1
|
Santabarbara S, Agostini A, Petrova AA, Bortolus M, Casazza AP, Carbonera D. Chlorophyll triplet states in thylakoid membranes of Acaryochloris marina. Evidence for a triplet state sitting on the photosystem I primary donor populated by intersystem crossing. PHOTOSYNTHESIS RESEARCH 2024; 159:133-152. [PMID: 37191762 DOI: 10.1007/s11120-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Photo-induced triplet states in the thylakoid membranes isolated from the cyanobacterium Acaryocholoris marina, that harbours Chlorophyll (Chl) d as its main chromophore, have been investigated by Optically Detected Magnetic Resonance (ODMR) and time-resolved Electron Paramagnetic Resonance (TR-EPR). Thylakoids were subjected to treatments aimed at poising the redox state of the terminal electron transfer acceptors and donors of Photosystem II (PSII) and Photosystem I (PSI), respectively. Under ambient redox conditions, four Chl d triplet populations were detectable, identifiable by their characteristic zero field splitting parameters, after deconvolution of the Fluorescence Detected Magnetic Resonance (FDMR) spectra. Illumination in the presence of the redox mediator N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD) and sodium ascorbate at room temperature led to a redistribution of the triplet populations, with T3 (|D|= 0.0245 cm-1, |E|= 0.0042 cm-1) becoming dominant and increasing in intensity with respect to untreated samples. A second triplet population (T4, |D|= 0.0248 cm-1, |E|= 0.0040 cm-1) having an intensity ratio of about 1:4 with respect to T3 was also detectable after illumination in the presence of TMPD and ascorbate. The microwave-induced Triplet-minus-Singlet spectrum acquired at the maximum of the |D|-|E| transition (610 MHz) displays a broad minimum at 740 nm, accompanied by a set of complex spectral features that overall resemble, despite showing further fine spectral structure, the previously reported Triplet-minus-Singlet spectrum attributed to the recombination triplet of PSI reaction centre,3 P 740 [Schenderlein M, Çetin M, Barber J, et al. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1777:1400-1408]. However, TR-EPR experiments indicate that this triplet displays an eaeaea electron spin polarisation pattern which is characteristic of triplet sublevels populated by intersystem crossing rather than recombination, for which an aeeaae polarisation pattern is expected instead. It is proposed that the observed triplet, which leads to the bleaching of the P740 singlet state, sits on the PSI reaction centre.
Collapse
Affiliation(s)
- Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy.
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy.
| | - Alessandro Agostini
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anastasia A Petrova
- Photosynthesis Research Unit, Centro Studi Sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale Delle Ricerche, Via Celoria 26, 20133, Milan, Italy
- A. N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory 1 Building 40, Moscow, Russia, 119992
| | - Marco Bortolus
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133, Milan, Italy
| | - Donatella Carbonera
- Department of Chemical Sciences, Università di Padova, Via Marzolo 1, 35131, Padua, Italy.
| |
Collapse
|
2
|
Agostini A, Shen G, Bryant DA, Golbeck JH, van der Est A, Carbonera D. Optically detected magnetic resonance and mutational analysis reveal significant differences in the photochemistry and structure of chlorophyll f synthase and photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:149002. [PMID: 37562512 DOI: 10.1016/j.bbabio.2023.149002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
In cyanobacteria that undergo far red light photoacclimation (FaRLiP), chlorophyll (Chl) f is produced by the ChlF synthase enzyme, probably by photo-oxidation of Chl a. The enzyme forms homodimeric complexes and the primary amino acid sequence of ChlF shows a high degree of homology with the D1 subunit of photosystem II (PSII). However, few details of the photochemistry of ChlF are known. The results of a mutational analysis and optically detected magnetic resonance (ODMR) data from ChlF are presented. Both sets of data show that there are significant differences in the photochemistry of ChlF and PSII. Mutation of residues that would disrupt the donor side primary electron transfer pathway in PSII do not inhibit the production of Chl f, while alteration of the putative ChlZ, P680 and QA binding sites rendered ChlF non-functional. Together with previously published transient EPR and flash photolysis data, the ODMR data show that in untreated ChlF samples, the triplet state of P680 formed by intersystem crossing is the primary species generated by light excitation. This is in contrast to PSII, in which 3P680 is only formed by charge recombination when the quinone acceptors are removed or chemically reduced. The triplet states of a carotenoid (3Car) and a small amount of 3Chl f are also observed by ODMR. The polarization pattern of 3Car is consistent with its formation by triplet energy transfer from ChlZ if the carotenoid molecule is rotated by 15° about its long axis compared to the orientation in PSII. It is proposed that the singlet oxygen formed by the interaction between molecular oxygen and 3P680 might be involved in the oxidation of Chl a to Chl f.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy; Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, 370 05 Ceske Budejovice, Czech Republic
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, 16802, USA
| | - Art van der Est
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock, Way, St. Catharines, ON L2S 3A1, Canada.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padova, Italy.
