1
|
Caron-Godon CA, Collington E, Wolf JL, Coletta G, Glerum DM. More than Just Bread and Wine: Using Yeast to Understand Inherited Cytochrome Oxidase Deficiencies in Humans. Int J Mol Sci 2024; 25:3814. [PMID: 38612624 PMCID: PMC11011759 DOI: 10.3390/ijms25073814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Inherited defects in cytochrome c oxidase (COX) are associated with a substantial subset of diseases adversely affecting the structure and function of the mitochondrial respiratory chain. This multi-subunit enzyme consists of 14 subunits and numerous cofactors, and it requires the function of some 30 proteins to assemble. COX assembly was first shown to be the primary defect in the majority of COX deficiencies 36 years ago. Over the last three decades, most COX assembly genes have been identified in the yeast Saccharomyces cerevisiae, and studies in yeast have proven instrumental in testing the impact of mutations identified in patients with a specific COX deficiency. The advent of accessible genome-wide sequencing capabilities has led to more patient mutations being identified, with the subsequent identification of several new COX assembly factors. However, the lack of genotype-phenotype correlations and the large number of genes involved in generating a functional COX mean that functional studies must be undertaken to assign a genetic variant as being causal. In this review, we provide a brief overview of the use of yeast as a model system and briefly compare the COX assembly process in yeast and humans. We focus primarily on the studies in yeast that have allowed us to both identify new COX assembly factors and to demonstrate the pathogenicity of a subset of the mutations that have been identified in patients with inherited defects in COX. We conclude with an overview of the areas in which studies in yeast are likely to continue to contribute to progress in understanding disease arising from inherited COX deficiencies.
Collapse
Affiliation(s)
- Chenelle A. Caron-Godon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Emma Collington
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Jessica L. Wolf
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - Genna Coletta
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
| | - D. Moira Glerum
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (C.A.C.-G.); (E.C.); (J.L.W.); (G.C.)
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Franco LVR, Su CH, Simas Teixeira L, Almeida Clarck Chagas J, Barros MH, Tzagoloff A. Allotopic expression of COX6 elucidates Atco-driven co-assembly of cytochrome oxidase and ATP synthase. Life Sci Alliance 2023; 6:e202301965. [PMID: 37604582 PMCID: PMC10442929 DOI: 10.26508/lsa.202301965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
The Cox6 subunit of Saccharomyces cerevisiae cytochrome oxidase (COX) and the Atp9 subunit of the ATP synthase are encoded in nuclear and mitochondrial DNA, respectively. The two proteins interact to form Atco complexes that serve as the source of Atp9 for ATP synthase assembly. To determine if Atco is also a precursor of COX, we pulse-labeled Cox6 in isolated mitochondria of a cox6 nuclear mutant with COX6 in mitochondrial DNA. Only a small fraction of the newly translated Cox6 was found to be present in Atco, which can explain the low concentration of COX and poor complementation of the cox6 mutation by the allotopic gene. This and other pieces of evidence presented in this study indicate that Atco is an obligatory source of Cox6 for COX biogenesis. Together with our finding that atp9 mutants fail to assemble COX, we propose a regulatory model in which Atco unidirectionally couples the biogenesis of COX to that of the ATP synthase to maintain a proper ratio of these two complexes of oxidative phosphorylation.
Collapse
Affiliation(s)
- Leticia Veloso R Franco
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Chen-Hsien Su
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | | | | |
Collapse
|
3
|
Overexpression of MRX9 impairs processing of RNAs encoding mitochondrial oxidative phosphorylation factors COB and COX1 in yeast. J Biol Chem 2022; 298:102214. [PMID: 35779633 PMCID: PMC9307953 DOI: 10.1016/j.jbc.2022.102214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial translation is a highly regulated process, and newly synthesized mitochondrial products must first associate with several nuclear-encoded auxiliary factors to form oxidative phosphorylation complexes. The output of mitochondrial products should therefore be in stoichiometric equilibrium with the nuclear-encoded products to prevent unnecessary energy expense or the accumulation of pro-oxidant assembly modules. In the mitochondrial DNA of Saccharomyces cerevisiae, COX1 encodes subunit 1 of the cytochrome c oxidase and COB the central core of the cytochrome bc1 electron transfer complex; however, factors regulating the expression of these mitochondrial products are not completely described. Here, we identified Mrx9p as a new factor that controls COX1 and COB expression. We isolated MRX9 in a screen for mitochondrial factors that cause poor accumulation of newly synthesized Cox1p and compromised transition to the respiratory metabolism. Northern analyses indicated lower levels of COX1 and COB mature mRNAs accompanied by an accumulation of unprocessed transcripts in the presence of excess Mrx9p. In a strain devoid of mitochondrial introns, MRX9 overexpression did not affect COX1 and COB translation or respiratory adaptation, implying Mrx9p regulates processing of COX1 and COB RNAs. In addition, we found Mrx9p was localized in the mitochondrial inner membrane, facing the matrix, as a portion of it cosedimented with mitoribosome subunits and its removal or overexpression altered Mss51p sedimentation. Finally, we showed accumulation of newly synthesized Cox1p in the absence of Mrx9p was diminished in cox14 null mutants. Taken together, these data indicate a regulatory role of Mrx9p in COX1 RNA processing.
Collapse
|
4
|
Cytochrome c oxidase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148335. [PMID: 33171185 DOI: 10.1016/j.bbabio.2020.148335] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
Cytochrome c oxidase (COX) deficiency is characterized by a high degree of genetic and phenotypic heterogeneity, partly reflecting the extreme structural complexity, multiple post-translational modification, variable, tissue-specific composition, and the high number of and intricate connections among the assembly factors of this enzyme. In fact, decreased COX specific activity can manifest with different degrees of severity, affect the whole organism or specific tissues, and develop a wide spectrum of disease natural history, including disease onsets ranging from birth to late adulthood. More than 30 genes have been linked to COX deficiency, but the list is still incomplete and in fact constantly updated. We here discuss the current knowledge about COX in health and disease, focusing on genetic aetiology and link to clinical manifestations. In addition, information concerning either fundamental biological features of the enzymes or biochemical signatures of its defects have been provided by experimental in vivo models, including yeast, fly, mouse and fish, which expanded our knowledge on the functional features and the phenotypical consequences of different forms of COX deficiency.
