1
|
Characteristics of quercetin interactions with liposomal and vacuolar membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:254-65. [DOI: 10.1016/j.bbamem.2013.08.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/02/2013] [Accepted: 08/25/2013] [Indexed: 01/07/2023]
|
2
|
Adlassnig W, Koller-Peroutka M, Bauer S, Koshkin E, Lendl T, Lichtscheidl IK. Endocytotic uptake of nutrients in carnivorous plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:303-13. [PMID: 22417315 DOI: 10.1111/j.1365-313x.2012.04997.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Carnivorous plants trap, digest and absorb animals in order to supplement their mineral nutrition. Nutrients absorbed by the plant include different nitrogen species, phosphate, potassium, trace elements and small organic compounds. Uptake is usually thought to be performed via specific channels, but this study provides evidence that endocytosis is involved as well. Traps of the carnivorous plants Nepenthes coccinea, Nepenthes ventrata, Cephalotus follicularis, Drosophyllum lusitanicum, Drosera capensis, Dionaea muscipula, Aldrovanda vesiculosa, Genlisea violacea × lobata, Sarracenia psittacina and Sarracenia purpurea were stained with methylene blue in order to identify possible sites of uptake. The permeable parts of the traps were incubated with fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA) and other fluorescent endocytosis markers, combined with the soluble protein BSA or respiratory inhibitors. Uptake was studied by confocal microscopy. In Nepenthes, small fluorescent vesicles became visible 1 h after incubation with FITC-BSA. These vesicles fused to larger compartments within 30 h. A similar behaviour was found in the related genera Drosera, Dionaea, Aldrovanda and Drosophyllum but also in Cephalotus with glands of different evolutionary origin. In Genlisea and Sarracenia, no evidence for endocytosis was found. We propose that in many carnivorous plants, nutrient uptake by carriers is supplemented by endocytosis, which enables absorption and intracellular digestion of whole proteins. The advantage for the plant of reducing secretion of enzymes for extracellular digestion is evident.
Collapse
Affiliation(s)
- Wolfram Adlassnig
- University of Vienna, Core Facility of Cell Imaging and Ultrastructure Research, Althanstrasse 14, A-1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
3
|
Levchenko V, Guinot DR, Klein M, Roelfsema MRG, Hedrich R, Dietrich P. Stringent control of cytoplasmic Ca2+ in guard cells of intact plants compared to their counterparts in epidermal strips or guard cell protoplasts. PROTOPLASMA 2008; 233:61-72. [PMID: 18648729 DOI: 10.1007/s00709-008-0307-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 01/28/2008] [Indexed: 05/26/2023]
Abstract
Cytoplasmic calcium elevations, transients, and oscillations are thought to encode information that triggers a variety of physiological responses in plant cells. Yet Ca(2+) signals induced by a single stimulus vary, depending on the physiological state of the cell and experimental conditions. We compared Ca(2+) homeostasis and stimulus-induced Ca(2+) signals in guard cells of intact plants, epidermal strips, and isolated protoplasts. Single-cell ratiometric imaging with the Ca(2+)-sensitive dye Fura 2 was applied in combination with electrophysiological recordings. Guard cell protoplasts were loaded with Fura 2 via a patch pipette, revealing a cytoplasmic free Ca(2+) concentration of around 80 nM at -47 mV. Upon hyperpolarization of the plasma membrane to -107 mV, the Ca(2+) concentration increased to levels exceeding 400 nM. Intact guard cells were able to maintain much lower cytoplasmic free Ca(2+) concentrations at hyperpolarized potentials, the average concentration at -100 mV was 183 and 90 nM in epidermal strips and intact plants, respectively. Further hyperpolarization of the plasma membrane to -160 mV induced a sustained rise of the guard cell cytoplasmic Ca(2+) concentration, which slowly returned to the prestimulus level in intact plants but not in epidermal strips. Our results show that cytoplasmic Ca(2+) concentrations are stringently controlled in guard cells of intact plants but become increasingly more sensitive to changes in the plasma membrane potential in epidermal strips and isolated protoplasts.
