family; the main storage site of vitamin A in the body is HSCs in the liver. In pathological conditions such as liver fibrosis, HSCs lose vitamin A, and synthesize a large amount of extracellular matrix (ECM) components including collagen, proteoglycan, glycosaminoglycan, and adhesive glycoproteins. The morphology of these cells also changes from the star-shaped HSCs to that of fibroblasts or myofibroblasts.
Collapse
|
12
|
Prime S, Pring M, Davies M, Paterson I. TGF-β Signal Transduction in Oro-facial Health and Non-malignant Disease (Part I). ACTA ACUST UNITED AC 2016; 15:324-36. [DOI: 10.1177/154411130401500602] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transforming growth factor-beta (TGF-β) family of cytokines consists of multi-functional polypeptides that regulate a variety of cell processes, including proliferation, differentiation, apoptosis, extracellular matrix elaboration, angiogenesis, and immune suppression, among others. In so doing, TGF-β plays a key role in the control of cell behavior in both health and disease. In this report, we review what is known about the mechanisms of activation of the peptide, together with details of TGF-β signal transduction pathways. This review summarizes the evidence implicating TGF-β in normal physiological processes of the craniofacial complex—such as palatogenesis, tooth formation, wound healing, and scarring—and then evaluates its role in non-malignant disease processes such as scleroderma, submucous fibrosis, periodontal disease, and lichen planus.
Collapse
Affiliation(s)
- S.S. Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Pring
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - M. Davies
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - I.C. Paterson
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
13
|
Nakhaei-Rad S, Nakhaeizadeh H, Götze S, Kordes C, Sawitza I, Hoffmann MJ, Franke M, Schulz WA, Scheller J, Piekorz RP, Häussinger D, Ahmadian MR. The Role of Embryonic Stem Cell-expressed RAS (ERAS) in the Maintenance of Quiescent Hepatic Stellate Cells. J Biol Chem 2016; 291:8399-413. [PMID: 26884329 DOI: 10.1074/jbc.m115.700088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 12/11/2022] Open
Abstract
Hepatic stellate cells (HSCs) were recently identified as liver-resident mesenchymal stem cells. HSCs are activated after liver injury and involved in pivotal processes, such as liver development, immunoregulation, regeneration, and also fibrogenesis. To date, several studies have reported candidate pathways that regulate the plasticity of HSCs during physiological and pathophysiological processes. Here we analyzed the expression changes and activity of the RAS family GTPases and thereby investigated the signaling networks of quiescent HSCs versus activated HSCs. For the first time, we report that embryonic stem cell-expressed RAS (ERAS) is specifically expressed in quiescent HSCs and down-regulated during HSC activation via promoter DNA methylation. Notably, in quiescent HSCs, the high level of ERAS protein correlates with the activation of AKT, STAT3, mTORC2, and HIPPO signaling pathways and inactivation of FOXO1 and YAP. Our data strongly indicate that in quiescent HSCs, ERAS targets AKT via two distinct pathways driven by PI3Kα/δ and mTORC2, whereas in activated HSCs, RAS signaling shifts to RAF-MEK-ERK. Thus, in contrast to the reported role of ERAS in tumor cells associated with cell proliferation, our findings indicate that ERAS is important to maintain quiescence in HSCs.
Collapse
Affiliation(s)
- Saeideh Nakhaei-Rad
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty
| | | | - Silke Götze
- the Clinic of Gastroenterology, Hepatology, and Infectious Diseases, and
| | - Claus Kordes
- the Clinic of Gastroenterology, Hepatology, and Infectious Diseases, and
| | - Iris Sawitza
- the Clinic of Gastroenterology, Hepatology, and Infectious Diseases, and
| | - Michèle J Hoffmann
- the Department of Urology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Manuel Franke
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty
| | - Wolfgang A Schulz
- the Department of Urology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Jürgen Scheller
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty
| | - Roland P Piekorz
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty
| | - Dieter Häussinger
- the Clinic of Gastroenterology, Hepatology, and Infectious Diseases, and
| | - Mohammad R Ahmadian
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty,
| |
Collapse
|
14
|
Yoshida K, Murata M, Yamaguchi T, Matsuzaki K, Okazaki K. Reversible Human TGF-β Signal Shifting between Tumor Suppression and Fibro-Carcinogenesis: Implications of Smad Phospho-Isoforms for Hepatic Epithelial-Mesenchymal Transitions. J Clin Med 2016; 5:jcm5010007. [PMID: 26771649 PMCID: PMC4730132 DOI: 10.3390/jcm5010007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/16/2015] [Accepted: 01/04/2016] [Indexed: 12/23/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are observed during both physiological liver wound healing and the pathological fibrotic/carcinogenic (fibro-carcinogenetic) process. TGF-β and pro-inflammatory cytokine are considered to be the major factors accelerating liver fibrosis and promoting liver carcinogenesis. Smads, consisting of intermediate linker regions connecting Mad homology domains, act as the intracellular mediators of the TGF-β signal transduction pathway. As the TGF-β receptors, c-Jun N-terminal kinase and cyclin-dependent kinase, differentially phosphorylate Smad2/3, we have generated numerous antibodies against linker (L) and C-terminal (C) phosphorylation sites in Smad2/3 and identified four types of phosphorylated forms: cytostatic COOH-terminally-phosphorylated Smad3 (pSmad3C), mitogenic pSmad3L (Ser-213) signaling, fibrogenic pSmad2L (Ser-245/250/255)/C signaling and migratory pSmad2/3L (Thr-220/179)/C signaling. After acute liver injury, TGF-β upregulates pSmad3C signaling and terminates pSmad3L (Ser-213)-mediated hepatocyte proliferation. TGF-β and pro-inflammatory cytokines cooperatively enhance collagen synthesis by upregulating pSmad2L (Thr-220)/C and pSmad3L (Thr-179)/C pathways in activated hepatic stellate cells. During chronic liver injuries, hepatocytes persistently affected by TGF-β and pro-inflammatory cytokines eventually become pre-neoplastic hepatocytes. Both myofibroblasts and pre-neoplastic hepatocyte exhibit the same carcinogenic (mitogenic) pSmad3L (Ser-213) and fibrogenic pSmad2L (Ser-245/250/255)/C signaling, with acquisition of fibro-carcinogenic properties and increasing risk of hepatocellular carcinoma (HCC). Firstly, we review phospho-Smad-isoform signalings in epithelial and mesenchymal cells in physiological and pathological conditions and then consider Smad linker phosphorylation as a potential target for pathological EMT during human fibro-carcinogenesis, because human Smad phospho-isoform signals can reverse from fibro-carcinogenesis to tumor-suppression in a process of MET after therapy.