Collapse
|
5
|
What Role Does COA6 Play in Cytochrome C Oxidase Biogenesis: A Metallochaperone or Thiol Oxidoreductase, or Both? Int J Mol Sci 2020; 21:ijms21196983. [PMID: 32977416 PMCID: PMC7582641 DOI: 10.3390/ijms21196983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Complex IV (cytochrome c oxidase; COX) is the terminal complex of the mitochondrial electron transport chain. Copper is essential for COX assembly, activity, and stability, and is incorporated into the dinuclear CuA and mononuclear CuB sites. Multiple assembly factors play roles in the biogenesis of these sites within COX and the failure of this intricate process, such as through mutations to these factors, disrupts COX assembly and activity. Various studies over the last ten years have revealed that the assembly factor COA6, a small intermembrane space-located protein with a twin CX9C motif, plays a role in the biogenesis of the CuA site. However, how COA6 and its copper binding properties contribute to the assembly of this site has been a controversial area of research. In this review, we summarize our current understanding of the molecular mechanisms by which COA6 participates in COX biogenesis.
Collapse
|
6
|
Dubinski AF, Camasta R, Soule TGB, Reed BH, Glerum DM. Consequences of cytochrome c oxidase assembly defects for the yeast stationary phase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:445-458. [PMID: 29567354 DOI: 10.1016/j.bbabio.2018.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/24/2022]
Abstract
The assembly of cytochrome c oxidase (COX) is essential for a functional mitochondrial respiratory chain, although the consequences of a loss of assembled COX at yeast stationary phase, an excellent model for terminally differentiated cells in humans, remain largely unexamined. In this study, we show that a wild-type respiratory competent yeast strain at stationary phase is characterized by a decreased oxidative capacity, as seen by a reduction in the amount of assembled COX and by a decrease in protein levels of several COX assembly factors. In contrast, loss of assembled COX results in the decreased abundance of many mitochondrial proteins at stationary phase, which is likely due to decreased membrane potential and changes in mitophagy. In addition to an altered mitochondrial proteome, COX assembly mutants display unexpected changes in markers of cellular oxidative stress at stationary phase. Our results suggest that mitochondria may not be a major source of reactive oxygen species at stationary phase in cells lacking an intact respiratory chain.
Collapse
Affiliation(s)
- Alicia F Dubinski
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Raffaele Camasta
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tyler G B Soule
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Bruce H Reed
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - D Moira Glerum
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
7
|
Timón-Gómez A, Nývltová E, Abriata LA, Vila AJ, Hosler J, Barrientos A. Mitochondrial cytochrome c oxidase biogenesis: Recent developments. Semin Cell Dev Biol 2017; 76:163-178. [PMID: 28870773 DOI: 10.1016/j.semcdb.2017.08.055] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022]
Abstract
Mitochondrial cytochrome c oxidase (COX) is the primary site of cellular oxygen consumption and is essential for aerobic energy generation in the form of ATP. Human COX is a copper-heme A hetero-multimeric complex formed by 3 catalytic core subunits encoded in the mitochondrial DNA and 11 subunits encoded in the nuclear genome. Investigations over the last 50 years have progressively shed light into the sophistication surrounding COX biogenesis and the regulation of this process, disclosing multiple assembly factors, several redox-regulated processes leading to metal co-factor insertion, regulatory mechanisms to couple synthesis of COX subunits to COX assembly, and the incorporation of COX into respiratory supercomplexes. Here, we will critically summarize recent progress and controversies in several key aspects of COX biogenesis: linear versus modular assembly, the coupling of mitochondrial translation to COX assembly and COX assembly into respiratory supercomplexes.
Collapse
Affiliation(s)
- Alba Timón-Gómez
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eva Nývltová
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling & Protein Purification and Structure Facility, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Switzerland
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Jonathan Hosler
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS, United States
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
8
|
Abstract
The mitochondrial proteome comprises ~1000 (yeast)-1500 (human) different proteins, which are distributed into four different subcompartments. The sublocalization of these proteins within the organelle in most cases remains poorly defined. Here we describe an integrated approach combining stable isotope labeling, various protein enrichment and extraction strategies and quantitative mass spectrometry to produce a quantitative map of submitochondrial protein distribution in S. cerevisiae. This quantitative landscape enables a proteome-wide classification of 986 proteins into soluble, peripheral, and integral mitochondrial membrane proteins, and the assignment of 818 proteins into the four subcompartments: outer membrane, inner membrane, intermembrane space, or matrix. We also identified 206 proteins that were not previously annotated as localized to mitochondria. Furthermore, the protease Prd1, misannotated as intermembrane space protein, could be re-assigned and characterized as a presequence peptide degrading enzyme in the matrix.Protein localization plays an important role in the regulation of cellular physiology. Here the authors use an integrated proteomics approach to localize proteins to the mitochondria and provide a detailed map of their specific localization within the organelle.
Collapse
|
9
|
Bourens M, Barrientos A. A CMC1-knockout reveals translation-independent control of human mitochondrial complex IV biogenesis. EMBO Rep 2017; 18:477-494. [PMID: 28082314 DOI: 10.15252/embr.201643103] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022] Open
Abstract
Defects in mitochondrial respiratory chain complex IV (CIV) frequently cause encephalocardiomyopathies. Human CIV assembly involves 14 subunits of dual genetic origin and multiple nucleus-encoded ancillary factors. Biogenesis of the mitochondrion-encoded copper/heme-containing COX1 subunit initiates the CIV assembly process. Here, we show that the intermembrane space twin CX9C protein CMC1 forms an early CIV assembly intermediate with COX1 and two assembly factors, the cardiomyopathy proteins COA3 and COX14. A TALEN-mediated CMC1 knockout HEK293T cell line displayed normal COX1 synthesis but decreased CIV activity owing to the instability of newly synthetized COX1. We demonstrate that CMC1 stabilizes a COX1-COA3-COX14 complex before the incorporation of COX4 and COX5a subunits. Additionally, we show that CMC1 acts independently of CIV assembly factors relevant to COX1 metallation (COX10, COX11, and SURF1) or late stability (MITRAC7). Furthermore, whereas human COX14 and COA3 have been proposed to affect COX1 mRNA translation, our data indicate that CMC1 regulates turnover of newly synthesized COX1 prior to and during COX1 maturation, without affecting the rate of COX1 synthesis.
Collapse
Affiliation(s)
- Myriam Bourens
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA .,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
10
|
McStay GP, Su CH, Thomas SM, Xu JT, Tzagoloff A. Characterization of assembly intermediates containing subunit 1 of yeast cytochrome oxidase. J Biol Chem 2013; 288:26546-56. [PMID: 23897805 DOI: 10.1074/jbc.m113.498592] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial-encoded Cox1p, one of the three core subunits of yeast cytochrome oxidase (COX), was previously shown to associate with regulatory proteins and nuclear-encoded subunits into five high molecular weight complexes that were proposed to constitute the pathway for biogenesis of the Cox1p assembly module. One of the intermediates (D5) was inferred, but not directly shown to exist. In the present study mitochondria of strains expressing C-terminal-tagged subunits of COX that had not been looked at previously were pulse-labeled and analyzed for the presence of newly translated Cox1p in the immunoprecipitates. These studies revealed that of the eight nuclear-encoded COX subunits, only Cox5ap, Cox6p, and Cox8p are present in the Cox1p module. Both Cox5ap and Cox8p share interfaces with Cox1p in the holoenzyme, whereas Cox6p interacts indirectly through Cox5ap. These results suggest that the subunit contacts in the holoenzyme are probably established during biogenesis of the Cox1p module. To confirm the existence of the largest Cox1p intermediates (D5), which was only inferred previously, radiolabeled Cox1p with a C-terminal tag was expressed in COX-deficient pet111 and pet494 mutants. Pulldown assays confirmed the presence of newly translated Cox1p in D5, which in wild type cannot be demonstrated directly because of its co-migration with COX in the native electrophoresis system used to separate the intermediates. Jointly, the results of these analyses substantiate our previous proposal that COX is assembled from separate assembly modules, each containing one of the mitochondrial-translated core subunits in association with a unique set of nuclear-encoded subunits.
