1
|
Menzel S, Rissiek B, Bannas P, Jakoby T, Miksiewicz M, Schwarz N, Nissen M, Haag F, Tholey A, Koch-Nolte F. Nucleotide-Induced Membrane-Proximal Proteolysis Controls the Substrate Specificity of T Cell Ecto-ADP-Ribosyltransferase ARTC2.2. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26209623 DOI: 10.4049/jimmunol.1401677] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ARTC2.2 is a toxin-related, GPI-anchored ADP-ribosyltransferase expressed by murine T cells. In response to NAD(+) released from damaged cells during inflammation, ARTC2.2 ADP-ribosylates and thereby gates the P2X7 ion channel. This induces ectodomain shedding of metalloprotease-sensitive cell surface proteins. In this study, we show that ARTC2.2 itself is a target for P2X7-triggered ectodomain shedding. We identify the metalloprotease cleavage site 3 aa upstream of the predicted GPI anchor attachment site of ARTC2.2. Intravenous injection of NAD(+) increased the level of enzymatically active ARTC2.2 in serum, indicating that this mechanism is operative also under inflammatory conditions in vivo. Radio-ADP-ribosylation assays reveal that shedding refocuses the target specificity of ARTC2.2 from membrane proteins to secretory proteins. Our results uncover nucleotide-induced membrane-proximal proteolysis as a regulatory mechanism to control the substrate specificity of ARTC2.2.
Collapse
Affiliation(s)
- Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, D20246 Hamburg, Germany
| | - Björn Rissiek
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, D20246 Hamburg, Germany; Department of Neurology, University Medical Center Hamburg-Eppendorf, D20246 Hamburg, Germany
| | - Peter Bannas
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, D20246 Hamburg, Germany; Department of Diagnostic Radiology, University Medical Center Hamburg-Eppendorf, D20246 Hamburg, Germany; and
| | - Thomas Jakoby
- Institute of Experimental Medicine, Systematic Proteome Research Group, Christian-Albrechts-Universität, D24105 Kiel, Germany
| | - Maria Miksiewicz
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, D20246 Hamburg, Germany
| | - Nicole Schwarz
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, D20246 Hamburg, Germany
| | - Marion Nissen
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, D20246 Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, D20246 Hamburg, Germany
| | - Andreas Tholey
- Institute of Experimental Medicine, Systematic Proteome Research Group, Christian-Albrechts-Universität, D24105 Kiel, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, D20246 Hamburg, Germany;
| |
Collapse
|
2
|
Xu Y, Zhu J, Xiang K, Li Y, Sun R, Ma J, Sun H, Liu Y. Synthesis and immunomodulatory activity of [60]fullerene–tuftsin conjugates. Biomaterials 2011; 32:9940-9. [DOI: 10.1016/j.biomaterials.2011.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/07/2011] [Indexed: 11/29/2022]
|
3
|
Laing S, Unger M, Koch-Nolte F, Haag F. ADP-ribosylation of arginine. Amino Acids 2010; 41:257-69. [PMID: 20652610 PMCID: PMC3102197 DOI: 10.1007/s00726-010-0676-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 06/24/2010] [Indexed: 12/16/2022]
Abstract
Arginine adenosine-5′-diphosphoribosylation (ADP-ribosylation) is an enzyme-catalyzed, potentially reversible posttranslational modification, in which the ADP-ribose moiety is transferred from NAD+ to the guanidino moiety of arginine. At 540 Da, ADP-ribose has the size of approximately five amino acid residues. In contrast to arginine, which, at neutral pH, is positively charged, ADP-ribose carries two negatively charged phosphate moieties. Arginine ADP-ribosylation, thus, causes a notable change in size and chemical property at the ADP-ribosylation site of the target protein. Often, this causes steric interference of the interaction of the target protein with binding partners, e.g. toxin-catalyzed ADP-ribosylation of actin at R177 sterically blocks actin polymerization. In case of the nucleotide-gated P2X7 ion channel, ADP-ribosylation at R125 in the vicinity of the ligand-binding site causes channel gating. Arginine-specific ADP-ribosyltransferases (ARTs) carry a characteristic R-S-EXE motif that distinguishes these enzymes from structurally related enzymes which catalyze ADP-ribosylation of other amino acid side chains, DNA, or small molecules. Arginine-specific ADP-ribosylation can be inhibited by small molecule arginine analogues such as agmatine or meta-iodobenzylguanidine (MIBG), which themselves can serve as targets for arginine-specific ARTs. ADP-ribosylarginine specific hydrolases (ARHs) can restore target protein function by hydrolytic removal of the entire ADP-ribose moiety. In some cases, ADP-ribosylarginine is processed into secondary posttranslational modifications, e.g. phosphoribosylarginine or ornithine. This review summarizes current knowledge on arginine-specific ADP-ribosylation, focussing on the methods available for its detection, its biological consequences, and the enzymes responsible for this modification and its reversal, and discusses future perspectives for research in this field.