| |
Collapse
|
3
|
Pinevich AV, Averina SG. On the Edge of the Rainbow: Red-Shifted Chlorophylls and Far-Red Light Photoadaptation in Cyanobacteria. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
Cherepanov DA, Petrova AA, Mamedov MD, Vishnevskaya AI, Gostev FE, Shelaev IV, Aybush AV, Nadtochenko VA. Comparative Absorption Dynamics of the Singlet Excited States of Chlorophylls a and d. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1179-1186. [PMID: 36273886 DOI: 10.1134/s000629792210011x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 06/16/2023]
Abstract
Transient absorption dynamics of chlorophylls a and d dissolved in tetrahydrofuran was measured by the broadband femtosecond laser pump-probe spectroscopy in a spectral range from 400 to 870 nm. The absorption spectra of the excited S1 singlet states of chlorophylls a and d were recorded, and the dynamics of the of the Qy band shift of the stimulated emission (Stokes shift of fluorescence) was determined in a time range from 60 fs to 4 ps. The kinetics of the intramolecular conversion Qx→Qy (electronic transition S2→S1) was measured; the characteristic relaxation time was 54 ± 3 and 45 ± 9 fs for chlorophylls a and d, respectively.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anastasia A Petrova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Mahir D Mamedov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anna I Vishnevskaya
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Fedor E Gostev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan V Shelaev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Arseniy V Aybush
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victor A Nadtochenko
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
5
|
Prospects of cyanobacterial pigment production: biotechnological potential and optimization strategies. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Litvín R, Bína D, Herbstová M, Pazderník M, Kotabová E, Gardian Z, Trtílek M, Prášil O, Vácha F. Red-shifted light-harvesting system of freshwater eukaryotic alga Trachydiscus minutus (Eustigmatophyta, Stramenopila). PHOTOSYNTHESIS RESEARCH 2019; 142:137-151. [PMID: 31375979 DOI: 10.1007/s11120-019-00662-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Survival of phototrophic organisms depends on their ability to collect and convert enough light energy to support their metabolism. Phototrophs can extend their absorption cross section by using diverse pigments and by tuning the properties of these pigments via pigment-pigment and pigment-protein interaction. It is well known that some cyanobacteria can grow in heavily shaded habitats by utilizing far-red light harvested with far-red-absorbing chlorophylls d and f. We describe a red-shifted light-harvesting system based on chlorophyll a from a freshwater eustigmatophyte alga Trachydiscus minutus (Eustigmatophyceae, Goniochloridales). A comprehensive characterization of the photosynthetic apparatus of T. minutus is presented. We show that thylakoid membranes of T. minutus contain light-harvesting complexes of several sizes differing in the relative amount of far-red chlorophyll a forms absorbing around 700 nm. The pigment arrangement of the major red-shifted light-harvesting complex is similar to that of the red-shifted antenna of a marine alveolate alga Chromera velia. Evolutionary aspects of the algal far-red light-harvesting complexes are discussed. The presence of these antennas in eustigmatophyte algae opens up new ways to modify organisms of this promising group for effective use of far-red light in mass cultures.
Collapse
Affiliation(s)
- Radek Litvín
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
- Biology Centre, The Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Miroslava Herbstová
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Marek Pazderník
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - Eva Kotabová
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - Zdenko Gardian
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Martin Trtílek
- PSI (Photon Systems Instruments), spol. s r.o. Drásov 470, 664 24, Drásov, Czech Republic
| | - Ondřej Prášil
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - František Vácha
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
7
|
Niedzwiedzki DM, Bar-Zvi S, Blankenship RE, Adir N. Mapping the excitation energy migration pathways in phycobilisomes from the cyanobacterium Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:286-296. [PMID: 30703363 DOI: 10.1016/j.bbabio.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/17/2018] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
|
8
|
Badshah SL, Mabkhot Y, Al-Showiman SS. Photosynthesis at the far-red region of the spectrum in Acaryochloris marina. Biol Res 2017; 50:16. [PMID: 28526061 PMCID: PMC5438491 DOI: 10.1186/s40659-017-0120-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/05/2017] [Indexed: 11/21/2022] Open
Abstract
Acaryochloris marina is an oxygenic cyanobacterium that utilizes far-red light for photosynthesis. It has an expanded genome, which helps in its adaptability to the environment, where it can survive on low energy photons. Its major light absorbing pigment is chlorophyll d and it has α-carotene as a major carotenoid. Light harvesting antenna includes the external phycobilin binding proteins, which are hexameric rods made of phycocyanin and allophycocyanins, while the small integral membrane bound chlorophyll binding proteins are also present. There is specific chlorophyll a molecule in both the reaction center of Photosystem I (PSI) and PSII, but majority of the reaction center consists of chlorophyll d. The composition of the PSII reaction center is debatable especially the role and position of chlorophyll a in it. Here we discuss the photosystems of this bacterium and its related biology.
Collapse
Affiliation(s)
- Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan.
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakhtunkhwa, Pakistan.
| | - Yahia Mabkhot
- Department of Chemistry, College of Science, King Saud University, Riyad, Saudi Arabia.
| | - Salim S Al-Showiman
- Department of Chemistry, College of Science, King Saud University, Riyad, Saudi Arabia.
| |
Collapse
|
9
|
Allakhverdiev SI, Kreslavski VD, Zharmukhamedov SK, Voloshin RA, Korol'kova DV, Tomo T, Shen JR. Chlorophylls d and f and Their Role in Primary Photosynthetic Processes of Cyanobacteria. BIOCHEMISTRY (MOSCOW) 2017; 81:201-12. [PMID: 27262189 DOI: 10.1134/s0006297916030020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The finding of unique Chl d- and Chl f-containing cyanobacteria in the last decade was a discovery in the area of biology of oxygenic photosynthetic organisms. Chl b, Chl c, and Chl f are considered to be accessory pigments found in antennae systems of photosynthetic organisms. They absorb energy and transfer it to the photosynthetic reaction center (RC), but do not participate in electron transport by the photosynthetic electron transport chain. However, Chl d as well as Chl a can operate not only in the light-harvesting complex, but also in the photosynthetic RC. The long-wavelength (Qy) Chl d and Chl f absorption band is shifted to longer wavelength (to 750 nm) compared to Chl a, which suggests the possibility for oxygenic photosynthesis in this spectral range. Such expansion of the photosynthetically active light range is important for the survival of cyanobacteria when the intensity of light not exceeding 700 nm is attenuated due to absorption by Chl a and other pigments. At the same time, energy storage efficiency in photosystem 2 for cyanobacteria containing Chl d and Chl f is not lower than that of cyanobacteria containing Chl a. Despite great interest in these unique chlorophylls, many questions related to functioning of such pigments in primary photosynthetic processes are still not elucidated. This review describes the latest advances in the field of Chl d and Chl f research and their role in primary photosynthetic processes of cyanobacteria.