Collapse
Affiliation(s)
- Gavin P McStay
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | | | | | |
Collapse
|
11
|
Abstract
Pulse-chase labeling of isolated yeast mitochondria identifies new assembly intermediates of Cox1p, characterizes their compositions, and orders them sequentially. The results indicate that cytochrome oxidase is assembled from separate modules, each consisting of different mitochondrial and nuclear gene products. Previous studies of yeast cytochrome oxidase (COX) biogenesis identified Cox1p, one of the three mitochondrially encoded core subunits, in two high–molecular weight complexes combined with regulatory/assembly factors essential for expression of this subunit. In the present study we use pulse-chase labeling experiments in conjunction with isolated mitochondria to identify new Cox1p intermediates and place them in an ordered pathway. Our results indicate that before its assimilation into COX, Cox1p transitions through five intermediates that are differentiated by their compositions of accessory factors and of two of the eight imported subunits. We propose a model of COX biogenesis in which Cox1p and the two other mitochondrial gene products, Cox2p and Cox3p, constitute independent assembly modules, each with its own complement of subunits. Unlike their bacterial counterparts, which are composed only of the individual core subunits, the final sequence in which the mitochondrial modules associate to form the holoenzyme may have been conserved during evolution.
Collapse
Affiliation(s)
- Gavin P McStay
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
12
|
Fontanesi F, Clemente P, Barrientos A. Cox25 teams up with Mss51, Ssc1, and Cox14 to regulate mitochondrial cytochrome c oxidase subunit 1 expression and assembly in Saccharomyces cerevisiae. J Biol Chem 2010; 286:555-66. [PMID: 21068384 DOI: 10.1074/jbc.m110.188805] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, mitochondrial cytochrome c oxidase (COX) biogenesis is translationally regulated. Mss51, a specific COX1 mRNA translational activator and Cox1 chaperone, drives the regulatory mechanism. During translation and post-translationally, newly synthesized Cox1 physically interacts with a complex of proteins involving Ssc1, Mss51, and Cox14, which eventually hand over Cox1 to the assembly pathway. This step is probably catalyzed by assembly chaperones such as Shy1 in a process coupled to the release of Ssc1-Mss51 from the complex. Impaired COX assembly results in the trapping of Mss51 in the complex, thus limiting its availability for COX1 mRNA translation. An exception is a null mutation in COX14 that does not affect Cox1 synthesis because the Mss51 trapping complexes become unstable, and Mss51 is readily available for translation. Here we present evidence showing that Cox25 is a new essential COX assembly factor that plays some roles similar to Cox14. A null mutation in COX25 by itself or in combination with other COX mutations does not affect Cox1 synthesis. Cox25 is an inner mitochondrial membrane intrinsic protein with a hydrophilic C terminus protruding into the matrix. Cox25 is an essential component of the complexes containing newly synthesized Cox1, Ssc1, Mss51, and Cox14. In addition, Cox25 is also found to interact with Shy1 and Cox5 in a complex that does not contain Mss51. These results suggest that once Ssc1-Mss51 are released from the Cox1 stabilization complex, Cox25 continues to interact with Cox14 and Cox1 to facilitate the formation of multisubunit COX assembly intermediates.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Departments of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
13
|
The role of Coa2 in hemylation of yeast Cox1 revealed by its genetic interaction with Cox10. Mol Cell Biol 2010; 30:172-85. [PMID: 19841065 DOI: 10.1128/mcb.00869-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae cells lacking the cytochrome c oxidase (CcO) assembly factor Coa2 are impaired in Cox1 maturation and exhibit a rapid degradation of newly synthesized Cox1. The respiratory deficiency of coa2 Delta cells is suppressed either by the presence of a mutant allele of the Cox10 farnesyl transferase involved in heme a biosynthesis or through impaired proteolysis by the disruption of the mitochondrial Oma1 protease. Cox10 with an N196K substitution functions as a robust gain-of-function suppressor of the respiratory deficiency of coa2 Delta cells but lacks suppressor activity for two other CcO assembly mutant strains, the coa1 Delta and shy1 Delta mutants. The suppressor activity of N196K mutant Cox10 is dependent on its catalytic function and the presence of Cox15, the second enzyme involved in heme a biosynthesis. Varying the substitution at Asn196 reveals a correlation between the suppressor activity and the stabilization of the high-mass homo-oligomeric Cox10 complex. We postulate that the mutant Cox10 complex has enhanced efficiency in the addition of heme a to Cox1. Coa2 appears to impart stability to the oligomeric wild-type Cox10 complex involved in Cox1 hemylation.
Collapse
|
14
|
Mss51 and Ssc1 facilitate translational regulation of cytochrome c oxidase biogenesis. Mol Cell Biol 2010; 30:245-59. [PMID: 19858289 DOI: 10.1128/mcb.00983-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intricate biogenesis of multimeric organellar enzymes of dual genetic origin entails several levels of regulation. In Saccharomyces cerevisiae, mitochondrial cytochrome c oxidase (COX) assembly is regulated translationally. Synthesis of subunit 1 (Cox1) is contingent on the availability of its assembly partners, thereby acting as a negative feedback loop that coordinates COX1 mRNA translation with Cox1 utilization during COX assembly. The COX1 mRNA-specific translational activator Mss51 plays a fundamental role in this process. Here, we report that Mss51 successively interacts with the COX1 mRNA translational apparatus, newly synthesized Cox1, and other COX assembly factors during Cox1 maturation/assembly. Notably, the mitochondrial Hsp70 chaperone Ssc1 is shown to be an Mss51 partner throughout its metabolic cycle. We conclude that Ssc1, by interacting with Mss51 and Mss51-containing complexes, plays a critical role in Cox1 biogenesis, COX assembly, and the translational regulation of these processes.