Collapse
Affiliation(s)
- V Levchenko
- Molecular Plant Physiology and Biophysics, Julius von Sachs Institute for Biosciences, Würzburg University, Würzburg
| | | | | | | | | | | |
Collapse
|
4
|
Aniento F, Robinson DG. Testing for endocytosis in plants. PROTOPLASMA 2005; 226:3-11. [PMID: 16231096 DOI: 10.1007/s00709-005-0101-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 03/30/2005] [Indexed: 05/04/2023]
Abstract
For many years endocytosis has been regarded with great scepsis by plant physiologists. Although now generally accepted, care must still be taken with experiments designed to demonstrate endocytic uptake at the plasma membrane. We have taken a critical look at the various agents which are in use as markers for plant endocytosis, pointing out pitfalls and precautions which should be taken. We also take this opportunity to introduce the tyrphostins--tyrosine kinase inhibitors--, which also seem to prevent endocytosis in plants.
Collapse
Affiliation(s)
- F Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Valencia
| | | |
Collapse
|
5
|
Forestier C, Frangne N, Eggmann T, Klein M. Differential sensitivity of plant and yeast MRP (ABCC)-mediated organic anion transport processes towards sulfonylureas. FEBS Lett 2003; 554:23-9. [PMID: 14596908 DOI: 10.1016/s0014-5793(03)01064-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The role of ATP-binding cassette (ABC) proteins such as multidrug resistance-associated proteins (MRPs) is critical in drug resistance in cancer cells and in plant detoxification processes. Due to broad substrate spectra, specific modulators of these proteins are still lacking. Sulfonylureas such as glibenclamide are used to treat non-insulin-dependent diabetes since they bind to the sulfonylurea receptor. Glibenclamide also inhibits the cystic fibrosis transmembrane conductance regulator, p-glycoprotein in animals and guard cell ion channels in plants. To investigate whether this compound is a more general blocker of ABC transporters the sensitivity of ABC-type transport processes across the vacuolar membrane of plants and yeast towards glibenclamide was evaluated. Glibenclamide inhibits the ATP-dependent uptake of beta-estradiol 17-(beta-D-glucuronide), lucifer yellow CH, and (2',7'-bis-(2-carboxyethyl)-5-(and-6-)carboxyfluorescein. Transport of glutathione conjugates into plant but not into yeast vacuoles was drastically reduced by glibenclamide. Thus, irrespective of the homologies between plant, yeast and animal MRP transporters, specific features of plant vacuolar MRPs with regard to sensitivity towards sulfonylureas exist. Glibenclamide could be a useful tool to trap anionic fluorescent indicator dyes in the cytosol.
Collapse
Affiliation(s)
- Cyrille Forestier
- CEA Cadarache, Direction des Sciences du Vivant, Département d'Ecophysiologie Végétale et de Microbiologie, Laboratoire des Echanges Membranaires et Signalisation, UMR 163 CNRS-CEA, F-13108, St Paul-lez-Durance, France
| | | | | | | |
Collapse
|
6
|
Atkinson HA, Daniels A, Read ND. Live-cell imaging of endocytosis during conidial germination in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol 2002; 37:233-44. [PMID: 12431458 DOI: 10.1016/s1087-1845(02)00535-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although there is growing evidence that endocytosis is important in hyphal tip growth, it has not previously been shown to occur during fungal spore germination. We have analysed and characterized endocytosis during the germination of living conidia of the rice blast fungus, Magnaporthe grisea. Conidia treated with the endocytic markers Lucifer Yellow carbohydrazide, FITC-dextran, and FM4-64 were imaged by confocal microscopy. Internalization of these fluorescent marker dyes by conidia was blocked by chemical and temperature treatments that inhibit endocytosis, and the sequential staining of organelles by the membrane-selective dye FM4-64 was consistent with dye internalization by endocytosis. FM4-64 uptake occurred within 2-3 min of conidial hydration, more than 40 min before the emergence of the germ tube. The times at which each of the three conidial cells initiated dye internalization were different as were the rates of dye uptake by each cell. Using these techniques we have demonstrated for the first time that ungerminated and germinated spores of filamentous fungi undergo endocytosis. Furthermore, internalization of FITC-dextran and Lucifer Yellow carbohydrazide by germinating conidia provides the first direct evidence for fluid-phase endocytosis in a filamentous fungus. FM4-64 was internalized by both ungerminated conidia and conidial germlings on the rice leaf suggesting that endocytosis might play a significant role in spore germination and germ tube growth during the pre-penetration phase of infection.