Collapse
Affiliation(s)
- S I Allakhverdiev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Chlorophylls are magnesium-tetrapyrrole molecules that play essential roles in photosynthesis. All chlorophylls have similar five-membered ring structures, with variations in the side chains and/or reduction states. Formyl group substitutions on the side chains of chlorophyll a result in the different absorption properties of chlorophyll b, chlorophyll d, and chlorophyll f. These formyl substitution derivatives exhibit different spectral shifts according to the formyl substitution position. Not only does the presence of various types of chlorophylls allow the photosynthetic organism to harvest sunlight at different wavelengths to enhance light energy input, but the pigment composition of oxygenic photosynthetic organisms also reflects the spectral properties on the surface of the Earth. Two major environmental influencing factors are light and oxygen levels, which may play central roles in the regulatory pathways leading to the different chlorophylls. I review the biochemical processes of chlorophyll biosynthesis and their regulatory mechanisms.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia;
| |
Collapse
|
11
|
David L, Prado M, Arteni AA, Elmlund DA, Blankenship RE, Adir N. Structural studies show energy transfer within stabilized phycobilisomes independent of the mode of rod-core assembly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:385-95. [PMID: 24407142 DOI: 10.1016/j.bbabio.2013.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/19/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
The major light harvesting complex in cyanobacteria and red algae is the phycobilisome (PBS), comprised of hundreds of seemingly similar chromophores, which are protein bound and assembled in a fashion that enables highly efficient uni-directional energy transfer to reaction centers. The PBS is comprised of a core containing 2-5 cylinders surrounded by 6-8 rods, and a number of models have been proposed describing the PBS structure. One of the most critical steps in the functionality of the PBS is energy transfer from the rod substructures to the core substructure. In this study we compare the structural and functional characteristics of high-phosphate stabilized PBS (the standard fashion of stabilization of isolated complexes) with cross-linked PBS in low ionic strength buffer from two cyanobacterial species, Thermosynechococcus vulcanus and Acaryochloris marina. We show that chemical cross-linking preserves efficient energy transfer from the phycocyanin containing rods to the allophycocyanin containing cores with fluorescent emission from the terminal emitters. However, this energy transfer is shown to exist in PBS complexes of different structures as characterized by determination of a 2.4Å structure by X-ray crystallography, single crystal confocal microscopy, mass spectrometry and transmission electron microscopy of negatively stained and cryogenically preserved complexes. We conclude that the PBS has intrinsic structural properties that enable efficient energy transfer from rod substructures to the core substructures without requiring a single unique structure. We discuss the significance of our observations on the functionality of the PBS in vivo.
Collapse
Affiliation(s)
- Liron David
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Mindy Prado
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ana A Arteni
- IMPMC-UMR7590, CNRS-Université Pierre & Marie Curie-IRD, Paris 75005, France
| | - Dominika A Elmlund
- Stanford University Medical School, Dept. of Structural Biology, Stanford, CA 94305-5126, USA
| | - Robert E Blankenship
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
12
|
Loughlin P, Lin Y, Chen M. Chlorophyll d and Acaryochloris marina: current status. PHOTOSYNTHESIS RESEARCH 2013; 116:277-93. [PMID: 23615924 DOI: 10.1007/s11120-013-9829-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/14/2013] [Indexed: 05/03/2023]
Abstract
The discovery of the chlorophyll d-containing cyanobacterium Acaryochloris marina in 1996 precipitated a shift in our understanding of oxygenic photosynthesis. The presence of the red-shifted chlorophyll d in the reaction centre of the photosystems of Acaryochloris has opened up new avenues of research on photosystem energetics and challenged the unique status of chlorophyll a in oxygenic photosynthesis. In this review, we detail the chemistry and role of chlorophyll d in photosynthesis and summarise the unique adaptations that have allowed the proliferation of Acaryochloris in diverse ecological niches around the world.
Collapse
Affiliation(s)
- Patrick Loughlin
- School of Biological Sciences (A08), University of Sydney, Sydney, NSW, 2006, Australia
| | | | | |
Collapse
|
13
|
Photosystem trap energies and spectrally-dependent energy-storage efficiencies in the Chl d-utilizing cyanobacterium, Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:255-65. [DOI: 10.1016/j.bbabio.2012.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/08/2012] [Accepted: 11/02/2012] [Indexed: 12/27/2022]
|
14
|
Chen M, Scheer H. Extending the limits of natural photosynthesis and implications for technical light harvesting. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424612300108] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Photosynthetic organisms provide, directly or indirectly, the energy that sustains life on earth by harvesting light from the sun. The amount of light impinging on the surface of the earth vastly surpasses the energy needs of life including man. Harvesting the sun is, therefore, an option for a sustainable energy source: directly by improving biomass production, indirectly by coupling it to the production of hydrogen for fuel or, conceptually, by using photosynthetic strategies for technological solutions based on non-biological or hybrid materials. In this review, we summarize the various light climates on earth, the primary reactions responsible for light harvesting and transduction to chemical energy in photosynthesis, and the mechanisms of competitively adapting the photosynthetic apparatus to the ever-changing light conditions. The focus is on oxygenic photosynthesis, its adaptation to the various light-climates by specialized pigments and on the extension of its limits by the evolution of red-shifted chlorophylls. The implications for potential technical solutions are briefly discussed.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, Sydney NSW 2006, Australia
| | - Hugo Scheer
- Dept-Biologie 1, Botanik, Universität München, 80638 München, Germany
| |
Collapse
|
15
|
Santabarbara S, Bailleul B, Redding K, Barber J, Rappaport F, Telfer A. Kinetics of phyllosemiquinone oxidation in the Photosystem I reaction centre of Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:328-35. [DOI: 10.1016/j.bbabio.2011.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/10/2011] [Accepted: 10/11/2011] [Indexed: 11/28/2022]