Collapse
|
15
|
Role of nuclear-encoded subunit Vb in the assembly and stability of cytochrome c oxidase complex: implications in mitochondrial dysfunction and ROS production. Biochem J 2009; 420:439-49. [PMID: 19338496 DOI: 10.1042/bj20090214] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CcO (cytochrome c oxidase) is a multisubunit bigenomic protein complex which catalyses the last step of the mitochondrial electron transport chain. The nuclear-encoded subunits are thought to have roles either in regulation or in the structural stability of the enzyme. Subunit Vb is a peripheral nuclear-encoded subunit of mammalian CcO that is dramatically reduced under hypoxia. Although it has been shown to contain different ligand-binding sites and undergo modifications, its precise function is not known. In the present study we generated a cell line from RAW 264.7 murine macrophages that has a more than 80% reduced level of Vb. Functional analysis of these cells showed a loss of CcO activity, membrane potential and less ability to generate ATP. Resolution of complexes on blue native gel and two-dimensional electrophoretic analysis showed an accumulation of subcomplexes of CcO and also reduced association with supercomplexes of the electron transfer chain. Furthermore, the mitochondria from CcO Vb knock-down cells generated increased ROS (reactive oxygen species), and the cells were unable to grow on galactose-containing medium. Pulse-chase experiments suggest the role of the CcO Vb subunit in the assembly of the complex. We show for the first time the role of a peripheral, non-transmembrane subunit in the formation as well as function of the terminal CcO complex.
Collapse
|
16
|
Fontanesi F, Soto IC, Barrientos A. Cytochrome c oxidase biogenesis: new levels of regulation. IUBMB Life 2008; 60:557-68. [PMID: 18465791 DOI: 10.1002/iub.86] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is a multimeric enzyme of dual genetic origin, whose assembly is a complicated and highly regulated process. COX displays a concerted accumulation of its constitutive subunits. Data obtained from studies performed with yeast mutants indicate that most catalytic core unassembled subunits are posttranslationally degraded. Recent data obtained in the yeast Saccharomyces cerevisiae have revealed another contribution to the stoichiometric accumulation of subunits during COX biogenesis targeting subunit 1 or Cox1p. Cox1p is a mitochondrially encoded catalytic subunit of COX which acts as a seed around which the full complex is assembled. A regulatory mechanism exists by which Cox1p synthesis is controlled by the availability of its assembly partners. The unique properties of this regulatory mechanism offer a means to catalyze multiple-subunit assembly. New levels of COX biogenesis regulation have been recently proposed. For example, COX assembly and stability of the fully assembled enzyme depend on the presence in the mitochondrial compartments of two partners of the oxidative phosphorylation system, the mobile electron carrier cytochrome c and the mitochondrial ATPase. The different mechanisms of regulation of COX assembly are reviewed and discussed.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Department of Neurology, The John T. MacDonald Foundation Center for Medical Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
17
|
Coa2 is an assembly factor for yeast cytochrome c oxidase biogenesis that facilitates the maturation of Cox1. Mol Cell Biol 2008; 28:4927-39. [PMID: 18541668 DOI: 10.1128/mcb.00057-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of cytochrome c oxidase (CcO) in yeast mitochondria is dependent on a new assembly factor designated Coa2. Coa2 was identified from its ability to suppress the respiratory deficiency of coa1Delta and shy1Delta cells. Coa1 and Shy1 function at an early step in maturation of the Cox1 subunit of CcO. Coa2 functions downstream of the Mss51-Coa1 step in Cox1 maturation and likely concurrent with the Shy1-related heme a(3) insertion into Cox1. Coa2 interacts with Shy1. Cells lacking Coa2 show a rapid degradation of newly synthesized Cox1. Rapid Cox1 proteolysis also occurs in shy1Delta cells, suggesting that in the absence of Coa2 or Shy1, Cox1 forms an unstable conformer. Overexpression of Cox10 or Cox5a and Cox6 or attenuation of the proteolytic activity of the m-AAA protease partially restores respiration in coa2Delta cells. The matrix-localized Coa2 protein may aid in stabilizing an early Cox1 intermediate containing the nuclear subunits Cox5a and Cox6.
Collapse
|
18
|
Barrientos A, Gouget K, Horn D, Soto IC, Fontanesi F. Suppression mechanisms of COX assembly defects in yeast and human: insights into the COX assembly process. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:97-107. [PMID: 18522805 DOI: 10.1016/j.bbamcr.2008.05.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/29/2008] [Accepted: 05/05/2008] [Indexed: 12/11/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin whose assembly is intricate and highly regulated. In addition to the structural subunits, a large number of accessory factors are required to build the holoenzyme. The function of these factors is required in all stages of the assembly process. They are relevant to human health because devastating human disorders have been associated with mutations in nuclear genes encoding conserved COX assembly factors. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to attain the current state of knowledge, even if still fragmentary, of the COX assembly process. After the identification of the genes involved, the isolation and characterization of genetic and metabolic suppressors of COX assembly defects, reviewed here, have become a profitable strategy to gain insight into their functions and the pathways in which they operate. Additionally, they have the potential to provide useful information for devising therapeutic approaches to combat human disorders associated with COX deficiency.
Collapse
Affiliation(s)
- Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | |
Collapse
|
19
|
Fontanesi F, Jin C, Tzagoloff A, Barrientos A. Transcriptional activators HAP/NF-Y rescue a cytochrome c oxidase defect in yeast and human cells. Hum Mol Genet 2008; 17:775-88. [PMID: 18045776 DOI: 10.1093/hmg/ddm349] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cell survival and energy production requires a functional mitochondrial respiratory chain. Biogenesis of cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is a very complicated process and requires the assistance of a large number of accessory factors. Defects in COX assembly alter cellular respiration and produce severe human encephalomyopathies. Mutations in SURF1, a COX assembly factor of exact unknown function, produce Leigh's syndrome (LS), the most frequent cause of COX deficiency in infants. In the yeast Saccharomyces cerevisiae, deletion of the SURF1 homologue SHY1 results in a similar COX deficiency. In order to identify genetic modifiers of the shy1 mutant phenotype, we have explored for genetic interactions involving SHY1. Here we report that overexpression of Hap4p, the catalytic subunit of the CCAAT binding transcriptional activator Hap2/3/4/5p complex, suppresses the respiratory defect of yeast shy1 mutants by increasing the expression of nuclear-encoded COX subunits that interact with the mitochondrially encoded Cox1p. Analogously, overexpression of the Hap complex human homologue NF-YA/B/C transcription complex in SURF1-deficient fibroblasts from an LS patient efficiently rescues their COX deficiency.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Department of Neurology, The John T. MacDonald Foundation Center for Medical Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | |
Collapse
|
20
|
Zee JM, Glerum DM. Defects in cytochrome oxidase assembly in humans: lessons from yeast. Biochem Cell Biol 2007; 84:859-69. [PMID: 17215873 DOI: 10.1139/o06-201] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biogenesis of the inner mitochondrial membrane enzyme cytochrome c oxidase (COX) is a complex process that requires the actions of ancillary proteins, collectively called assembly factors. Studies with the yeast Saccharomyces cerevisiae have provided considerable insight into the COX assembly pathway and have proven to be a fruitful model for understanding the molecular bases for inherited COX deficiencies in humans. In this review, we focus on critical steps in the COX assembly pathway. These processes are conserved from yeast to humans and are known to be involved in the etiology of human COX deficiencies. The contributions from our studies in yeast suggest that this organism remains an excellent model system for delineating the molecular mechanisms underlying COX assembly defects in humans. Current progress suggests that a complete picture of COX assembly will be achieved in the near future.