Collapse
Affiliation(s)
- Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Miki Murata
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Takashi Yamaguchi
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Koichi Matsuzaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Kazuichi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
15
|
Chen P, Li J, Huo Y, Lu J, Wan L, Li B, Gan R, Guo C. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis. PeerJ 2015; 3:e1518. [PMID: 26713258 PMCID: PMC4690364 DOI: 10.7717/peerj.1518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/28/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis, which is a pathological process characterized by extracellular matrix accumulation. NR4A2 is a nuclear receptor belonging to the NR4A subfamily and vital in regulating cell growth, metabolism, inflammation and other biological functions. However, its role in HSCs is unclear. We analyzed NR4A2 expression in fibrotic liver and stimulated HSCs compared with control group and studied the influence on cell proliferation, cell cycle, cell apoptosis and MAPK pathway after NR4A2 knockdown. NR4A2 expression was examined by real-time polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence analyses. NR4A2 expression was significantly lower in fibrotic liver tissues and PDGF BB or TGF-β stimulated HSCs compared with control group. After NR4A2 knockdown α-smooth muscle actin and Col1 expression increased. In addition, NR4A2 silencing led to the promotion of cell proliferation, increase of cell percentage in S phase and reduced phosphorylation of ERK1/2, P38 and JNK in HSCs. These results indicate that NR4A2 can inhibit HSC proliferation through MAPK pathway and decrease extracellular matrix in liver fibrogenesis. NR4A2 may be a promising therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Pengguo Chen
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China ; Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jie Li
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Yan Huo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Jin Lu
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Lili Wan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Bin Li
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Run Gan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China ; Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
16
|
Phenotypic Changes in Hepatic Stellate Cells in Response to Toxic Liver Injury. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Yoshida K, Murata M, Yamaguchi T, Matsuzaki K. TGF-β/Smad signaling during hepatic fibro-carcinogenesis (review). Int J Oncol 2014; 45:1363-71. [PMID: 25050845 PMCID: PMC4151811 DOI: 10.3892/ijo.2014.2552] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022] Open
Abstract
After hepatitis virus infection, plasma transforming growth factor (TGF)-β increases in either the acute or chronic inflammatory microenvironment. Although TGF-β is upregulated in patients with hepatocellular carcinoma, it is one of the most potent growth inhibitors for hepatocytes. This cytokine also upregulates extracellular matrix (ECM) production of hepatic stellate cells. Therefore, TGF-β is considered to be the major factor regulating liver carcinogenesis and accelerating liver fibrosis. Smad2 and Smad3 act as the intracellular mediators of TGF-β signal transduction pathway. We have generated numerous antibodies against individual phosphorylation sites in Smad2/3, and identified 3 types of phosphorylated forms (phospho-isoforms): COOH-terminally phosphorylated Smad2/3 (pSmad2C and pSmad3C), linker phosphorylated Smad2/3 (pSmad2L and pSmad3L) and dually phosphorylated Smad2/3 (pSmad2L/C and pSmad3L/C). These Smad phospho-isoforms are categorized into 3 groups: cytostatic pSmad3C signaling, mitogenic pSmad3L signaling and invasive/fibrogenic pSmad2L/C signaling. In this review, we describe differential regulation of TGF-β/Smad signaling after acute or chronic liver injuries. In addition, we consider how chronic inflammation associated with hepatitis virus infection promotes hepatic fibrosis and carcinogenesis (fibro-carcinogenesis), focusing on alteration of Smad phospho-isoform signaling. Finally, we show reversibility of Smad phospho-isoform signaling after therapy against hepatitis virus infection.
Collapse
Affiliation(s)
- Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Miki Murata
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Takashi Yamaguchi
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Koichi Matsuzaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
18
|
Kosla J, Dvorakova M, Dvorak M, Cermak V. Effective myofibroblast dedifferentiation by concomitant inhibition of TGF-β signaling and perturbation of MAPK signaling. Eur J Cell Biol 2013; 92:363-73. [DOI: 10.1016/j.ejcb.2013.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 02/05/2023] Open
|
19
|
Song YF, Lü ZG, Xu LM. [Salvianolic acid B inhibits ERK signal transduction pathway activated by transforming growth factor-β1 in rat hepatic stellate cells]. ACTA ACUST UNITED AC 2013; 10:454-61. [PMID: 22500720 DOI: 10.3736/jcim20120415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the effects of salvianolic acid B (SA-B) on extracellular signal-regulated kinase (ERK) signal transduction pathway activated by transforming growth factor-β1 (TGF-β1) in rat hepatic stellate cells (HSCs). METHODS HSCs were isolated from male Sprague-Dawley rats by in situ perfusion and Nycodenz density-gradient centrifugation method. TGF-β1 and SA-B were directly added to the serum-free medium of HSCs. Total and phosphorylated ERK, MEK, Raf and α-smooth muscle actin (α-SMA) and type I collagen were assayed by Western blotting. RESULTS Phosphorylation of MEK in HSCs with or without TGF-β1 was inhibited by SA-B; however, phosphorylation of Raf in HSCs with or without TGF-β1 was not inhibited by SA-B. Expression of α-SMA in HSCs with TGF-β1 was inhibited by SA-B. Combination of SA-B and the inhibitors of ERK (PD98059) can effectively inhibit the expression of α-SMA. SA-B also inhibited synthesization of type I collagen in HSCs with or without TGF-β1. CONCLUSION The action point of SA-B inhibiting ERK signaling induced by TGF-β1 in HSCs is the inhibition of the phosphorylation of MEK. SA-B reduces the increase of expression of α-SMA and protein synthesization of type I collagen induced by TGF-β1 by means of inhibiting ERK signaling in activated HSCs of rats.
Collapse
Affiliation(s)
- Ya-fang Song
- Department of Liver Cirrhosis, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | | | | |
Collapse
|
20
|
Ahmad A, Ahmad R. Understanding the mechanism of hepatic fibrosis and potential therapeutic approaches. Saudi J Gastroenterol 2012. [PMID: 22626794 DOI: 10.4103/1319-3767.96445]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatic fibrosis (HF) is a progressive condition with serious clinical complications arising from abnormal proliferation and amassing of tough fibrous scar tissue. This defiance of collagen fibers becomes fatal due to ultimate failure of liver functions. Participation of various cell types, interlinked cellular events, and large number of mediator molecules make the fibrotic process enormously complex and dynamic. However, with better appreciation of underlying cellular and molecular mechanisms of fibrosis, the assumption that HF cannot be cured is gradually changing. Recent findings have underlined the therapeutic potential of a number of synthetic compounds as well as plant derivatives for cessation or even the reversal of the processes that transforms the liver into fibrotic tissue. It is expected that future inputs will provide a conceptual framework to develop more specific strategies that would facilitate the assessment of risk factors, shortlist early diagnosis biomarkers, and eventually guide development of effective therapeutic alternatives.