|
16
|
Chen M, Quinnell RG, Larkum AWD. Chlorophylldas the major photopigment inAcaryochloris marina. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424602000889] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chlorophyll (Chl) d is the major pigment in the photosystems (PS) and light-harvesting complex(es) of Acaryochloris marina. Chl a is present in small and variable amounts in PSII and in the light-harvesting complex(es). Isolated PSII complex showed a major fluorescence emission peak at 725 nm and a smaller emission peak due to Chl d at 701 nm, while the PSI complex showed two pools of Chl d, one with emission at 730 nm and the other at 709 nm at 77 K. In PSI and PSII of classical cyanobacteria and of higher plants, where Chl a is the predominant pigment rather than Chl d, these differences are not as pronounced. Light energy absorbed by phycobiliproteins was also active in these Chl d emissions. The major light-harvesting pigment protein is similar to the prochlorophyte Chl-binding protein (pcb) and had a major emission peak at 711 nm. In Cyanobacteria an iron-stress induced Chl-binding protein (isiA) forms a polymeric ring around PSI, and so the effect(s) of iron stress on A. marina where investigated. No clear evidence could be deduced for the formation of an isiA protein under iron stress and no clear changes in the proportion of Chl d :Chl a could be discerned although phycobilins showed a decreased under iron-stress conditions. That Chl d replaces Chl a in all its functions in A. marina is clear; the advantage of this evolutionary development appears to be to enable A. marina to absorb far-red light which occurs in environments where red light is filtered out by other photosynthetic organisms.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia
| | - Rosanne G. Quinnell
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
17
|
Sadaoka K, Kashimura S, Saga Y. Effects of molecular structures on reduction properties of formyl groups in chlorophylls and pheophytins prepared from oxygenic photosynthetic organisms. Bioorg Med Chem 2011; 19:3901-5. [DOI: 10.1016/j.bmc.2011.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
|
18
|
Schliep M, Crossett B, Willows RD, Chen M. 18O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a and molecular oxygen are precursors. J Biol Chem 2010; 285:28450-6. [PMID: 20610399 DOI: 10.1074/jbc.m110.146753] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The cyanobacterium Acaryochloris marina was cultured in the presence of either H(2)(18)O or (18)O(2), and the newly synthesized chlorophylls (Chl a and Chl d) were isolated using high performance liquid chromatography and analyzed by mass spectroscopy. In the presence of H(2)(18)O, newly synthesized Chl a and d, both incorporated up to four isotopic (18)O atoms. Time course H(2)(18)O labeling experiments showed incorporation of isotopic (18)O atoms originating from H(2)(18)O into Chl a, with over 90% of Chl a (18)O-labeled at 48 h. The incorporation of isotopic (18)O atoms into Chl d upon incubation in H(2)(18)O was slower compared with Chl a with approximately 50% (18)O-labeled Chl d at 115 h. The rapid turnover of newly synthesized Chl a suggested that Chl a is the direct biosynthetic precursor of Chl d. In the presence of (18)O(2) gas, one isotopic (18)O atom was incorporated into Chl a with approximately the same kinetic incorporation rate observed in the H(2)(18)O labeling experiment, reaching over 90% labeling intensity at 48 h. The incorporation of two isotopic (18)O atoms derived from molecular oxygen ((18)O(2)) was observed in the extracted Chl d, and the percentage of double isotopic (18)O-labeled Chl d increased in parallel with the decrease of non-isotopic-labeled Chl d. This clearly indicated that the oxygen atom in the C3(1)-formyl group of Chl d is derived from dioxygen via an oxygenase-type reaction mechanism.
Collapse
Affiliation(s)
- Martin Schliep
- Schools of Biological Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
19
|
Dau H, Zaharieva I. Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc Chem Res 2009; 42:1861-70. [PMID: 19908828 DOI: 10.1021/ar900225y] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photosynthesis in plants and cyanobacteria involves two protein-cofactor complexes which are denoted as photosystems (PS), PSII and PSI. These solar-energy converters have powered life on earth for approximately 3 billion years. They facilitate light-driven carbohydrate formation from H(2)O and CO(2), by oxidizing the former and reducing the latter. PSII splits water in a process driven by light. Because all attractive technologies for fuel production driven by solar energy involve water oxidation, recent interest in this process carried out by PSII has increased. In this Account, we describe and apply a rationale for estimating the solar-energy conversion efficiency (eta(SOLAR)) of PSII: the fraction of the incident solar energy absorbed by the antenna pigments and eventually stored in form of chemical products. For PSII at high concentrations, approximately 34% of the incident solar energy is used for creation of the photochemistry-driving excited state, P680*, with an excited-state energy of 1.83 eV. Subsequent electron transfer results in the reduction of a bound quinone (Q(A)) and oxidation of the Tyr(Z) within 1 micros. This radical-pair state is stable against recombination losses for approximately 1 ms. At this level, the maximal eta(SOLAR) is 23%. After the essentially irreversible steps of quinone reduction and water oxidation (the final steps catalyzed by the PSII complex), a maximum of 50% of the excited-state energy is stored in chemical form; eta(SOLAR) can be as high as 16%. Extending our considerations to a photosynthetic organism optimized to use PSII and PSI to drive H(2) production, the theoretical maximum of the solar-energy conversion efficiency would be as high as 10.5%, if all electrons and protons derived from water oxidation were used for H(2) formation. The above performance figures are impressive, but they represent theoretical maxima and do not account for processes in an intact organism that lower these yields, such as light saturation, photoinhibitory, protective, and repair processes. The overpotential for catalysis of water oxidation at the Mn(4)Ca complex of PSII may be as low as 0.3 V. To address the specific energetics of water oxidation at the Mn complex of PSII, we propose a new conceptual framework that will facilitate quantitative considerations on the basis of oxidation potentials and pK values. In conclusion, photosynthetic water oxidation works at high efficiency and thus can serve as both an inspiring model and a benchmark in the development of future technologies for production of solar fuels.