Collapse
Affiliation(s)
- Jennifer M Zee
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 0M2, Canada
| | | |
Collapse
|
21
|
Coyne HJ, Ciofi-Baffoni S, Banci L, Bertini I, Zhang L, George GN, Winge DR. The Characterization and Role of Zinc Binding in Yeast Cox4. J Biol Chem 2007; 282:8926-34. [PMID: 17215247 DOI: 10.1074/jbc.m610303200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast Cox4 is a zinc binding subunit of cytochrome c oxidase. Cox4 is the only cofactor-containing subunit that is not directly part of the catalytic core of the enzyme located in the mitochondrial inner membrane. The Zn(II) site is shown to be distinct from the bovine ortholog, as it results from the x-ray structure of the entire cytochrome c oxidase in having a single histidyl residue and three conserved cysteines residues in the coordination sphere. Substitutions at the Cys ligand positions result in non-functional Cox4 proteins that fail to lead to cytochrome oxidase assembly. Limited function exists in His-119 mutants when overexpressed. Zn(II) binding in Cox4 is, therefore, important for the stability of the complex. The solution structure of yeast Cox4 elucidated by multidimensional NMR reveals a C-terminal globular domain consisting of two beta sheets analogous to the bovine ortholog except the loop containing the coordinating His in the yeast protein and the fourth Cys in the bovine protein are in different positions in the two structures. The conformation of this loop is dictated by the different sequence position of the fourth coordinating zinc ligand. The Zn(II) ion is buried within the domain, consistent with its role in structural stability. Potential functions of this matrix-facing subunit are discussed.
Collapse
Affiliation(s)
- H Jerome Coyne
- University of Utah Health Sciences Center, Department of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Zambrano A, Fontanesi F, Solans A, de Oliveira RL, Fox TD, Tzagoloff A, Barrientos A. Aberrant translation of cytochrome c oxidase subunit 1 mRNA species in the absence of Mss51p in the yeast Saccharomyces cerevisiae. Mol Biol Cell 2006; 18:523-35. [PMID: 17135289 PMCID: PMC1783774 DOI: 10.1091/mbc.e06-09-0803] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Expression of yeast mitochondrial genes depends on specific translational activators acting on the 5'-untranslated region of their target mRNAs. Mss51p is a translational factor for cytochrome c oxidase subunit 1 (COX1) mRNA and a key player in down-regulating Cox1p expression when subunits with which it normally interacts are not available. Mss51p probably acts on the 5'-untranslated region of COX1 mRNA to initiate translation and on the coding sequence itself to facilitate elongation. Mss51p binds newly synthesized Cox1p, an interaction that could be necessary for translation. To gain insight into the different roles of Mss51p on Cox1p biogenesis, we have analyzed the properties of a new mitochondrial protein, mp15, which is synthesized in mss51 mutants and in cytochrome oxidase mutants in which Cox1p translation is suppressed. The mp15 polypeptide is not detected in cox14 mutants that express Cox1p normally. We show that mp15 is a truncated translation product of COX1 mRNA whose synthesis requires the COX1 mRNA-specific translational activator Pet309p. These results support a key role for Mss51p in translationally regulating Cox1p synthesis by the status of cytochrome oxidase assembly.
Collapse
Affiliation(s)
- Andrea Zambrano
- *Department of Neurology and Biochemistry and Molecular Biology, The John T. Macdonald Foundation Center for Medical Genetics, University of Miami School of Medicine, Miami, FL 33136
| | - Flavia Fontanesi
- *Department of Neurology and Biochemistry and Molecular Biology, The John T. Macdonald Foundation Center for Medical Genetics, University of Miami School of Medicine, Miami, FL 33136
| | - Asun Solans
- *Department of Neurology and Biochemistry and Molecular Biology, The John T. Macdonald Foundation Center for Medical Genetics, University of Miami School of Medicine, Miami, FL 33136
| | - Rodrigo Leite de Oliveira
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Thomas D. Fox
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703; and
| | | | - Antoni Barrientos
- *Department of Neurology and Biochemistry and Molecular Biology, The John T. Macdonald Foundation Center for Medical Genetics, University of Miami School of Medicine, Miami, FL 33136
| |
Collapse
|
23
|
Cobine PA, Pierrel F, Winge DR. Copper trafficking to the mitochondrion and assembly of copper metalloenzymes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:759-72. [PMID: 16631971 DOI: 10.1016/j.bbamcr.2006.03.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/03/2006] [Accepted: 03/05/2006] [Indexed: 11/20/2022]
Abstract
Copper is required within the mitochondrion for the function of two metalloenzymes, cytochrome c oxidase (CcO) and superoxide dismutase (Sod1). Copper metallation of these two enzymes occurs within the mitochondrial intermembrane space and is mediated by metallochaperone proteins. Cox17 is a key copper donor to two accessory proteins, Sco1 and Cox11, to form the two copper centers in the mature CcO complex. Ccs1 is the necessary metallochaperone for the copper metallation of Sod1 in the IMS as well as within the cytoplasm where the bulk of Sod1 resides. Copper ions used in the metallation of CcO and Sod1 appear to be provided by a novel copper pool within the mitochondrial matrix. This review documents copper ion shuttling within the mitochondrion and the proteins that mediate assembly of active CcO and Sod1.
Collapse
Affiliation(s)
- Paul A Cobine
- Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
24
|
Horan S, Bourges I, Taanman JW, Meunier B. Analysis of COX2 mutants reveals cytochrome oxidase subassemblies in yeast. Biochem J 2006; 390:703-8. [PMID: 15921494 PMCID: PMC1199664 DOI: 10.1042/bj20050598] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytochrome oxidase catalyses the reduction of oxygen to water. The mitochondrial enzyme contains up to 13 subunits, 11 in yeast, of which three, Cox1p, Cox2p and Cox3p, are mitochondrially encoded. The assembly pathway of this complex is still poorly understood. Its study in yeast has been so far impeded by the rapid turnover of unassembled subunits of the enzyme. In the present study, immunoblot analysis of blue native gels of yeast wild-type and Cox2p mutants revealed five cytochrome oxidase complexes or subcomplexes: a, b, c, d and f; a is likely to be the fully assembled enzyme; b lacks Cox6ap; d contains Cox7p and/or Cox7ap; f represents unassembled Cox1p; and c, observed only in the Cox2p mutants, contains Cox1p, Cox3p, Cox5p and Cox6p and lacks the other subunits. The identification of these novel cytochrome oxidase subcomplexes should encourage the reexamination of other yeast mutants.