Collapse
Affiliation(s)
- Areeba Ahmad
- Department of Zoology, Biochemical and Clinical Genetics Research Laboratory, Section of Genetics, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | | |
Collapse
|
21
|
De La Garza EM, Binkley PA, Ganapathy M, Krishnegowda NK, Tekmal RR, Schenken RS, Kirma NB. Raf-1, a potential therapeutic target, mediates early steps in endometriosis lesion development by endometrial epithelial and stromal cells. Endocrinology 2012; 153:3911-21. [PMID: 22619359 DOI: 10.1210/en.2011-1879] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Endometriosis is a hormone-sensitive gynecological disorder characterized by the benign growth of endometrial-like tissue in the pelvic cavity. Endometriotic lesions composed of endometrial stromal cells (ESC) and glandular epithelial cells (EEC) are thought to arise from menstrual endometrial tissue reaching the pelvic cavity via retrograde menstruation. The cause of endometriotic lesion formation is still not clear. Recent evidence suggest that cytokines may play a role in the early development of endometriosis lesions. Because cytokines and growth factors signal via the v-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) kinase pathway, we have examined the role of Raf-1 in early steps of endometriosis lesion formation, specifically attachment of endometrial cells to peritoneal mesothelial cells (PMC) and invasion of endometrial cells through PMC (trans-mesothelial invasion). Raf-1 antagonist GW5074 decreased attachment to PMC and trans-mesothelial invasion by primary EEC and ESC. Raf-1 also mediated TGFβ-induced trans-mesothelial invasion by the established, low-invasive EEC line EM42. TGFβ treatment of EEC resulted in Raf-1 phosphorylation at S338 and phosphorylation of ERK, suggesting that TGFβ activates Raf-1 signaling in these cells. GW5074 had little effect on ESC proliferation but inhibited EEC growth significantly under reduced serum conditions. Antagonizing Raf-1 activity and expression via GW5074 and specific Raf-1 small interfering RNA, respectively, did not alter EEC resistance to growth inhibition by TGFβ. Raf-1 inhibition blocked induction of EEC growth by epidermal growth factor. Our data suggest that Raf-1 may mediate pathologic steps involved in early endometriosis lesion formation and may be a mediator of TGFβ and epidermal growth factor actions in endometriosis.
Collapse
Affiliation(s)
- Elizabeth M De La Garza
- Department of Obstetrics and Gynecology, University of Texas Health Science Centre at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Overactive bone morphogenetic protein signaling in heterotopic ossification and Duchenne muscular dystrophy. Cell Mol Life Sci 2012; 70:407-23. [PMID: 22752156 PMCID: PMC3541930 DOI: 10.1007/s00018-012-1054-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are important extracellular cytokines that play critical roles in embryogenesis and tissue homeostasis. BMPs signal via transmembrane type I and type II serine/threonine kinase receptors and intracellular Smad effector proteins. BMP signaling is precisely regulated and perturbation of BMP signaling is connected to multiple diseases, including musculoskeletal diseases. In this review, we will summarize the recent progress in elucidation of BMP signal transduction, how overactive BMP signaling is involved in the pathogenesis of heterotopic ossification and Duchenne muscular dystrophy, and discuss possible therapeutic strategies for treatment of these diseases.
Collapse
|
23
|
Epigenetic mechanisms in central nervous system disorders. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
24
|
Gong D, Shi W, Yi SJ, Chen H, Groffen J, Heisterkamp N. TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol 2012; 13:31. [PMID: 22703233 PMCID: PMC3406960 DOI: 10.1186/1471-2172-13-31] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 06/15/2012] [Indexed: 01/13/2023] Open
Abstract
Background Upon stimulation with different cytokines, macrophages can undergo classical or alternative activation to become M1 or M2 macrophages. Alternatively activated (or M2) macrophages are defined by their expression of specific gene products and play an important role in containing inflammation, removing apoptotic cells and repairing tissue damage. Whereas it is well-established that IL-4 can drive alternative activation, if lack of TGFβ signaling at physiological levels affects M2 polarization has not been addressed. Results Vav1-Cre x TβRIIfx/fx mice, lacking TβRII function in hematopoietic cells, exhibited uncontrolled pulmonary inflammation and developed a lethal autoimmune syndrome at young age. This was accompanied by significantly increased numbers of splenic neutrophils and T cells as well as elevated hepatic macrophage infiltration and bone marrow monocyte counts. TβRII-/- CD4+ and CD8+ T-cells in the lymph nodes and spleen expressed increased cell surface CD44, and CD69 was also higher on CD4+ lymph node T-cells. Loss of TβRII in bone marrow-derived macrophages (BMDMs) did not affect the ability of these cells to perform efferocytosis. However, these cells were defective in basal and IL-4-induced arg1 mRNA and Arginase-1 protein production. Moreover, the transcription of genes that are typically upregulated in M2-polarized macrophages, such as ym1, mcr2 and mgl2, was also decreased in peritoneal macrophages and IL-4-stimulated TβRII-/- BMDMs. We found that cell surface and mRNA expression of Galectin-3, which also regulates M2 macrophage polarization, was lower in TβRII-/- BMDMs. Very interestingly, the impaired ability of these null mutant BMDMs to differentiate into IL-4 polarized macrophages was Stat6- and Smad3-independent, but correlated with reduced levels of phospho-Akt and β-catenin. Conclusions Our results establish a novel biological role for TGFβ signaling in controlling expression of genes characteristic for alternatively activated macrophages. We speculate that lack of TβRII signaling reduces the anti-inflammatory M2 phenotype of macrophages because of reduced expression of these products. This would cause defects in the ability of the M2 macrophages to negatively regulate other immune cells such as T-cells in the lung, possibly explaining the systemic inflammation observed in Vav1-Cre x TβRIIfx/fx mice.
Collapse
Affiliation(s)
- Dapeng Gong
- Division of Hematology/Oncology, Children's Hospital Los Angeles, 4650 Sunset Boulevard, Los Angeles, CA 90027, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Hepatic fibrosis (HF) is a progressive condition with serious clinical complications arising from abnormal proliferation and amassing of tough fibrous scar tissue. This defiance of collagen fibers becomes fatal due to ultimate failure of liver functions. Participation of various cell types, interlinked cellular events, and large number of mediator molecules make the fibrotic process enormously complex and dynamic. However, with better appreciation of underlying cellular and molecular mechanisms of fibrosis, the assumption that HF cannot be cured is gradually changing. Recent findings have underlined the therapeutic potential of a number of synthetic compounds as well as plant derivatives for cessation or even the reversal of the processes that transforms the liver into fibrotic tissue. It is expected that future inputs will provide a conceptual framework to develop more specific strategies that would facilitate the assessment of risk factors, shortlist early diagnosis biomarkers, and eventually guide development of effective therapeutic alternatives.
Collapse
Affiliation(s)
- Areeba Ahmad
- Department of Zoology, Biochemical and Clinical Genetics Research Laboratory, Section of Genetics, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Riaz Ahmad
- Department of Zoology, Biochemical and Clinical Genetics Research Laboratory, Section of Genetics, Aligarh Muslim University, Aligarh, Uttar Pradesh, India,Address for correspondence: Dr. Riaz Ahmad, Department of Zoology, Biochemical and Clinical Genetics Research Laboratory, Section of Genetics, Aligarh Muslim University, Aligarh- 202 002, Uttar Pradesh, India. E-mail:
| |
Collapse
|
26
|
Abstract
Transforming growth factor-β (TGF-β) is a central regulator in chronic liver disease contributing to all stages of disease progression from initial liver injury through inflammation and fibrosis to cirrhosis and hepatocellular carcinoma. Liver-damage-induced levels of active TGF-β enhance hepatocyte destruction and mediate hepatic stellate cell and fibroblast activation resulting in a wound-healing response, including myofibroblast generation and extracellular matrix deposition. Being recognised as a major profibrogenic cytokine, the targeting of the TGF-β signalling pathway has been explored with respect to the inhibition of liver disease progression. Whereas interference with TGF-β signalling in various short-term animal models has provided promising results, liver disease progression in humans is a process of decades with different phases in which TGF-β or its targeting might have both beneficial and adverse outcomes. Based on recent literature, we summarise the cell-type-directed double-edged role of TGF-β in various liver disease stages. We emphasise that, in order to achieve therapeutic effects, we need to target TGF-β signalling in the right cell type at the right time.