Collapse
Affiliation(s)
- Holger Dau
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Ivelina Zaharieva
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
20
|
Hirai Y, Tamiaki H, Kashimura S, Saga Y. Demetalation kinetics of natural chlorophylls purified from oxygenic photosynthetic organisms: effect of the formyl groups conjugated directly to the chlorin π-macrocycle. Photochem Photobiol Sci 2009; 8:1701-7. [DOI: 10.1039/b9pp00018f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Schenderlein M, Çetin M, Barber J, Telfer A, Schlodder E. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium, Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1400-8. [DOI: 10.1016/j.bbabio.2008.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/16/2008] [Accepted: 08/14/2008] [Indexed: 11/28/2022]
|
22
|
Bailleul B, Johnson X, Finazzi G, Barber J, Rappaport F, Telfer A. The Thermodynamics and Kinetics of Electron Transfer between Cytochrome b6f and Photosystem I in the Chlorophyll d-dominated Cyanobacterium, Acaryochloris marina. J Biol Chem 2008; 283:25218-25226. [DOI: 10.1074/jbc.m803047200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Papageorgiou GC, Tsimilli-Michael M, Stamatakis K. The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. PHOTOSYNTHESIS RESEARCH 2007; 94:275-90. [PMID: 17665151 DOI: 10.1007/s11120-007-9193-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 05/03/2007] [Indexed: 05/16/2023]
Abstract
The light-induced/dark-reversible changes in the chlorophyll (Chl) a fluorescence of photosynthetic cells and membranes in the mus-to-several min time window (fluorescence induction, FI; or Kautsky transient) reflect quantum yield changes (quenching/de-quenching) as well as changes in the number of Chls a in photosystem II (PS II; state transitions). Both relate to excitation trapping in PS II and the ensuing photosynthetic electron transport (PSET), and to secondary PSET effects, such as ion translocation across thylakoid membranes and filling or depletion of post-PS II and post-PS I pools of metabolites. In addition, high actinic light doses may depress Chl a fluorescence irreversibly (photoinhibitory lowering; q(I)). FI has been studied quite extensively in plants an algae (less so in cyanobacteria) as it affords a low resolution panoramic view of the photosynthesis process. Total FI comprises two transients, a fast initial (OPS; for Origin, Peak, Steady state) and a second slower transient (SMT; for Steady state, Maximum, Terminal state), whose details are characteristically different in eukaryotic (plants and algae) and prokaryotic (cyanobacteria) oxygenic photosynthetic organisms. In the former, maximal fluorescence output occurs at peak P, with peak M lying much lower or being absent, in which case the PSMT phases are replaced by a monotonous PT fluorescence decay. In contrast, in phycobilisome (PBS)-containing cyanobacteria maximal fluorescence occurs at M which lies much higher than peak P. It will be argued that this difference is caused by a fluorescence lowering trend (state 1 --> 2 transition) that dominates the FI pattern of plants and algae, and correspondingly by a fluorescence increasing trend (state 2 --> 1 transition) that dominates the FI of PBS-containing cyanobacteria. Characteristically, however, the FI pattern of the PBS-minus cyanobacterium Acaryochloris marina resembles the FI patterns of algae and plants and not of the PBS-containing cyanobacteria.
Collapse
Affiliation(s)
- George C Papageorgiou
- National Center for Scientific Research Demokritos, Institute of Biology, Athens, 153 10, Greece.
| | | | | |
Collapse
|
24
|
Itoh S, Mino H, Itoh K, Shigenaga T, Uzumaki T, Iwaki M. Function of Chlorophyll d in Reaction Centers of Photosystems I and II of the Oxygenic Photosynthesis of Acaryochloris marina. Biochemistry 2007; 46:12473-81. [DOI: 10.1021/bi7008085] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shigeru Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Hiroyuki Mino
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Kunihiro Itoh
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Takatoshi Shigenaga
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Tatsuya Uzumaki
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Masayo Iwaki
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
25
|
Schlodder E, Cetin M, Eckert HJ, Schmitt FJ, Barber J, Telfer A. Both chlorophylls a and d are essential for the photochemistry in photosystem II of the cyanobacteria, Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:589-95. [PMID: 17428440 DOI: 10.1016/j.bbabio.2007.02.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/02/2007] [Accepted: 02/23/2007] [Indexed: 11/20/2022]
Abstract
We have measured the flash-induced absorbance difference spectrum attributed to the formation of the secondary radical pair, P(+)Q(-), between 270 nm and 1000 nm at 77 K in photosystem II of the chlorophyll d containing cyanobacterium, Acaryochloris marina. Despite the high level of chlorophyll d present, the flash-induced absorption difference spectrum of an approximately 2 ms decay component shows a number of features which are typical of the difference spectrum seen in oxygenic photosynthetic organisms containing no chlorophyll d. The spectral shape in the near-UV indicates that a plastoquinone is the secondary acceptor molecule (Q(A)). The strong C-550 change at 543 nm confirms previous reports that pheophytin a is the primary electron acceptor. The bleach at 435 nm and increase in absorption at 820 nm indicates that the positive charge is stabilized on a chlorophyll a molecule. In addition a strong electrochromic band shift, centred at 723 nm, has been observed. It is assigned to a shift of the Qy band of the neighbouring accessory chlorophyll d, Chl(D1). It seems highly likely that it accepts excitation energy from the chlorophyll d containing antenna. We therefore propose that primary charge separation is initiated from this chlorophyll d molecule and functions as the primary electron donor. Despite its lower excited state energy (0.1 V less), as compared to chlorophyll a, this chlorophyll d molecule is capable of driving the plastoquinone oxidoreductase activity of photosystem II. However, chlorophyll a is used to stabilize the positive charge and ultimately to drive water oxidation.
Collapse
Affiliation(s)
- Eberhard Schlodder
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17.Juni 135, 10623 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Chan YW, Nenninger A, Clokie SJH, Mann NH, Scanlan DJ, Whitworth AL, Clokie MRJ. Pigment composition and adaptation in free-living and symbiotic strains of Acaryochloris marina. FEMS Microbiol Ecol 2007; 61:65-73. [PMID: 17466026 DOI: 10.1111/j.1574-6941.2007.00320.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Acaryochloris marina strains have been isolated from several varied locations and habitats worldwide demonstrating a diverse and dynamic ecology. In this study, the whole cell photophysiologies of strain MBIC11017, originally isolated from a colonial ascidian, and the free-living epilithic strain CCMEE5410 are analyzed by absorbance and fluorescence spectroscopy, laser scanning confocal microscopy, sodium dodecyl sulfate polyacrylamide gel electrophoresis and subsequent protein analysis. We demonstrate pigment adaptation in MBIC11017 and CCMEE5410 under different light regimes. We show that the higher the incident growth light intensity for both strains, the greater the decrease in their chlorophyll d content. However, the strain MBIC11017 loses its phycobiliproteins relative to its chlorophyll d content when grown at light intensities of 40 microE m(-2) s(-1) without shaking and 100 microE m(-2) s(-1) with shaking. We also conclude that phycobiliproteins are absent in the free-living strain CCMEE5410.