Collapse
Affiliation(s)
- Susannah Horan
- *Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, U.K
| | - Ingrid Bourges
- *Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, U.K
| | - Jan-Willem Taanman
- †University Department of Clinical Neurosciences, Royal Free and University College Medical School, University College London, Rowland Hill Street, London NW3 2PF, U.K
| | - Brigitte Meunier
- *Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
25
|
Khalimonchuk O, Rödel G. Biogenesis of cytochrome c oxidase. Mitochondrion 2005; 5:363-88. [PMID: 16199211 DOI: 10.1016/j.mito.2005.08.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 08/10/2005] [Indexed: 11/20/2022]
Abstract
Cytochrome c oxidase (COX), the terminal enzyme of electron transport chains in some prokaryotes and in mitochondria, has been characterized in detail over many years. Recently, a number of new data on structural and functional aspects as well as on COX biogenesis emerged. COX biogenesis includes a variety of steps starting from translation to the formation of the mature complex. Each step involves a set of specific factors that assist translation of subunits, their translocation across membranes, insertion of essential cofactors, assembly and final maturation of the enzyme. In this review, we focus on the organization and biogenesis of COX.
Collapse
Affiliation(s)
- Oleh Khalimonchuk
- Institut für Genetik, Technische Universität Dresden, 01062 Dresden, Germany
| | | |
Collapse
|
26
|
Church C, Goehring B, Forsha D, Wazny P, Poyton RO. A role for Pet100p in the assembly of yeast cytochrome c oxidase: interaction with a subassembly that accumulates in a pet100 mutant. J Biol Chem 2004; 280:1854-63. [PMID: 15507444 DOI: 10.1074/jbc.m410726200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biogenesis of multimeric protein complexes of the inner mitochondrial membrane in yeast requires a number of nuclear-coded ancillary proteins. One of these, Pet100p, is required for cytochrome c oxidase. Previous studies have shown that Pet100p is not required for the synthesis, processing, or targeting of cytochrome c oxidase subunits to the mitochondrion nor for heme A biosynthesis. Here, we report that Pet100p does not affect the localization of cytochrome c oxidase subunit polypeptides to the inner mitochondrial membrane but instead functions after they have arrived at the inner membrane. We have also localized Pet100p to the inner mitochondrial membrane in wild type cells, where it is present in a subassembly (Complex A) with cytochrome c oxidase subunits VII, VIIa, and VIII. Pet100p does not interact with the same subunits after they have been assembled into the holoenzyme. In addition, we have identified two subassemblies that are present in pet100 null mutant cells: one subassembly (Complex A') is composed of subunits VII, VIIa, and VIII but not Pet100p, and another subassembly (Complex B) is composed of subunits Va and VI. Because pet100 null mutant cells lack assembled cytochrome c oxidase but accumulate Complexes A' and B it appears likely that these subassemblies of cytochrome c oxidase subunits are intermediates along an assembly pathway for holocytochrome c oxidase and that Pet100p functions in this pathway to facilitate the interaction(s) between Complex A' and other cytochrome c oxidase subassemblies and subunits.
Collapse
Affiliation(s)
- Cynthia Church
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | | | |
Collapse
|
27
|
Barrientos A, Zambrano A, Tzagoloff A. Mss51p and Cox14p jointly regulate mitochondrial Cox1p expression in Saccharomyces cerevisiae. EMBO J 2004; 23:3472-82. [PMID: 15306853 PMCID: PMC516630 DOI: 10.1038/sj.emboj.7600358] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 07/19/2004] [Indexed: 11/10/2022] Open
Abstract
Mutations in SURF1, the human homologue of yeast SHY1, are responsible for Leigh's syndrome, a neuropathy associated with cytochrome oxidase (COX) deficiency. Previous studies of the yeast model of this disease showed that mutant forms of Mss51p, a translational activator of COX1 mRNA, partially rescue the COX deficiency of shy1 mutants by restoring normal synthesis of the mitochondrially encoded Cox1p subunit of COX. Here we present evidence showing that Cox1p synthesis is reduced in most COX mutants but is restored to that of wild type by the same mss51 mutation that suppresses shy1 mutants. An important exception is a null mutation in COX14, which by itself or in combination with other COX mutations does not affect Cox1p synthesis. Cox14p and Mss51p are shown to interact with newly synthesized Cox1p and with each other. We propose that the interaction of Mss51p and Cox14p with Cox1p to form a transient Cox14p-Cox1p-Mss51p complex functions to downregulate Cox1p synthesis. The release of Mss51p from the complex occurs at a downstream step in the assembly pathway, probably catalyzed by Shy1p.
Collapse
Affiliation(s)
- Antoni Barrientos
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | | | | |
Collapse
|
28
|
Nebohácová M, Maslov DA, Falick AM, Simpson L. The Effect of RNA Interference Down-regulation of RNA Editing 3′-Terminal Uridylyl Transferase (TUTase) 1 on Mitochondrial de Novo Protein Synthesis and Stability of Respiratory Complexes in Trypanosoma brucei. J Biol Chem 2004; 279:7819-25. [PMID: 14681226 DOI: 10.1074/jbc.m311360200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibition of RNA editing by down-regulation of expression of the mitochondrial RNA editing TUTase 1 by RNA interference had profound effects on kinetoplast biogenesis in Trypanosoma brucei procyclic cells. De novo synthesis of the apocytochrome b and cytochrome oxidase subunit I proteins was no longer detectable after 3 days of RNAi. The effect on protein synthesis correlated with a decline in the levels of the assembled mitochondrial respiratory complexes III and IV, and also cyanide-sensitive oxygen uptake. The steady-state levels of nuclear-encoded subunits of complexes III and IV were also significantly decreased. Because the levels of the corresponding mRNAs were not affected, the observed effect was likely due to an increased turnover of these imported mitochondrial proteins. This induced protein degradation was selective for components of complexes III and IV, because little effect was observed on components of the F(1).F(0)-ATPase complex and on several other mitochondrial proteins.
Collapse
Affiliation(s)
- Martina Nebohácová
- Howard Hughes Medical Institute and Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Cytochrome c oxidase (CcO) is an oligomeric complex localized within the mitochondrial inner membrane. Assembly of the active oxidase complex requires the coordinate assembly of subunits synthesized in both the cytoplasm and the mitochondrion. In addition, assembly is dependent on the insertion of five types of cofactors, including two hemes, three copper ions, and one Zn, Mg, and Na ion. A series of accessory proteins are critical for synthesis of the heme A cofactor and insertion of the copper ions. This Account will focus on the steps in the coordinate assembly of CcO subunits, the formation of heme A, and the delivery and insertion of copper ions.