Collapse
Affiliation(s)
- Helen A Atkinson
- Fungal Cell Biology Group, Institute of Cell and Molecular Biology, University of Edinburgh, Rutherford Building, Edinburgh EH9 3JH, UK.
| | | | | |
Collapse
|
7
|
Abstract
Flavonoids are plant pigments that are synthesised from phenylalanine, generally display marvelous colors known from flower petals, mostly emit brilliant fluorescence when they are excited by UV light, and are ubiquitous to green plant cells. The flavonoids are used by botanists for taxonomical classification. They regulate plant growth by inhibition of the exocytosis of the auxin indolyl acetic acid, as well as by induction of gene expression, and they influence other biological cells in numerous ways. Flavonoids inhibit or kill many bacterial strains, inhibit important viral enzymes, such as reverse transcriptase and protease, and destroy some pathogenic protozoans. Yet, their toxicity to animal cells is low. Flavonoids are major functional components of many herbal and insect preparations for medical use, e.g., propolis (bee's glue) and honey, which have been used since ancient times. The daily intake of flavonoids with normal food, especially fruit and vegetables, is 1-2 g. Modern authorised physicians are increasing their use of pure flavonoids to treat many important common diseases, due to their proven ability to inhibit specific enzymes, to simulate some hormones and neurotransmitters, and to scavenge free radicals.
Collapse
Affiliation(s)
- Bent H Havsteen
- Department of Biochemistry, University of Kiel, Olshausenstrasse 40, D-24098, Kiel, Germany.
| |
Collapse
|
8
|
Martinoia E, Massonneau A, Frangne N. Transport processes of solutes across the vacuolar membrane of higher plants. PLANT & CELL PHYSIOLOGY 2000; 41:1175-86. [PMID: 11092901 DOI: 10.1093/pcp/pcd059] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The central vacuole is the largest compartment of a mature plant cell and may occupy more than 80% of the total cell volume. However, recent results indicate that beside the large central vacuole, several small vacuoles may exist in a plant cell. These vacuoles often belong to different classes and can be distinguished either by their contents in soluble proteins or by different types of a major vacuolar membrane protein, the aquaporins. Two vacuolar proton pumps, an ATPase and a PPase energize vacuolar uptake of most solutes. The electrochemical gradient generated by these pumps can be utilized to accumulate cations by a proton antiport mechanism or anions due to the membrane potential difference. Uptake can be catalyzed by channels or by transporters. Growing evidence shows that for most ions more than one transporter/channel exist at the vacuolar membrane. Furthermore, plant secondary products may be accumulated by proton antiport mechanisms. The transport of some solutes such as sucrose is energized in some plants but occurs by facilitated diffusion in others. A new class of transporters has been discovered recently: the ABC type transporters are directly energized by MgATP and do not depend on the electrochemical force. Their substrates are organic anions formed by conjugation, e.g. to glutathione. In this review we discuss the different transport processes occurring at the vacuolar membrane and focus on some new results obtained in this field.
Collapse
Affiliation(s)
- E Martinoia
- Laboratoire de Physiologie Végétale, Institut de Botanique, Université de Neuchâtel, Rue Emile Argand 13, CH-2007 Neuchâtel, Switzerland.
| | | | | |
Collapse
|
9
|
Abstract
The ATP binding cassette (ABC) superfamily is a large, ubiquitous and diverse group of proteins, most of which mediate transport across biological membranes. ABC transporters have been shown to function not only as ATP-dependent pumps, but also as ion channels and channel regulators. Whilst members of this gene family have been extensively characterised in mammalian and microbial systems, the study of plant ABC transporters is a relatively new field of investigation. Sequences of over 20 plant ABC proteins have been published and include homologues of P-glycoprotein, MRP, PDR5 and organellar transporters. At present, functions have been assigned to a small proportion of these genes and only the MRP subclass has been extensively characterised. This review aims to summarise literature relevant to the study of plant ABC transporters, to review methods of cloning, to discuss the utility of yeast and mammalian systems as models and to speculate on possible roles of uncharacterised ABC transporters in plants.