Collapse
Affiliation(s)
- Yi-Wah Chan
- MOAC Doctoral Training Centre, University of Warwick, Coventry, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
An electron paramagnetic resonance investigation of the electron transfer reactions in the chlorophyll d containing photosystem I of Acaryochloris marina. FEBS Lett 2007; 581:1567-71. [PMID: 17382323 DOI: 10.1016/j.febslet.2007.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 11/19/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy reveals functional and structural similarities between the reaction centres of the chlorophyll d-binding photosystem I (PS I) and chlorophyll a-binding PS I. Continuous wave EPR spectrometry at 12K identifies iron-sulphur centres as terminal electron acceptors of chlorophyll d-binding PS I. A transient light-induced electron spin echo (ESE) signal indicates the presence of a quinone as the secondary electron acceptor (Q) between P(740)(+) and the iron-sulphur centres. The distance between P(740)(+) and Q(-) was estimated within point-dipole approximation as 25.23+/-0.05A, by the analysis of the electron spin echo envelope modulation.
Collapse
|
28
|
Chen M, Cai ZL. Theoretical study on the thermodynamic properties of chlorophyll d-peptides coordinating ligand. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:603-9. [PMID: 17306215 DOI: 10.1016/j.bbabio.2007.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/26/2006] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
The chlorophyll d containing cyanobacterium, Acaryochloris marina has provided a model system for the study of chlorophyll replacement in the function of oxygenic photosynthesis. Chlorophyll d replaces most functions of chlorophyll a in Acaryochloris marina. It not only functions as the major light-harvesting pigment, but also acts as an electron transfer cofactor in the primary charge separation reaction in the two photosystems. The Mg-chlorophyll d-peptide coordinating interaction between the amino acid residues and chlorophylls using the latest semi-empirical PM5 method were examined. It is suggested that chlorophyll d possesses similar coordination ligand properties to chlorophyll a, but chlorophyll b possesses different ligand properties. Compared with other studies involving theoretical correlation and our prior experiments, this study suggests that the chlorophyll a-bound proteins will bind chlorophyll d without difficulty when chlorophyll d is available.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
29
|
|
30
|
Petrásek Z, Schmitt FJ, Theiss C, Huyer J, Chen M, Larkum A, Eichler HJ, Kemnitz K, Eckert HJ. Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy. Photochem Photobiol Sci 2005; 4:1016-22. [PMID: 16307116 DOI: 10.1039/b512350j] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence decay spectra and the excitation energy transfer from the phycobiliproteins (PBP) to the chlorophyll-antennae of intact cells of the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina were investigated at 298 and 77 K by time- and wavelength-correlated single photon counting fluorescence spectroscopy. At 298 K it was found that (i) the fluorescence dynamics in A. marina is characterized by two emission peaks located at about 650 and 725 nm, (ii) the intensity of the 650 nm fluorescence depends strongly on the excitation wavelength, being high upon excitation of phycobiliprotein (PBP) at 632 nm but virtually absent upon excitation of chlorophyll at 430 nm, (iii) the 650 nm fluorescence band decayed predominantly with a lifetime of 70 +/- 20 ps, (iv) the 725 nm fluorescence, which was observed independent of the excitation wavelength, can be described by a three-exponential decay kinetics with lifetimes depending on the open or the closed state (F(0) or F(m)) of the reaction centre of Photosystem II (PS II). Based on the results of this study, it is inferred that the excitation energy transfer from phycobiliproteins to Chl d of PS II in A. marina occurs with a time constant of about 70 ps, which is about three times faster than the energy transfer from the phycobilisomes to PS II in the Chl a-containing cyanobacterium Synechococcus 6301. A similar fast PBP to Chl d excitation energy transfer was also observed at 77 K. At 77 K a small long-lived fluorescence decay component with a lifetime of 14 ns was observed in the 640-700 nm spectral range. However, it has a rather featureless spectrum, not typical for Chl a, and was only observed upon excitation at 400 nm but not upon excitation at 632 and 654 nm. Thus, this long-lived fluorescence component cannot be used as an indicator that the primary PS II donor of Acaryochloris marina contains Chl a.
Collapse
|
31
|
Chen M, Bibby TS, Nield J, Larkum A, Barber J. Iron deficiency induces a chlorophyll d-binding Pcb antenna system around Photosystem I in Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:367-74. [PMID: 15975547 DOI: 10.1016/j.bbabio.2005.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 05/10/2005] [Accepted: 05/16/2005] [Indexed: 11/26/2022]
Abstract
The prochlorophyte-like cyanobacterium Acaryochloris marina contains two pcb genes, pcbA and pcbC, which encode chlorophyll (Chl) d-binding antenna proteins PcbA and PcbC, respectively. Using real-time reverse transcriptase polymerase chain reaction (RT-PCR), it is shown that when Acaryochloris cells are grown in an iron-deficient medium, the transcription of the pcbC gene is up-regulated compared to that of pcbA. Biochemical and immunological analyses indicated that under the same iron-deficient conditions, the level of Photosystem I (PSI) decreased compared with that of Photosystem II (PSII). Electron microscopy revealed that concomitant with these changes was the formation of Pcb-PSI supercomplexes which, in their largest form, were composed of 18 Pcb subunits forming a ring around the trimeric PSI reaction centre core. Mass spectrometry indicated that the PcbC protein is the main constituent of this outer PSI antenna system. It is therefore concluded that in Acaryochloris, the PcbC protein forms an antenna for PSI when iron levels become limiting and in this way compensates for the drop in the level of PSI relative to PSII which occurs under these conditions.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
32
|
Kühl M, Chen M, Ralph PJ, Schreiber U, Larkum AWD. Ecology: a niche for cyanobacteria containing chlorophyll d. Nature 2005; 433:820. [PMID: 15729331 DOI: 10.1038/433820a] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cyanobacterium known as Acaryochloris marina is a unique phototroph that uses chlorophyll d as its principal light-harvesting pigment instead of chlorophyll a, the form commonly found in plants, algae and other cyanobacteria; this means that it depends on far-red light for photosynthesis. Here we demonstrate photosynthetic activity in Acaryochloris-like phototrophs that live underneath minute coral-reef invertebrates (didemnid ascidians) in a shaded niche enriched in near-infrared light. This discovery clarifies how these cyanobacteria are able to thrive as free-living organisms in their natural habitat.