Collapse
Affiliation(s)
- Heather S Carr
- University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
30
|
Meunier B, Taanman JW. Mutations of cytochrome c oxidase subunits 1 and 3 in Saccharomyces cerevisiae: assembly defect and compensation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1554:101-7. [PMID: 12034475 DOI: 10.1016/s0005-2728(02)00217-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eukaryotic cytochrome oxidases are composed of up to 13 subunits, of which three, subunits 1, 2 and 3, are mitochondrially encoded. In this study, yeast mutants were used to investigate the role of subunits 1 and 3 domains on the enzyme assembly. Mutation S203L in subunit 3 which abolished the respiratory growth, decreased cytochrome oxidase content, as measured by optical spectroscopy and immunodetection. Secondary mutations in subunits 1 and 3 restored (partly) the enzyme level. Two reversions reintroduced residues with a hydroxyl group at the primary mutation site (S203T) or in a subunit 3 transmembrane helix close to subunit 1 (G104S). These residues may be involved in hydrogen bonding which strengthen subunits 1-3 interaction. Two other reversions (A224V and Q137K) are located in P-side loops in subunit 1, which may be involved in the enzyme assembly. A mutation in residue A224 has been reported in a family presenting with encephalomyopathy. Surprisingly, the introduction of the 'human' mutation A224S and of a more drastic change A224F had no effect on the yeast enzyme. This might be explained by differences in local folding in the two enzymes.
Collapse
Affiliation(s)
- Brigitte Meunier
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
31
|
D'Aurelio M, Pallotti F, Barrientos A, Gajewski CD, Kwong JQ, Bruno C, Beal MF, Manfredi G. In vivo regulation of oxidative phosphorylation in cells harboring a stop-codon mutation in mitochondrial DNA-encoded cytochrome c oxidase subunit I. J Biol Chem 2001; 276:46925-32. [PMID: 11595737 DOI: 10.1074/jbc.m106429200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms that regulate oxidative phosphorylation in mammalian cells are largely unknown. To address this issue, cybrids were generated by fusing osteosarcoma cells devoid of mitochondrial DNA (mtDNA) with platelets from a patient with a stop-codon mutation in cytochrome c oxidase subunit I (COX I). The molecular and biochemical characteristics of cybrids harboring varying levels of mutated mitochondrial DNA were studied. We found a direct correlation between the levels of mutated COX I DNA and mutated COX I mRNA, whereas the levels of COX I total mRNA were unchanged. COX I polypeptide synthesis and steady-state levels were inversely proportional to mutation levels. Cytochrome c oxidase subunit II was reduced proportionally to COX I, indicating impairment in complex assembly. COX enzymatic activity was inversely proportional to the levels of mutated mtDNA. However, both cell respiration and ATP synthesis were preserved in cells with lower proportions of mutated genomes, with a threshold at approximately 40%, and decreased linearly with increasing mutated mtDNA. These results indicate that COX levels in mutated cells were not regulated at the transcriptional, translational, and post-translational levels. Because of a small excess of COX capacity, the levels of expression of COX subunits exerted a relatively tight control on oxidative phosphorylation.
Collapse
Affiliation(s)
- M D'Aurelio
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 E 68th St, A-505, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Nittis T, George GN, Winge DR. Yeast Sco1, a protein essential for cytochrome c oxidase function is a Cu(I)-binding protein. J Biol Chem 2001; 276:42520-6. [PMID: 11546815 DOI: 10.1074/jbc.m107077200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sco1 is a conserved essential protein, which has been implicated in the delivery of copper to cytochrome c oxidase, the last enzyme of the electron transport chain. In this study, we show for the first time that the purified C-terminal domain of yeast Sco1 binds one Cu(I)/monomer. X-ray absorption spectroscopy suggests that the Cu(I) is ligated via three ligands, and we show that two cysteines, present in a conserved motif CXXXC, and a conserved histidine are involved in Cu(I) ligation. The mutation of any one of the conserved residues in Sco1 expressed in yeast abrogates the function of Sco1 resulting in a non-functional cytochrome c oxidase complex. Thus, the function of Sco1 correlates with Cu(I) binding. Data obtained from size-exclusion chromatography experiments with mitochondrial lysates suggest that full-length Sco1 may be oligomeric in vivo.
Collapse
Affiliation(s)
- T Nittis
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
33
|
Barrientos A, Müller S, Dey R, Wienberg J, Moraes CT. Cytochrome c oxidase assembly in primates is sensitive to small evolutionary variations in amino acid sequence. Mol Biol Evol 2000; 17:1508-19. [PMID: 11018157 DOI: 10.1093/oxfordjournals.molbev.a026250] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Respiring mitochondria require many interactions between nuclear and mitochondrial genomes. Although mitochondrial DNA (mtDNA) from the gorilla and the chimpanzee are able to restore oxidative phosphorylation in a human cell, mtDNAs from more distant primate species are functionally incompatible with human nuclear genes. Using microcell-mediated chromosome and mitochondria transfer, we introduced and maintained a functional orangutan mtDNA in a human nuclear background. However, partial oxidative phosphorylation function was restored only in the presence of most orangutan chromosomes, suggesting that human oxidative phosphorylation-related nuclear-coded genes are not able to replace many orangutan ones. The respiratory capacity of these hybrids was decreased by 65%-80%, and cytochrome c oxidase (COX) activity was decreased by 85%-95%. The function of other respiratory complexes was not significantly altered. The translation of mtDNA-coded COX subunits was normal, but their steady-state levels were approximately 10% of normal ones. Nuclear-coded COX subunits were loosely associated with mitochondrial membranes, a characteristic of COX assembly-defective mutants. Our results suggest that many human nuclear-coded genes not only cannot replace the orangutan counterparts, but also exert a specific interference at the level of COX assembly. This cellular model underscores the precision of COX assembly in mammals and sheds light on the nature of nuclear-mtDNA coevolutionary constraints.