Collapse
|
27
|
Lo YT, Tsai YH, Wu SJ, Chen JR, Chao JCJ. Ginsenoside Rb1 inhibits cell activation and liver fibrosis in rat hepatic stellate cells. J Med Food 2011; 14:1135-43. [PMID: 21895415 DOI: 10.1089/jmf.2010.1485] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chronic hepatitis/cirrhosis is the eighth leading cause of death in Taiwan. Excess accumulated extracellular matrix produced by activated hepatic stellate cells (HSCs) is the major cause of liver fibrosis. Ginsenoside Rb1, the most active compound purified from ginseng, has been considered to be hepatoprotective. This study investigated the effects of ginsenoside Rb1 (98.8% purity) on activation, proliferation, and profibrotic factors in rat HSC-T6 cells under H₂O₂ oxidative stress. Rat HSC-T6 cells were activated by 10 nM H₂O₂ and then incubated with different concentrations of ginsenoside Rb1 (5, 10, 20, 40, and 80 μg/mL) for 24 hours. Medium containing 0.08% dimethyl sulfoxide or 5 mM N-acetyl-l-cysteine was used as a negative or positive control, respectively. The results showed that ginsenoside Rb1 at 5-40 μg/mL significantly reduced α-smooth muscle actin levels and at 5-80 μg/mL inhibited cell proliferation in HSC-T6 cells after induction with H₂O₂ (P<.05). Collagen secreted by HSC-T6 cells was decreased by ginsenoside Rb1 at 5-80 μg/mL (P<.05). Protein expression of transforming growth factor-β1 (TGF-β1), matrix metalloproteinase (MMP)-2, and tissue inhibitor of metalloproteinase (TIMP)-1 was suppressed by ginsenoside Rb1 at 10-80 μg/mL (P<.05). In addition, mRNA expression of type I and III collagen, TGF-β1, and TIMP-1 was inhibited by ginsenoside Rb1 (10 and 80 μg/mL) (P<.05). Therefore, ginsenoside Rb1 exerted an antifibrotic effect on HSCs by inhibiting activation, proliferation, and expression of collagen, TGF-β1, MMP-2, and TIMP-1.
Collapse
Affiliation(s)
- Yu-Ting Lo
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Bozic M, de Rooij J, Parisi E, Ortega MR, Fernandez E, Valdivielso JM. Glutamatergic signaling maintains the epithelial phenotype of proximal tubular cells. J Am Soc Nephrol 2011; 22:1099-111. [PMID: 21597037 DOI: 10.1681/asn.2010070701] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) contributes to the progression of renal tubulointerstitial fibrosis. The N-methyl-d-aspartate receptor (NMDAR), which is present in proximal tubular epithelium, is a glutamate receptor that acts as a calcium channel. Activation of NMDAR induces actin rearrangement in cells of the central nervous system, but whether it helps maintain the epithelial phenotype of the proximal tubule is unknown. Here, knockdown of NMDAR1 in a proximal tubule cell line (HK-2) induced changes in cell morphology, reduced E-cadherin expression, and increased α-SMA expression. Induction of EMT with TGF-β1 led to downregulation of both E-cadherin and membrane-associated β-catenin, reorganization of F-actin, expression of mesenchymal markers de novo, upregulation of Snail1, and increased cell migration; co-treatment with NMDA attenuated all of these changes. Furthermore, NMDA reduced TGF-β1-induced phosphorylation of Erk1/2 and Akt and the activation of Ras, suggesting that NMDA antagonizes TGF-β1-induced EMT by inhibiting the Ras-MEK pathway. In the unilateral ureteral obstruction model, treatment with NMDA blunted obstruction-induced upregulation of α-SMA, FSP1, and collagen I and downregulation of E-cadherin. Taken together, these results suggest that NMDAR plays a critical role in preserving the normal epithelial phenotype and modulating tubular EMT.
Collapse
Affiliation(s)
- Milica Bozic
- Nephrology Research Laboratory, IRB LLEIDA, University Hospital Arnau de Vilanova, Lleida, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Hepatic stellate cell (vitamin A-storing cell) and its relative--past, present and future. Cell Biol Int 2011; 34:1247-72. [PMID: 21067523 DOI: 10.1042/cbi20100321] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
HSCs (hepatic stellate cells) (also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells or Ito cells) exist in the space between parenchymal cells and liver sinusoidal endothelial cells of the hepatic lobule and store 50-80% of vitamin A in the whole body as retinyl palmitate in lipid droplets in the cytoplasm. In physiological conditions, these cells play pivotal roles in the regulation of vitamin A homoeostasis. In pathological conditions, such as hepatic fibrosis or liver cirrhosis, HSCs lose vitamin A and synthesize a large amount of extracellular matrix components including collagen, proteoglycan, glycosaminoglycan and adhesive glycoproteins. Morphology of these cells also changes from the star-shaped SCs (stellate cells) to that of fibroblasts or myofibroblasts. The hepatic SCs are now considered to be targets of therapy of hepatic fibrosis or liver cirrhosis. HSCs are activated by adhering to the parenchymal cells and lose stored vitamin A during hepatic regeneration. Vitamin A-storing cells exist in extrahepatic organs such as the pancreas, lungs, kidneys and intestines. Vitamin A-storing cells in the liver and extrahepatic organs form a cellular system. The research of the vitamin A-storing cells has developed and expanded vigorously. The past, present and future of the research of the vitamin A-storing cells (SCs) will be summarized and discussed in this review.
Collapse
|
30
|
Zhang J, Zhang Y, Li N, Liu Z, Xiong C, Ni X, Pu Y, Hui R, He J, Pu J. Potential diagnostic biomarkers in serum of idiopathic pulmonary arterial hypertension. Respir Med 2009; 103:1801-6. [PMID: 19703762 DOI: 10.1016/j.rmed.2009.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 07/02/2009] [Accepted: 07/26/2009] [Indexed: 10/20/2022]
|
31
|
Webber J, Jenkins RH, Meran S, Phillips A, Steadman R. Modulation of TGFbeta1-dependent myofibroblast differentiation by hyaluronan. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:148-60. [PMID: 19541937 DOI: 10.2353/ajpath.2009.080837] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myofibroblasts are contractile cells that are characterized by the expression of alpha-smooth muscle actin and mediate the closure of wounds and the formation of collagen-rich scars. Their presence in organs such as lungs, liver, and kidney has long been established as a marker of progressive fibrosis. The transforming growth factor beta(1)-driven differentiation of fibroblasts is a major source of myofibroblasts, and recent data have shown that hyaluronan is a major modulator of this process. This study examines this differentiation mechanism in more detail. Transforming growth factor beta(1)-dependent differentiation to the myofibroblastic phenotype was antagonized by the inhibition of hyaluronan synthesis, confirming that hyaluronan was necessary for differentiation. This response, however, was not reproduced by simply adding hyaluronan to fibroblasts, as the results implicated hyaladherins, as well as the macromolecular assembly of de novo hyaluronan, as essential in this process. We previously suggested that there is a relocalization of lipid-raft components during myofibroblastic differentiation. The present study demonstrates that the hyaluronan receptor CD44, the hyaluronidase HYAL 2, and the transforming growth factor beta(1)-receptor ALK5 all relocalized from raft to non-raft locations, which was reversed by the addition of exogenous hyaluronan. These data highlight a role for endogenous hyaluronan in the mediation of myofibroblastic differentiation. While hyaluronan synthesis was both essential and necessary for differentiation, exogenously provided hyaluronan antagonized differentiation, underscoring a pathological role for hyaluronan in such cell fate processes.