Collapse
Affiliation(s)
- Sabrina Laing
- Campus Forschung, 2. OG Rm 02.0058, Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | | | | | | |
Collapse
|
4
|
Grahnert A, Grahnert A, Klein C, Schilling E, Wehrhahn J, Hauschildt S. Review: NAD +: a modulator of immune functions. Innate Immun 2010; 17:212-33. [PMID: 20388721 DOI: 10.1177/1753425910361989] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Latterly, nicotinamide adenine dinucleotide (NAD+) has emerged as a molecule with versatile functions and of enormous impact on the maintenance of cell integrity. Besides playing key roles in almost all major aspects of energy metabolism, there is mounting evidence that NAD+ and its degradation products affect various biological activities including calcium homeostasis, gene transcription, DNA repair, and intercellular communication. This review is aimed at giving a brief insight into the life cycle of NAD+ in the cell, referring to synthesis, action and degradation aspects. With respect to their immunological relevance, the importance and function of the major NAD+ metabolizing enzymes, namely CD38/CD157, ADP-ribosyltransferases (ARTs), poly-ADP-ribose-polymerases (PARPs), and sirtuins are summarized and roles of NAD+ and its main degradation product adenosine 5'-diphosphoribose (ADPR) in cell signaling are discussed. In addition, an outline of the variety of immunological processes depending on the activity of nicotinamide phosphoribosyltransferase (Nampt), the key enzyme of the salvage pathway of NAD+ synthesis, is presented. Taken together, an efficient supply of NAD+ seems to be a crucial need for a multitude of cell functions, underlining the yet only partly revealed potency of this small molecule to influence cell fate.
Collapse
Affiliation(s)
- Andreas Grahnert
- Department of Immunobiology, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Terashima M, Takahashi M, Shimoyama M, Tanigawa Y, Urano T, Tsuchiya M. Glycosylphosphatidylinositol-anchored arginine-specific ADP-ribosyltransferase7.1 (Art7.1) on chicken B cells: the possible role of Art7 in B cell receptor signalling and proliferation. Mol Cell Biochem 2008; 320:93-100. [DOI: 10.1007/s11010-008-9902-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 07/25/2008] [Indexed: 11/28/2022]
|
6
|
Horvath G, Kekesi G. Interaction of endogenous ligands mediating antinociception. ACTA ACUST UNITED AC 2006; 52:69-92. [PMID: 16488019 DOI: 10.1016/j.brainresrev.2006.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 01/04/2006] [Accepted: 01/06/2006] [Indexed: 11/17/2022]
Abstract
It is well known that a multitude of transmitters and receptors are involved in the nociceptive system, some of them increasing and others inhibiting the pain sensation both peripherally and centrally. These substances, which include neurotransmitters, hormones, etc., can modify the activity of nerves involved in the pain pathways. Furthermore, the organism itself can express very effective antinociception under different circumstances (e.g. stress), and, during such situations, the levels of various endogenous ligands change. A very exciting field of pain research relates to the roles of endogenous ligands. Most of them have been suggested to influence pain transmission, but only a few studies have been performed on the interactions of different endogenous ligands. This review focuses on the results of antinociceptive interactions after the co-administration of endogenous ligands. The data based on 55 situations reveal that the interactions between the endogenous ligands are very different, depending on the substances, the pain tests, the species of animals and the route of administrations. It is also revealed that only a few of the possible interactions between endogenous ligands have been investigated to date, in spite of the fact that the type of antinociceptive interaction between different endogenous ligands could hardly be predicted. The results indicate that the combination of endogenous ligands should not be omitted from the pain therapy arsenal. Attention will hopefully be drawn to the complex interdependence of endogenous ligands and their potential use in clinical practice.
Collapse
Affiliation(s)
- Gyongyi Horvath
- Department of Physiology, Faculty of Medicine, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary.