Collapse
Affiliation(s)
- A Barrientos
- Department of Neurology, University of Miami, School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
34
|
Hsu AY, Do TQ, Lee PT, Clarke CF. Genetic evidence for a multi-subunit complex in the O-methyltransferase steps of coenzyme Q biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1484:287-97. [PMID: 10760477 DOI: 10.1016/s1388-1981(00)00019-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Coq3 O-methyltransferase carries out both O-methylation steps in coenzyme Q (ubiquinone) biosynthesis. The degree to which Coq3 O-methyltransferase activity and expression are dependent on the other seven COQ gene products has been investigated. A panel of yeast mutant strains harboring null mutations in each of the genes required for coenzyme Q biosynthesis (COQ1-COQ8) have been prepared. Mitochondria have been isolated from each member of the yeast coq mutant collection, from the wild-type parental strains and from respiratory deficient mutants harboring deletions in ATP2 or COR1 genes. These latter strains constitute Q-replete, respiratory deficient controls. Each of these mitochondrial preparations has been analyzed for COQ3-encoded O-methyltransferase activity and steady state levels of Coq3 polypeptide. The findings indicate that the presence of the other COQ gene products is required to observe normal levels of O-methyltransferase activity and the Coq3 polypeptide. However, COQ3 steady state RNA levels are not decreased in any of the coq mutants, relative to either wild-type or respiratory deficient control strains, suggesting either a decreased rate of translation or a decreased stability of the Coq3 polypeptide. These data are consistent with the involvement of the Coq polypeptides (or the Q-intermediates formed by the Coq polypeptides) in a multi-subunit complex. It is our hypothesis that a deficiency in any one of the COQ gene products results in a defective complex in which the Coq3 polypeptide is rendered unstable.
Collapse
Affiliation(s)
- A Y Hsu
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | |
Collapse
|
35
|
Costanzo MC, Bonnefoy N, Williams EH, Clark-Walker GD, Fox TD. Highly diverged homologs of Saccharomyces cerevisiae mitochondrial mRNA-specific translational activators have orthologous functions in other budding yeasts. Genetics 2000; 154:999-1012. [PMID: 10757749 PMCID: PMC1460983 DOI: 10.1093/genetics/154.3.999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Translation of mitochondrially coded mRNAs in Saccharomyces cerevisiae depends on membrane-bound mRNA-specific activator proteins, whose targets lie in the mRNA 5'-untranslated leaders (5'-UTLs). In at least some cases, the activators function to localize translation of hydrophobic proteins on the inner membrane and are rate limiting for gene expression. We searched unsuccessfully in divergent budding yeasts for orthologs of the COX2- and COX3-specific translational activator genes, PET111, PET54, PET122, and PET494, by direct complementation. However, by screening for complementation of mutations in genes adjacent to the PET genes in S. cerevisiae, we obtained chromosomal segments containing highly diverged homologs of PET111 and PET122 from Saccharomyces kluyveri and of PET111 from Kluyveromyces lactis. All three of these genes failed to function in S. cerevisiae. We also found that the 5'-UTLs of the COX2 and COX3 mRNAs of S. kluyveri and K. lactis have little similarity to each other or to those of S. cerevisiae. To determine whether the PET111 and PET122 homologs carry out orthologous functions, we deleted them from the S. kluyveri genome and deleted PET111 from the K. lactis genome. The pet111 mutations in both species prevented COX2 translation, and the S. kluyveri pet122 mutation prevented COX3 translation. Thus, while the sequences of these translational activator proteins and their 5'-UTL targets are highly diverged, their mRNA-specific functions are orthologous.
Collapse
Affiliation(s)
- M C Costanzo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | | | |
Collapse
|
36
|
Yao J, Shoubridge EA. Expression and functional analysis of SURF1 in Leigh syndrome patients with cytochrome c oxidase deficiency. Hum Mol Genet 1999; 8:2541-9. [PMID: 10556303 DOI: 10.1093/hmg/8.13.2541] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Leigh syndrome (LS) associated with cytochrome c oxidase (COX) deficiency is an autosomal recessive neurodegenerative disorder caused by mutations in SURF1. Although SURF1 is ubiquitously expressed, its expression is lower in brain than in other highly aerobic tissues. All reported SURF1 mutations are loss of function, predicting a truncated protein (hSurf1) product. Western blot analysis with anti-hSurf1 antibodies demonstrated a specific 30 kDa protein in control fibroblasts, but no protein in LS patient cells. Steady-state levels of both nuclear- and mitochondrial-encoded COX subunits were also markedly reduced in patient cells, consistent with a failure to assemble or maintain a normal amount of the enzyme complex. An epitope (FLAG)-tagged hSurf1 was targeted to mitochondria in COS7 cells and a mitochondrial import assay showed that the hSurf1 precursor protein (35 kDa) was imported and processed to its mature form (30 kDa) in a membrane potential-dependent fashion. The protein was resistant to alkaline carbonate extraction and susceptible to proteinase K digestion in mitoplasts. Mutant proteins in which the N-terminal transmembrane domain or central loop were deleted, or the C-terminal transmembrane domain disrupted, did not accumulate and could not rescue COX activity in patient cells. Co-expression of the N- and C-terminal transmembrane domains as independent entities also failed to rescue the enzyme deficiency. These data demonstrate that hSurf1 is an integral inner membrane protein with an essential role in the assembly or maintenance of the COX complex and that insertion of both transmembrane domains in the intact protein is necessary for function.
Collapse
Affiliation(s)
- J Yao
- Montreal Neurological Institute and Department of Human Genetics, McGill University, 3801 University Street, Montreal H3A 2B4, Canada
| | | |
Collapse
|
37
|
Grivell LA, Artal-Sanz M, Hakkaart G, de Jong L, Nijtmans LG, van Oosterum K, Siep M, van der Spek H. Mitochondrial assembly in yeast. FEBS Lett 1999; 452:57-60. [PMID: 10376678 DOI: 10.1016/s0014-5793(99)00532-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The yeast Saccharomyces cerevisiae is likely to be the first organism for which a complete inventory of mitochondrial proteins and their functions can be drawn up. A survey of the 340 or so proteins currently known to be localised in yeast mitochondria reveals the considerable investment required to maintain the organelle's own genetic system, which itself contributes seven key components of the electron transport chain. Translation and respiratory complex assembly are particularly expensive processes, together requiring around 150 of the proteins so far known. Recent developments in both areas are reviewed and approaches to the identification of novel mitochondrial proteins are discussed.
Collapse
Affiliation(s)
- L A Grivell
- Section for Molecular Biology, Institute of Molecular Cell Biology, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Glerum DM, Tzagoloff A. Affinity purification of yeast cytochrome oxidase with biotinylated subunits 4, 5, or 6. Anal Biochem 1998; 260:38-43. [PMID: 9648650 DOI: 10.1006/abio.1998.2683] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Null mutants in COX4, COX5a, or COX6, which encode subunits 4, 5, and 6 of yeast cytochrome oxidase are blocked in assembly of the enzyme. The mutants are complemented by gene constructs expressing cytochrome oxidase subunits with a carboxyl terminal extension containing a biotinylation signal sequence. Spectra and enzyme activities of mitochondria from transformants expressing a biotinylated subunit indicate restoration of a functional cytochrome oxidase. Biotinylated cytochrome oxidase can be affinity-purified from mitochondrial extracts by fractionation on a monomeric avidin column. This method can be used to purify the enzyme from small amounts of starting material.
Collapse
Affiliation(s)
- D M Glerum
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|