Collapse
Affiliation(s)
- Jason Webber
- Institute of Nephrology, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | | | | | | | | |
Collapse
|
32
|
Ma J, Li F, Liu L, Cui D, Wu X, Jiang X, Jiang H. Raf kinase inhibitor protein inhibits cell proliferation but promotes cell migration in rat hepatic stellate cells. Liver Int 2009; 29:567-74. [PMID: 19323783 DOI: 10.1111/j.1478-3231.2009.01981.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM Hepatic stellate cells (HSCs) play an important role in the pathogenesis of liver fibrosis and cirrhosis. Raf kinase inhibitor protein (RKIP), an inhibitor of extracellular signal-regulated kinases (ERK)/mitogen-activated protein kinase (MAPK) signalling pathway, has been proved to suppress tumor metastasis. Interestingly, RKIP promotes cell migration in Madin-Darby canine kidney epithelial cells. However, the effects of RKIP on HSC behaviours are unknown. The purpose of the present study is to investigate the role of RKIP in HSC proliferation, apoptosis and migration. METHODS Two types of cells, freshly isolated HSC and HSC-T6 cell line, were used in this study. The amount of RKIP, the phosphorylation of RKIP, Raf and ERK (pRKIP, pRaf and pERK) were analysed in quiescent and activated HSCs by Western blots. HSC-T6 cells were transfected with RKIP-expressing plasmid or treated with locostatin, a RKIP inhibitor. HSC proliferation, apoptosis and migration were evaluated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelling (TUNEL) staining and Transwell cell migration assay respectively. RESULTS In activated HSCs, RKIP protein expression was downregulated whereas pRKIP, pRaf and pERK were upregulated. RKIP overexpression significantly mitigated the phosphorylation of RKIP, Raf and ERK. This in turn inhibited HSC proliferation. Locostatin not only inhibited RKIP protein expression but also, to some extent, reversed the RKIP-inhibited phosphorylation of RKIP, Raf and ERK. RKIP augmented HSC migration and enhanced wound closure. Locostatin reversed the effects of RKIP. CONCLUSION Raf kinase inhibitor protein inhibits ERK/MAPK signalling and this inhibition impedes HSC proliferation. RKIP promotes HSC migration and wound closure.
Collapse
Affiliation(s)
- Junji Ma
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroextenology, Hebei, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Qiang H, Xu HJ, Zhou GX, Huang JF, Huang H, Zhang H. Expression of extracellular signal-regulated kinase in hepatic fibrosis and its correlation with collagen type I and III. Shijie Huaren Xiaohua Zazhi 2009; 17:770-774. [DOI: 10.11569/wcjd.v17.i8.770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of ERK during the development of hepatic fibrosis and the correlation of ERK and I, III collagens.
METHODS: Hepatic fibrosis was induced by subcutaneous injection of DMN. Rats were killed for study at the end of first, second, third weeks and the clinical operative liver samples were collected. The development expression and location of the ERK in the hepatic tissue and the correlation of ERK with collagen I, III were assessed by means of immunohistochemistry.
RESULTS: The expression of ERK was increased and was closely correlated with that of collagen I and III during the development of rat fibrosis at every time point (1 wk: r = 0.75, 0.68, P < 0.05; 2 wk: r = 0.82, 0.78, P < 0.05; 3 wk: r = 0.74, 0.83, P < 0.05). Similarly, the expression of ERK was enhanced in human fibrotic tissues (1.068 ± 0.258 vs 0.035 ± 0.011, P < 0.05), which was correlated with that of collagen I and III (r = 0.87, 0.88, all P < 0.05).
CONCLUSION: The ERK signal pathway may play an important role in the pathogenesis of hepatic fibrosis.
Collapse
|
34
|
Lee JS, Kim JH. [The role of activated hepatic stellate cells in liver fibrosis, portal hypertension and cancer angiogenesis]. THE KOREAN JOURNAL OF HEPATOLOGY 2008; 13:309-19. [PMID: 17898548 DOI: 10.3350/kjhep.2007.13.3.309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although hepatic stellate cells, which are liver specific pericytes, have been recognized within the vasculature of the sinusoid for more than one hundred years, the biology and function of these cells is unclear. Recent studies have highlighted the key role of stellate cells in a number of fundamental processes that include wound healing/fibrosis, vasoregulation, and vascular remodeling/angiogenesis. In the liver, these processes are particularly important in the development of cirrhosis, portal hypertension and cancer. This article highlights the recent advances in our understanding of the biology of hepatic stellate cells and discusses some of the recently-ascribed functions that are relevant to liver fibrosis, portal hypertension and cancer angiogenesis.
Collapse
Affiliation(s)
- June Sung Lee
- Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea.
| | | |
Collapse
|
35
|
Gingery A, Bradley EW, Pederson L, Ruan M, Horwood NJ, Oursler MJ. TGF-beta coordinately activates TAK1/MEK/AKT/NFkB and SMAD pathways to promote osteoclast survival. Exp Cell Res 2008; 314:2725-38. [PMID: 18586026 DOI: 10.1016/j.yexcr.2008.06.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 11/26/2022]
Abstract
To better understand the roles of TGF-beta in bone metabolism, we investigated osteoclast survival in response TGF-beta and found that TGF-beta inhibited apoptosis. We examined the receptors involved in promotion of osteoclast survival and found that the canonical TGF-beta receptor complex is involved in the survival response. The upstream MEK kinase TAK1 was rapidly activated following TGF-beta treatment. Since osteoclast survival involves MEK, AKT, and NFkappaB activation, we examined TGF-beta effects on activation of these pathways and observed rapid phosphorylation of MEK, AKT, IKK, IkappaB, and NFkappaB. The timing of activation coincided with SMAD activation and dominant negative SMAD expression did not inhibit NFkappaB activation, indicating that kinase pathway activation is independent of SMAD signaling. Inhibition of TAK1, MEK, AKT, NIK, IKK, or NFkappaB repressed TGF-beta-mediated osteoclast survival. Adenoviral-mediated TAK1 or MEK inhibition eliminated TGF-beta-mediated kinase pathway activation and constitutively active AKT expression overcame apoptosis induction following MEK inhibition. TAK1/MEK activation induces pro-survival BclX(L) expression and TAK1/MEK and SMAD pathway activation induces pro-survival Mcl-1 expression. These data show that TGF-beta-induced NFkappaB activation is through TAK1/MEK-mediated AKT activation, which is essential for TGF-beta to support of osteoclast survival.