| | | |
Collapse
|
7
|
Terashima M, Osago H, Hara N, Tanigawa Y, Shimoyama M, Tsuchiya M. Purification, characterization and molecular cloning of glycosylphosphatidylinositol-anchored arginine-specific ADP-ribosyltransferases from chicken. Biochem J 2005; 389:853-61. [PMID: 15842200 PMCID: PMC1180736 DOI: 10.1042/bj20042019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 04/18/2005] [Accepted: 04/18/2005] [Indexed: 01/16/2023]
Abstract
Mono-ADP-ribosylation is a post-translational modification that regulates the functions of target proteins or peptides by attaching an ADP-ribose moiety. Here we report the purification, molecular cloning, characterization and tissue-specific distribution of novel arginine-specific Arts (ADP-ribosyltransferases) from chicken. Arts were detected in various chicken tissues as GPI (glycosylphosphatidylinositol)-anchored forms, and purified from the lung membrane fraction. By molecular cloning based on the partial amino acid sequence using 5'- and 3'-RACE (rapid amplification of cDNA ends), two full-length cDNAs of chicken GPI-anchored Arts, cgArt1 (chicken GPI-anchored Art1) and cgArt2, were obtained. The cDNA of cgArt1 encoded a novel polypeptide of 298 amino acids which shows a high degree of identity with cgArt2 (82.9%), Art6.1 (50.2%) and rabbit Art1 (42.1%). In contrast, the nucleotide sequence of cgArt2 was identical with that of Art7 cloned previously from chicken erythroblasts. cgArt1 and cgArt2 proteins expressed in DT40 cells were shown to be GPI-anchored Arts with a molecular mass of 45 kDa, and these Arts showed different enzymatic properties from the soluble chicken Art, Art6.1. RNase protection assays and real-time quantitative PCR revealed distinct expression patterns of the two Arts; cgArt1 was expressed predominantly in the lung, spleen and bone marrow, followed by the heart, kidney and muscle, while cgArt2 was expressed only in the heart and skeletal muscle. Thus GPI-anchored Arts encoded by the genes cgArt1 and cgArt2 are expressed extensively in chicken tissues. It may be worthwhile determining the functional roles of ADP-ribosylation in each tissue.
Collapse
Key Words
- adp-ribosyltransferase
- dt40 cell
- glycosylphosphatidylinositol (gpi) anchor
- nad+
- ap, adapter primer
- art, adp-ribosyltransferase
- cgart, chicken glycosylphosphatidylinositol-anchored art
- cona, concanavalin a
- dtt, dithiothreitol
- fam, 6-carboxyfluorescein
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- gpi, glycosylphosphatidylinositol
- mgb, minor groove binding
- pha, phytohaemagglutinin
- pi-plc, phosphatidylinositol-specific phospholipase c
- race, rapid amplification of cdna ends
- rpa, rnase protection assay
- rt-pcr, reverse transcription–pcr
Collapse
Affiliation(s)
- Masaharu Terashima
- Department of Biochemistry, Shimane University Faculty of Medicine, Izumo 693-8501, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Corda D, Di Girolamo M. Mono-ADP-ribosylation: a tool for modulating immune response and cell signaling. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pe53. [PMID: 12488509 DOI: 10.1126/stke.2002.163.pe53] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mono-ADP-ribosylation is a posttranslational modification of cellular proteins that has the potential to regulate various cell functions. This reaction consists of the enzymatic transfer of ADP-ribose to specific acceptor amino acid residues (predominantly arginine and cysteine). The best-known cellular ADP-ribosyltransferases (the enzymes that catalyze this reaction) are the seven ectoenzymes, members of the ART family. Recently, ADP-ribosylated human neutrophil-derived peptide (HNP-1, an antimicrobial peptide secreted by immune cells) has been identified in the bronchoalveolar lavage fluid from individuals who smoke cigarettes. This demonstrates that ADP-ribosylation of HNP-1 occurs in vivo. In vitro experiments have indicated that ART-1, an enzyme also present in the airway epithelium, specifically modifies Arg(14) of the HNP-1, causing the loss of the peptide's antimicrobial and cytotoxic activity, while preserving its chemotactic activity. From a functional point of view, these data support a role of ADP-ribosylation in the innate immune response. Additional functions proposed for the ADP-ribosylation reaction involve the intracellular ADP-ribosyltransferases, which are molecularly unrelated to the ARTs and intervene in cell signaling and metabolism cascades. The growing understanding of the biological roles of protein and peptide ADP-ribosylation represents a powerful tool for novel pharmacological interventions.
Collapse
Affiliation(s)
- Daniela Corda
- Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, Via Nazionale, 66030 Santa Maria Imbaro, Chieti, Italy.