Collapse
Affiliation(s)
- Michael Kühl
- Marine Biological Laboratory, Institute of Biology, University of Copenhagen, 3000 Helsingør, Denmark.
| | | | | | | | | |
Collapse
|
33
|
Chen M, Telfer A, Lin S, Pascal A, Larkum AWD, Barber J, Blankenship RE. The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina. Photochem Photobiol Sci 2005; 4:1060-4. [PMID: 16307123 DOI: 10.1039/b507057k] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pigment-protein complexes enriched in photosystem II (PS II) have been isolated from the chlorophyll (Chl) d containing cyanobacterium, Acaryochloris marina. A small PS II-enriched particle, we call 'crude reaction centre', contained 20 Chl d, 0.5 Chl a and 1 redox active cytochrome b-559 per 2 pheophytin a, plus the D1 and D2 proteins. A larger PS II-enriched particle, we call 'core', additionally bound the antenna complexes, CP47 and CP43, and had a higher chlorophyll per pheophytin ratio. Pheophytin a could be photoreduced in the presence of a strong reductant, indicating that it is the primary electron acceptor in photosystem II of A. marina. A substoichiometric amount of Chl a (less than one chlorophyll a per 2 pheophytin a) strongly suggests that Chl a does not have an essential role in the photochemistry of PS II in this organism. We conclude that PS II, in A. marina, utilizes Chl d and not Chl a as primary electron donor and that the primary electron acceptor is one of two molecules of pheophytin a.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Chen M, Zeng H, Larkum AWD, Cai ZL. Raman properties of chlorophyll d, the major pigment of Acaryochloris marina: studies using both Raman spectroscopy and density functional theory. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2004; 60:527-534. [PMID: 14747075 DOI: 10.1016/s1386-1425(03)00258-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Raman spectroscopy of purified chlorophyll (Chl) d extracted from Acaryochloris marina has been measured over the wide region of 250-3200 cm(-1) at 77 K following excitation of its Soret band at 488 nm and analyzed with the aid of hybrid density-functional vibrational analyses. A Raman peak specific to Chl d, which arises from the formyl group 3(1) C=O stretching, was clearly observed at 1659 cm(-1) with medium intensity. Peaks due to other C=O stretching vibrations of the 13(1) keto-, 13(3) ester- and 17(3) groups were also observed. Four very strong peaks were observed in the range of 1000-1600 cm(-1), assigned to the CC stretching and mixtures of the CH3 bend and CN stretching. CCC and NCC bending contribute to medium intensity peaks at 986 and 915 cm(-1). Out-of-plane CH bending at Chl d methine sites 10, 5 and 20 contribute to observed peaks at 885, 864 and 853 cm(-1), respectively. A few modes involving the MgN stretching and MgNC bending motions were observed in the very low frequency range. Density functional theory (DFT) calculations have been used to make assignments on the observed Raman spectrum and the DFT results have been found to be in good agreement with the experimental results.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | |
Collapse
|
35
|
Mi D, Chen M, Lin S, Lince M, Larkum AWD, Blankenship RE. Excitation Dynamics in the Core Antenna in the Photosystem I Reaction Center of the Chlorophyll d-Containing Photosynthetic Prokaryote Acaryochloris marina. J Phys Chem B 2003. [DOI: 10.1021/jp0268260] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dehui Mi
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, and School of Biological Sciences, A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Min Chen
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, and School of Biological Sciences, A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Su Lin
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, and School of Biological Sciences, A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Lince
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, and School of Biological Sciences, A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Anthony W. D. Larkum
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, and School of Biological Sciences, A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Robert E. Blankenship
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, and School of Biological Sciences, A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
36
|
The Photosynthetic Apparatus of Chlorophyll b- and d-Containing Oxyphotobacteria. PHOTOSYNTHESIS IN ALGAE 2003. [DOI: 10.1007/978-94-007-1038-2_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Trissl HW. Modeling the Excitation Energy Capture in Thylakoid Membranes. PHOTOSYNTHESIS IN ALGAE 2003. [DOI: 10.1007/978-94-007-1038-2_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Cai ZL, Zeng H, Chen M, Larkum AWD. Raman spectroscopy of chlorophyll d from Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1556:89-91. [PMID: 12460664 DOI: 10.1016/s0005-2728(02)00357-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Raman spectroscopy of chlorophyll (Chl) d isolated from Acaryochloris marina has been measured in the range of 250-3200 cm(-1) at 77 K following excitation of its B(x) band at 488 nm. A peak at 1659 cm(-1) of medium intensity arising from Cz=O stretching vibration in the formyl group 3(1) specific to Chl d was observed clearly. Peaks due to other Cz=O stretching vibrations of the 13(1) keto-, 13(3) ester- and 17(3) groups have also been observed with much weaker intensities. Intense Raman peaks in the range of 1000-1800 cm(-1) are reported and homologous comparison with corresponding Raman shifts of Chl a, Chl b and BChl a are presented.