Collapse
Affiliation(s)
- Anne Gingery
- Department of Biochemistry and Molecular Biology, University of Minnesota, Duluth, Minnesota 55812, USA
| | | | | | | | | | | |
Collapse
|
36
|
Cailotto F, Bianchi A, Sebillaud S, Venkatesan N, Moulin D, Jouzeau JY, Netter P. Inorganic pyrophosphate generation by transforming growth factor-beta-1 is mainly dependent on ANK induction by Ras/Raf-1/extracellular signal-regulated kinase pathways in chondrocytes. Arthritis Res Ther 2008; 9:R122. [PMID: 18034874 PMCID: PMC2246241 DOI: 10.1186/ar2330] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/12/2007] [Accepted: 11/22/2007] [Indexed: 12/01/2022] Open
Abstract
ANK is a multipass transmembrane protein transporter thought to play a role in the export of intracellular inorganic pyrophosphate and so to contribute to the pathophysiology of chondrocalcinosis. As transforming growth factor-beta-1 (TGF-β1) was shown to favor calcium pyrophosphate dihydrate deposition, we investigated the contribution of ANK to the production of extracellular inorganic pyrophosphate (ePPi) by chondrocytes and the signaling pathways involved in the regulation of Ank expression by TGF-β1. Chondrocytes were exposed to 10 ng/mL of TGF-β1, and Ank expression was measured by quantitative polymerase chain reaction and Western blot. ePPi was quantified in cell supernatants. RNA silencing was used to define the respective roles of Ank and PC-1 in TGF-β1-induced ePPi generation. Finally, selective kinase inhibitors and dominant-negative/overexpression plasmid strategies were used to explore the contribution of several signaling pathways to Ank induction by TGF-β1. TGF-β1 strongly increased Ank expression at the mRNA and protein levels, as well as ePPi production. Using small interfering RNA technology, we showed that Ank contributed approximately 60% and PC-1 nearly 20% to TGF-β1-induced ePPi generation. Induction of Ank by TGF-β1 required activation of the extracellular signal-regulated kinase (ERK) pathway but not of p38-mitogen-activated protein kinase or of protein kinase A. In line with the general protein kinase C (PKC) inhibitor calphostin C, Gö6976 (a Ca2+-dependent PKC inhibitor) diminished TGF-β1-induced Ank expression by 60%, whereas a 10% inhibition was observed with rottlerin (a PKCδ inhibitor). These data suggest a regulatory role for calcium in TGF-β1-induced Ank expression. Finally, we demonstrated that the stimulatory effect of TGF-β1 on Ank expression was inhibited by the suppression of the Ras/Raf-1 pathway, while being enhanced by their constitutive activation. Transient overexpression of Smad 7, an inhibitory Smad, failed to affect the inducing effect of TGF-β1 on Ank mRNA level. These data show that TGF-β1 increases ePPi levels, mainly by the induction of the Ank gene, which requires activation of Ras, Raf-1, ERK, and Ca2+-dependent PKC pathways in chondrocytes.
Collapse
Affiliation(s)
- Frederic Cailotto
- UMR 7561 CNRS-Nancy-Université, Laboratoire de Physiopathologie et Pharmacologie Articulaires, France.
| | | | | | | | | | | | | |
Collapse
|
37
|
Ye Z, Houssein HSH, Mahato RI. Bioconjugation of oligonucleotides for treating liver fibrosis. Oligonucleotides 2008; 17:349-404. [PMID: 18154454 DOI: 10.1089/oli.2007.0097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|
38
|
Beck SE, Carethers JM. BMP suppresses PTEN expression via RAS/ERK signaling. Cancer Biol Ther 2008; 6:1313-7. [PMID: 18059158 DOI: 10.4161/cbt.6.8.4507] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bone morphogenetic protein (BMP), a member of the transforming growth factor beta family, classically utilizes the SMAD signaling pathway for its growth suppressive effects,and loss of this signaling cascade may accelerate cell growth. In the colon cancer predisposition syndrome Juvenile Polyposis, as well as in the late progression stages of nonsyndromic colorectal cancers, SMAD4 function is typically abrogated. Here, we utilized the SMAD4-null SW480 colon cancer cell line to examine BMPs effect on a potential target gene, PTEN, and how its expression might be regulated. Initial treatment of the SMAD4-null cells with BMP resulted in mild growth suppression, but with prolonged exposure to BMP, the cells become growth stimulatory, which coincided with observed decreases in transcription and translation of PTEN, and with corresponding increases in phospho-AKT protein levels. BMP-induced PTEN suppression was mediated via the RAS/ERK pathway, as pharmacologic inhibition of RAS/ERK, or interference with protein function in the cytosol by DN-RAS prevented BMP-induced growth promotion and changes in PTEN levels, as did treatment with noggin, a BMP ligand inhibitor. Thus, BMP downregulates PTEN via RAS/ERK in a SMAD4-null environment that contributes to cell growth, and constitutes a SMAD4-independent but BMP-responsive signaling pathway.
Collapse
Affiliation(s)
- Stayce E Beck
- Department of Medicine, University of California San Diego, San Diego, California, USA
| | | |
Collapse
|
39
|
Abstract
The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
40
|
David L, Mallet C, Vailhé B, Lamouille S, Feige JJ, Bailly S. Activin receptor-like kinase 1 inhibits human microvascular endothelial cell migration: Potential roles for JNK and ERK. J Cell Physiol 2007; 213:484-9. [PMID: 17620321 DOI: 10.1002/jcp.21126] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Activin receptor-like kinase 1 (ALK1) is an endothelial-specific type I receptor of the TGFbeta receptor family that is implicated in angiogenesis and in the pathogenesis of the vascular disease, hereditary hemorrhagic telangiectasia (HHT). In the absence of a specific ligand, ALK1 cellular functions have been mainly studied through the use of a constitutively active form of this receptor (ALK1ca) and are still debated. We previously reported that ALK1ca inhibits proliferation and migration of human endothelial cells suggesting that ALK1 plays an important role in the maturation phase of angiogenesis (Lamouille et al., 2002, Blood 100: 4495-4501). In the present work, we further analyzed the role of ALK1 in the migration of human dermal microvascular endothelial cell (HMVEC-d) and observed that silencing endogenous ALK1 expression with siRNAs accelerates endothelial cell migration in the wound assay. Further, we demonstrate that ALK1-induced inhibition of migration is Smad-independent. Using a panel of kinase inhibitors, we found that HMVEC-d wound closure was completely inhibited by a JNK inhibitor and to a lower degree by an ERK kinase inhibitor. Further, HMVEC-d wounding induced activation of both JNK and ERK, and these were inhibited by ALK1ca expression. Taken together, these results support a significant role for ALK1 as a negative regulator of endothelial cell migration and suggest the implication of JNK and ERK as mediators of this effect.