| | | |
Collapse
|
9
|
Corda D, Di Girolamo M. Mono-ADP-Ribosylation: A Tool for Modulating Immune Response and Cell Signaling. Sci Signal 2002. [DOI: 10.1126/scisignal.1632002pe53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Koch-Nolte F, Reche P, Haag F, Bazan F. ADP-ribosyltransferases: plastic tools for inactivating protein and small molecular weight targets. J Biotechnol 2001; 92:81-7. [PMID: 11640979 DOI: 10.1016/s0168-1656(01)00356-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ADP-ribosyltransferases (ADPRTs) form an interesting class of enzymes with well-established roles as potent bacterial toxins and metabolic regulators. ADPRTs catalyze the transfer of the ADP-ribose moiety from NAD(+) onto specific substrates including proteins. ADP-ribosylation usually inactivates the function of the target. ADPRTs have become adapted to function in extra- and intracellular settings. Regulation of ADPRT activity can be mediated by ligand binding to associated regulatory domains, proteolytic cleavage, disulphide bond reduction, and association with other proteins. Crystallisation has revealed a conserved core set of elements that define an unusual minimal scaffold of the catalytic domain with remarkably plastic sequence requirements--only a single glutamic acid residue critical to catalytic activity is invariant. These inherent properties of ADPRTs suggest that the ADPRT catalytic fold is an attractive, malleable subject for protein design.
Collapse
Affiliation(s)
- F Koch-Nolte
- Institute for Immunology, University-Hospital, D20246 Hamburg, Germany.
| | | | | | | |
Collapse
|
11
|
Kahl S, Nissen M, Girisch R, Duffy T, Leiter EH, Haag F, Koch-Nolte F. Metalloprotease-mediated shedding of enzymatically active mouse ecto-ADP-ribosyltransferase ART2.2 upon T cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:4463-9. [PMID: 11035085 DOI: 10.4049/jimmunol.165.8.4463] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cells proteolytically shed the ectodomains of several cell surface proteins and, thereby, can alter their responsiveness and can release soluble intercellular regulators. ART2.2 is a GPI-anchored ecto-ADP-ribosyltransferase (ART) related to ADP-ribosylating bacterial toxins. ART2.2 is expressed exclusively by mature T cells. Here we show that ART2.2 is shed from the cell surface in enzymatically active form upon activation of T cells. Shedding of ART2.2 resembles that of L-selectin (CD62L) in dose response, kinetics of release, and sensitivity to the metalloprotease inhibitor Immunex Compound 3, suggesting that ART2.2, like CD62L, is cleaved by TNF-alpha-converting enzyme or by another metalloprotease. ART2.2 shed from activated T cells migrates slightly faster in SDS-PAGE analyses than does ART2.2 released upon cleavage of the GPI anchor. This indicates that shedding of ART2.2 is mediated by proteolytic cleavage close to its membrane anchor. Shed ART2.2 is enzymatically active and ADP-ribosylates several substrates in vitro. Thus, shedding of ART2.2 releases a potential intercellular regulator. Finally, using a new FACS assay for monitoring ADP-ribosylation of cell surface proteins, we demonstrate that shedding of ART2.2 correlates with a reduced sensitivity of T cell surface proteins to ADP-ribosylation. Our findings suggest that by shedding ART2.2 the activated T cell not only releases a potential intercellular regulator but also may alter its responsiveness to immune regulation by ART2.2-mediated ADP-ribosylation of cell surface proteins.
Collapse
MESH Headings
- ADP Ribose Transferases
- Adenosine Diphosphate Ribose/metabolism
- Animals
- Antigens, Differentiation, T-Lymphocyte
- Cell Membrane/enzymology
- Cell-Free System/immunology
- Dose-Response Relationship, Immunologic
- Enzyme Activation/immunology
- Enzyme Inhibitors/pharmacology
- Glycosylphosphatidylinositols/metabolism
- Histocompatibility Antigens/metabolism
- Hydrolysis
- Kinetics
- L-Selectin/metabolism
- Lymphocyte Activation/drug effects
- Membrane Glycoproteins
- Membrane Proteins/metabolism
- Metalloendopeptidases/antagonists & inhibitors
- Metalloendopeptidases/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Molecular Weight
- Phosphatidylinositol Diacylglycerol-Lyase
- Poly(ADP-ribose) Polymerases/metabolism
- Precipitin Tests
- Protein Kinase C/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tetradecanoylphorbol Acetate/pharmacology
- Tumor Cells, Cultured
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- S Kahl
- Institute for Immunology, University Hospital, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
After a short description of the results of Victor Najjar's research on tuftsin and of the discoveries done by other authors in the early stage of tuftsin investigation, the current state of work on tuftsin is presented, based mainly on the literature published in the years 1984-1997. The presentation follows this order: the occurrence of tuftsin and retro-tuftsin sequences in proteins, their synthesis and biology, the antigenic properties of tuftsin, its influence on phagocytic cells, and other biologic activities of tuftsin, including antimicrobial, antiviral, antitumor and central effects, and the search for tuftsin superactive analogs.
Collapse
Affiliation(s)
- I Z Siemion
- Faculty of Chemistry, University of Wroclaw, Poland.
| | | |
Collapse
|