Collapse
Affiliation(s)
- Zheng-Li Cai
- School of Chemistry, The University of Sydney, NSW 2006, Sydney, Australia.
| | | | | | | |
Collapse
|
39
|
Abstract
The major light-harvesting protein complex containing chlorophyll (Chl) d was isolated from Acaryochloris marina thylakoid membranes. Isolation was achieved by detergent solubilisation followed by separation on 6-40% sucrose gradients using ultracentrifugation. The best Chl d yield (70%) used 0.3% dodecyl maltoside, 0.15% octyl glucoside, 0.05% zwittergent 3-14 with the detergent:total Chl d ratio around 10:1 (w/w). Characterisation of the light-harvesting pigment protein complex (lhc) involved non-denaturing electrophoresis, SDS-PAGE, absorbance and fluorescence spectroscopy. The main polypeptide in the lhc was shown to be ca. 34 kDa and to contain Chl d and Chl a, indicating that the Acaryochloris lhc is similar to that of prochlorophytes. The Chl a level varied with the culture conditions, which is consistent with previous findings.
Collapse
Affiliation(s)
- Min Chen
- School of Biological Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
40
|
Akiyama M, Miyashita H, Kise H, Watanabe T, Miyachi S, Kobayashi M. Detection of chlorophyll d' and pheophytin a in a chlorophyll d-dominating oxygenic photosynthetic prokaryote Acaryochloris marina. ANAL SCI 2001; 17:205-8. [PMID: 11993664 DOI: 10.2116/analsci.17.205] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- M Akiyama
- Institute of Materials Science, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Mimuro M, Hirayama K, Uezono K, Miyashita H, Miyachi S. Uphill energy transfer in a chlorophyll d-dominating oxygenic photosynthetic prokaryote, Acaryochloris marina. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1456:27-34. [PMID: 10611453 DOI: 10.1016/s0005-2728(99)00095-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The steady-state fluorescence properties and uphill energy transfer were analyzed on intact cells of a chlorophyll (Chl) d-dominating photosynthetic prokaryote, Acaryochloris marina. Observed spectra revealed clear differences, depending on the cell pigments that had been sensitized; using these properties, it was possible to assign fluorescence components to specific Chl pigments. At 22 degrees C, the main emission at 724 nm came from photosystem (PS) II Chl d, which was also the source of one additional band at 704 nm. Chl a emissions were observed at 681 nm and 671 nm. This emission pattern essentially matched that observed at -196 degrees C, as the main emission of Chl d was located at 735 nm, and three minor bands were observed at 704 nm, 683 nm, and 667 nm, originating from Chl d, Chl a, and Chl a, respectively. These three minor bands, however, had not been sensitized by carotenoids, suggesting specific localization in PS II. At 22 degrees C, excitation of the red edge of the absorption band (which, at 736 nm, was 20 nm longer than the absorption maximum), resulted in fluorescence bands of Chl d at 724 nm and of Chl a at 682 nm, directly demonstrating an uphill energy transfer in this alga. This transfer is a critical factor for in vivo activity, due to an inversion of energy levels between antenna Chl d and the primary electron donor of Chl a in PS II.
Collapse
Affiliation(s)
- M Mimuro
- Department of Physics, Biology and Informatics, Faculty of Science, Yamaguchi University, Yoshida, Yamaguchi, Japan.
| | | | | | | | | |
Collapse
|
43
|
Mimuro M, Akimoto S, Yamazaki I, Miyashita H, Miyachi S. Fluorescence properties of chlorophyll d-dominating prokaryotic alga, acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1412:37-46. [PMID: 10354492 DOI: 10.1016/s0005-2728(99)00048-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antenna components and the primary electron donor of the photosystem (PS) II in the Chlorophyll (Chl) d-dominating prokaryote, Acaryochloris marina, were studied using time-resolved fluorescence spectroscopy in the ps time range. By selective excitation of Chl a or Chl d, differences in fluorescence properties were clearly resolved. At physiological temperature, energy transfer was confirmed by a red shift of emission maximum among PS II antenna components, and the equilibrium of energy distribution among Chl a and Chl d was established within 30 ps. A fluorescence component that can be assigned to delayed fluorescence (DF) was observed at 10 ns after the excitation; however, it was not necessarily resolved by the decay kinetics. At -196 degrees C, a red shift of emission maximum was reproduced but the equilibrium of energy distribution was not detected. DF was resolved in the wavelength region corresponding to Chl a by spectra and by decay kinetics. The lifetime of the DF was estimated to be approx. 15 ns, and the peaks were located at 681 and 695 nm, significantly shorter wavelengths than those of Chl d. These findings strongly suggest that an origin of DF is Chl a, and Chl a is most probably the primary electron donor in the PS II reaction center (RC). These results indicate that the constitution of PS II RC in this alga is essentially identical to that of other oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- M Mimuro
- Department of Physics, Biology and Informatics, Faculty of Science, Yamaguchi University, Yoshida, Yamaguchi 753-8512, Japan
| | | | | | | | | |
Collapse
|
44
|
Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S. A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci U S A 1998; 95:13319-23. [PMID: 9789086 PMCID: PMC23797 DOI: 10.1073/pnas.95.22.13319] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A far-red type of oxygenic photosynthesis was discovered in Acaryochloris marina, a recently found marine prokaryote that produces an atypical pigment chlorophyll d (Chl d). The purified photosystem I reaction center complex of A. marina contained 180 Chl d per 1 Chl a with PsaA-F, -L, -K, and two extra polypeptides. Laser excitation induced absorption changes of reaction center Chl d that was named P740 after its peak wavelength. A midpoint oxidation reduction potential of P740 was determined to be +335 mV. P740 uses light of significantly low quantum energy (740 nm = 1.68 eV) but generates a reducing power almost equivalent to that produced by a special pair of Chl a (P700) that absorbs red light at 700 nm (1.77 eV) in photosystem I of plants and cyanobacteria. The oxygenic photosynthesis based on Chl d might either be an acclimation to the far-red light environments or an evolutionary intermediate between the red-absorbing oxygenic and the far-red absorbing anoxygenic photosynthesis that uses bacteriochlorophylls.
Collapse
Affiliation(s)
- Q Hu
- Marine Biotechnology Institute, Kamaishi Laboratories, Heita, Kamaishi City, Iwate 026, Japan
| | | | | | | | | | | | | |
Collapse
|