Collapse
Affiliation(s)
- Laurent David
- Institut National de la Santé et de la Recherche Médicale, U878, Grenoble, France
| | | | | | | | | | | |
Collapse
|
41
|
Gui M, Zhang YF, Xiao ZY, Sun P, Dai JF, Wang SF, Rui YC, Zhang JP. Inhibitory effect of emodin on tissue inhibitor of metalloproteinases-1 (TIMP-1) expression in rat hepatic stellate cells. Dig Dis Sci 2007; 52:200-7. [PMID: 17160480 DOI: 10.1007/s10620-006-9321-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 03/17/2006] [Indexed: 01/06/2023]
Abstract
Emodin inhibited expression of both transforming growth factor beta1 (TGFbeta1)- and phorbol ester (PMA)-induced tissue inhibitors of metalloproteinase-1 (TIMP-1) in an immortalized rat hepatic stellate cell line, HSC-T6, by Western blot and reverse transcription polymerase chain reaction. Reporter gene assays showed that emodin reduced both basal and PMA-induced activated protein-1 (AP-1) promoter activities. Electrophoretic mobility shift assay revealed that emodin reduced AP-1 DNA binding activities in HSC-T6 cells. AP-1 components analysis showed that emodin also attenuated JunD mRNA expression. Furthermore, emodin markedly inhibited TGFbeta1-induced p42/p44 mitogen-activated protein kinase phosphorylation but did not alter PMA induction. We conclude that emodin effectively inhibits PMA- and TGFbeta1-stimulated TIMP-1 expression in hepatic stellate cells by suppressing the AP-1 signaling pathway and extracellular signal-regulated kinase activation, respectively. These data provide new insight into the cellular and molecular mechanisms of emodin against liver fibrosis.
Collapse
Affiliation(s)
- Min Gui
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Guo He Road 325, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Qiang H, Lin Y, Zhang X, Zeng X, Shi J, Chen YX, Yang MF, Han ZG, Xie WF. Differential expression genes analyzed by cDNA array in the regulation of rat hepatic fibrogenesis. Liver Int 2006; 26:1126-37. [PMID: 17032414 DOI: 10.1111/j.1478-3231.2006.01353.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To analyze the gene expression pattern in rat hepatic fibrogenesis and further assess the role of some key genes during the pathological process. METHODS Hepatic fibrosis was induced by intraperitoneal injection of dimethylnitrosamine or carbon tetrachloride (CCl(4)) injection subcutaneously in rats, and identification of the hepatic fibrosis related genes with cDNA microarray was performed. After some key genes up-regulated during the development of hepatic fibrosis were screened and confirmed, their effects on the function of the activated rat hepatic stellate cells (HSC) were assessed using the small interfering RNA (siRNA) technique. RESULTS Using an Atlas rat cDNA array, a number of differentially expressed genes in fibrotic liver tissues were identified compared with non-diseased control. A total of 15 genes predominantly associated with the mitogen-activated protein kinase (MAPK) signal transduction pathway were upregulated in the fibrotic liver. Immunohistochemical study revealed that the expressions of both extracellular signal-regulated kinases (ERK) and ribosomal protein S6 kinase (RSK), two of the key genes in the MAPK pathway, were remarkably induced, which was closely correlated to that of collagen types I and III during the development of hepatic fibrosis. Transfection of siRNA targeting ERK1 mRNA (siERK1) into HSC led to a 66% and 72% reduction of ERK1 mRNA and protein expression, respectively. Furthermore, siERK1 exerted the inhibition of the proliferation of HSC, accompanied by the induction of HSC apoptosis and reduction of collagen types I and III. In addition, siERK1 abolished the effect of platelet-derived growth factor-BB on the proliferation of HSC. CONCLUSIONS The present study provided strong evidence for the participation of the MAPK pathway in the pathogenesis of hepatic fibrosis. Selective targeting of ERK1 inhibitors to HSC might present as a novel strategy for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Hui Qiang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Elahi M, Asopa S, Matata B. NO-cGMP and TNF-alpha counter regulatory system in blood: understanding the mechanisms leading to myocardial dysfunction and failure. Biochim Biophys Acta Mol Basis Dis 2006; 1772:5-14. [PMID: 17045464 DOI: 10.1016/j.bbadis.2006.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 09/01/2006] [Accepted: 09/05/2006] [Indexed: 11/23/2022]
Abstract
One of the major conceptual advances in the understanding of the pathogenesis of heart failure has been the insight that myocardial dysfunction and heart failure may progress as the result of the sustained over-expression of nitric oxide (NO) metabolites locally and in blood modulated by inducible nitric oxide synthase (iNOS). This by virtue of their deleterious effects is sufficient to contribute to disease progression by provoking left ventricular (LV) remodeling, hypertrophy and progressive LV dysfunction. Recently, tumor necrosis factor-alpha (TNF-alpha) has also been identified in this setting of heart failure. Analogous to the situation with NO, the over-expression of TNF-alpha is sufficient to contribute to disease progression in heart failure phenotype. Although important interactions between TNF-alpha and the NO have been recognized in the cardiovascular system for over a decade, the nature and importance of the interactions between these biologically active molecules in cardiac hypertrophy has become apparent only in the recent times. Therefore, we focused on the prevailing updated evidence which suggests that there is a functionally significant cross-regulation between NO and TNF-alpha signaling in blood thus playing a part in cardiac hypertrophy and failure. The discussions presented here will have a bearing on the therapeutic potential via inhibitors of these pathways in reducing cardiomyocyte hypertrophy and the LV dysfunction.
Collapse
Affiliation(s)
- Maqsood Elahi
- Wessex Cardiothoracic Centre, Chalybeate Close, Southampton, SO16 6UY, UK
| | | | | |
Collapse
|
44
|
Le Pabic H, L'Helgoualc'h A, Coutant A, Wewer UM, Baffet G, Clément B, Théret N. Involvement of the serine/threonine p70S6 kinase in TGF-beta1-induced ADAM12 expression in cultured human hepatic stellate cells. J Hepatol 2005; 43:1038-44. [PMID: 16139919 DOI: 10.1016/j.jhep.2005.05.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 05/24/2005] [Accepted: 05/31/2005] [Indexed: 01/18/2023]
Abstract
BACKGROUND/AIMS In chronic liver injury, quiescent hepatic stellate cells change into proliferative myofibroblast-like cells, which are a main source of fibrosis. We have recently reported that these cells synthesize ADAM12, a disintegrin and metalloprotease whose expression is up-regulated by TGF-beta1 in liver cancers. Here, we studied the role of the serine/threonine p70S6 kinase (p70S6K) in regulating TGF-beta1-induced ADAM12 expression. RESULTS The phophatidylinositol 3-kinase (PI3K) inhibitor LY294002 and the mitogen-activated protein kinase inhibitor, UO126, decreased the TGF-beta1-dependent ADAM12 expression and prevented the phosphorylation of p70S6K. In addition, TGF-beta1-induced ADAM12 up-regulation was blocked by the Frap/mTOR inhibitor rapamycin, which abrogated the phosphorylation of p70S6K. In untreated cells, LY294002 but not rapamycin diminished the basal ADAM12 expression related to inhibition of Akt and the glycogen synthase kinase-3 phosphorylation. CONCLUSIONS The data suggest that TGF-beta1 induces ADAM12 gene expression through both the PI3K/Frap-mTOR/p70S6K and MEK/ERK pathways. In addition, activation of the PI3 pathway might be involved in the basal ADAM12 expression in cultured hepatic stellate cells. The involvement of PI3K in ADAM12 expression, similar to that previously observed for collagen I and fibronectin, suggests common pathways for gene up-regulation in hepatic stellate cells that occur during liver fibrogenesis and contribute to tumor progression.
Collapse
Affiliation(s)
- Hélène Le Pabic
- INSERM U620, Détoxication et Réparation Tissulaire, Facultés de Médecine et Pharmacie, Université de Rennes I, IFR no. 140, 2 Av. Léon Bernard, 35043 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Portal hypertension, one of the vascular diseases, not only has lesions in liver, but also changes in vascular structures and functions of extrahepatic portal system, systemic system and pulmonary circulation. The pathological changes of vasculopathy in portal hypertension include remodeling of arterialized visceral veins, intimal injury of visceral veins and destruction of contractile structure in visceral arterial wall. The mechanisms of vasculopathy in portal hypertension may be attributed to the changes of hemodynamics in portal system, immune response, gene modulation, vasoactive substances, and intrahepatic blood flow resistance. Portal hypertension can cause visceral hyperdynamic circulation, and the development and progression of visceral vasculopathy, while visceral vasculopathy can promote the development and progression of portal hypertension and visceral hyperdynamic circulation in turn. The aforementioned three factors interact in the pathogenesis of hepatic cirrhosis-induced portal hypertension and are involved in hemorrhage due to varicose vein rupture.
Collapse
Affiliation(s)
- Tao Li
- Department of General Surgery, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | | |
Collapse
|
46
|
Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin Chim Acta 2005; 364:33-60. [PMID: 16139830 DOI: 10.1016/j.cca.2005.06.014] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/07/2005] [Accepted: 06/08/2005] [Indexed: 01/18/2023]
Abstract
Liver fibrosis represents a significant health problem worldwide of which no acceptable therapy exists. The most characteristic feature of liver fibrosis is excess deposition of type I collagen. A great deal of research has been performed to understand the molecular mechanisms responsible for the development of liver fibrosis. The activated hepatic stellate cell (HSC) is the primary cell type responsible for the excess production of collagen. Following a fibrogenic stimulus, HSCs change from a quiescent to an activated, collagen-producing cell. Numerous changes in gene expression are associated with HSC activation including the induction of several intracellular signaling cascades, which help maintain the activated phenotype and control the fibrogenic and proliferative state of the cell. Detailed analyses in understanding the molecular basis of collagen gene regulation have revealed a complex process offering the opportunity for multiple potential therapeutic strategies. However, further research is still needed to gain a better understanding of HSC activation and how this cell maintains its fibrogenic nature. In this review we describe many of the molecular events that occur following HSC activation and collagen gene regulation that contribute to the fibrogenic nature of these cells and provide a review of therapeutic strategies to treat this disease.
Collapse
Affiliation(s)
- Shigeki Tsukada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, NC 27599-7032, USA
| | | | | |
Collapse
|
47
|
|
48
|
Lennmyr F, Karlsson S, Gerwins P, Ata KA, Terént A. Activation of mitogen-activated protein kinases in experimental cerebral ischemia. Acta Neurol Scand 2002; 106:333-40. [PMID: 12460137 DOI: 10.1034/j.1600-0404.2002.01313.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Mitogen-activated protein kinases (MAPK) regulate cell survival and differentiation. The aim of the present study is to investigate the activation pattern of different MAPKs [extracellular signal-regulated kinase (ERK), c-jun-N-terminal kinase (JNK) and p38] after cerebral ischemia. MATERIAL AND METHODS Rats were subjected to cerebral ischemia using a model for transient (2 h) and permanent middle cerebral artery occlusion (MCAO). The rats were allowed 6 h to 1 week of survival before immunohistochemical evaluation with phospho-specific antibodies, recognizing activated MAPKs. RESULTS ERK was activated in ipsilateral blood vessels, neurons and glia, but also in contralateral vessels. JNK activation was absent in neurons but appeared in arterial blood vessels and glia at the lesion side. Active p38 was observed in macrophages in maturing infarcts. CONCLUSIONS ERK and JNK may participate in the angiogenic response to cerebral ischemia. ERK, but not JNK, was activated in neurons, possibly indicating a pathophysiologic role. Active p38 might be involved in the inflammatory reaction.
Collapse
Affiliation(s)
- F Lennmyr
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
49
|
Cao Q, Mak KM, Lieber CS. DLPC decreases TGF-beta1-induced collagen mRNA by inhibiting p38 MAPK in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2002; 283:G1051-61. [PMID: 12381518 DOI: 10.1152/ajpgi.00128.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dilinoleoylphosphatidylcholine (DLPC), the active component of polyenylphosphatidylcholine extracted from soybeans, decreases collagen accumulation induced by TGF-beta1 in cultured hepatic stellate cells (HSCs). Because DLPC exerts antioxidant effects and TGF-beta1 generates oxidative stress, we evaluated whether the antifibrogenic effect of DLPC is linked to its antioxidant action. In passage 1 culture of rat HSCs, TGF-beta1 induced a concentration-dependent increase in procollagen-alpha(1)(I) mRNA levels and enhanced intracellular H(2)O(2) and superoxide anion formation and lipid peroxidation but decreased GSH levels. These changes were prevented by DLPC. Upregulation of collagen mRNA by TGF-beta1 was likewise inhibited by catalase and p38 MAPK inhibitor SB-203580, suggesting involvement of H(2)O(2) and p38 MAPK signaling in this process. TGF-beta1 or addition of H(2)O(2) to HSCs activated p38 MAPK with a rise in procollagen mRNA level; these changes were blocked by catalase and SB-203580 and likewise by DLPC. alpha-Smooth muscle actin abundance in HSCs was not altered by TGF-beta1 treatment (with or without DLPC), indicating that downregulation of procollagen mRNA by DLPC was not due to alteration in HSC activation. These results demonstrate that DLPC prevents TGF-beta1-induced increase in collagen mRNA by inhibiting generation of oxidative stress and associated H(2)O(2)-dependent p38 MAPK activation, which explains its antifibrogenic effect. DLPC, an innocuous phospholipid, may be considered for prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Qi Cao
- Alcohol Research and Treatment Center, Bronx Veterans Affairs Medical Center and Mount Sinai School of Medicine, Bronx, New York 10468, USA
| | | | | |
Collapse
|
50
|
Abstract
Liver fibrosis represents a major worldwide healthcare burden. Current therapy is limited to removing the causal agent. This approach is successful in some diseases; particularly haemochromatosis and chronic viral hepatitis. However, for many patients treatment is not possible, while other patients present to medical attention at an advanced stage of fibrosis. There is therefore a great need for novel therapies for liver fibrosis. The hepatic stellate cell has been recognised to be responsible for most of the excess extracellular matrix observed in chronic liver fibrosis. The detailed understanding of hepatic stellate cell biology has allowed the rational design of novel antifibrotic therapies. This review describes for the general reader the novel emerging therapies for liver fibrosis.
Collapse
Affiliation(s)
- Frank Murphy
- Liver Research Group, Division of Infection, Inflammation & Repair, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | | | | |
Collapse
|