Collapse
Affiliation(s)
- F L Theodoulou
- Biochemistry and Physiology Department, IACR-Rothamsted, Harpenden, UK.
| |
Collapse
|
10
|
Klein M, Martinoia E, Hoffmann-Thoma G, Weissenböck G. A membrane-potential dependent ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides: regulation of glucuronide uptake by glutathione and its conjugates. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 21:289-304. [PMID: 10758480 DOI: 10.1046/j.1365-313x.2000.00684.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this paper we present results on the vacuolar uptake mechanism for two flavone glucuronides present in rye mesophyll vacuoles. In contrast to barley flavone glucosides (Klein et al. (1996) J. Biol. Chem. 271, 29666-29671), the flavones luteolin 7-O-diglucuronyl-4'-O-glucuronide (R1) and luteolin 7-O-diglucuronide (R2) were taken up into vacuoles isolated from rye via a directly energized mechanism. Kinetic studies suggested that the vacuolar glucuronide transport system is constitutively expressed throughout rye primary leaf development. Competition experiments argued for the existence of a plant MRP-like transporter for plant-specific and non-plant glucuronides such as beta-estradiol 17-(beta-D-glucuronide) (E217G). The interaction of ATP-dependent vacuolar glucuronide uptake with glutathione and its conjugates turned out to be complex: R1 transport was stimulated by dinitrobenzene-GS and reduced glutathione but was inhibited by oxidized glutathione in a concentration-dependent manner. In contrast, R2 uptake was not increased in the presence of reduced glutathione. Thus, the transport system for plant-derived glucuronides differed from the characteristic stimulation of vacuolar E217G uptake by glutathione conjugates but not by reduced glutathione (Klein et al. (1998) J. Biol. Chem. 273, 262-270). Using tonoplast vesicles isolated with an artificial K+ gradient, we demonstrate for the first time for plant MRPs that the ATP-dependent uptake of R1 is membrane-potential dependent. We discuss the kinetic capacity of the ABC-type glucuronide transporter to explain net vacuolar flavone glucuronide accumulation in planta during rye primary leaf development and the possibility of an interaction of potential substrates at both the substrate binding and allosteric sites of the MRP transporter regulating the activity towards a certain substrate.
Collapse
Affiliation(s)
- M Klein
- Université de Neuchâtel, Institut de Botanique, Laboratoire de Physiologie végétale, Rue Emile Argand 13, CH-2007 Neuchâtel, Switzerland
| | | | | | | |
Collapse
|
11
|
Kuriyama. Loss of Tonoplast Integrity Programmed in Tracheary Element Differentiation. PLANT PHYSIOLOGY 1999; 121:763-774. [PMID: 10557224 PMCID: PMC59438 DOI: 10.1104/pp.121.3.763] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/1999] [Accepted: 08/04/1999] [Indexed: 05/18/2023]
Abstract
A tracheary element (TE) is a typical example of a cell type that undergoes programmed cell death in the developmental processes of vascular plants. The loss of the selective permeability of the tonoplast, which corresponds to tonoplast disintegration, occurred after the cells commenced secondary wall thickening and played a pivotal role in the programmed cell death of TEs in a zinnia (Zinnia elegans L.) cell culture. A search for events specifically associated with the TE vacuole provided an important clue to the understanding of the cell death mechanism. The transport of fluorescein, a fluorescent organic anion, across the tonoplast declined drastically in differentiating TEs. The capacity of the vacuole to accumulate the probe was also impaired. Treatment with probenecid, an inhibitor of organic anion transport, caused rapid cell death of TEs and led to the ultimate disruption of the vacuole even in other types of cultured cells. These changes in vacuolar properties during TE development were suppressed by cycloheximide. Specific mRNA accumulation in cells cultured in a TE differentiation-inductive condition was abolished by probenecid. These results suggest that a change in vacuolar membrane permeability promotes programmed cell death in TEs.
Collapse
Affiliation(s)
- Kuriyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113, Japan
| |
Collapse
|
12
|
Ballatori N, Hager DN, Nundy S, Miller DS, Boyer JL. Carrier-mediated uptake of lucifer yellow in skate and rat hepatocytes: a fluid-phase marker revisited. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:G896-904. [PMID: 10516157 DOI: 10.1152/ajpgi.1999.277.4.g896] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Uptake of lucifer yellow (LY), a fluorescent disulfonic acid anionic dye, was studied in isolated skate (Raja erinacea) perfused livers and primary hepatocytes to evaluate its utility as a fluid-phase marker in these cells. However, our findings demonstrated that LY is transported across the plasma membrane of skate hepatocytes largely via carrier-mediated mechanisms. Isolated perfused skate livers cleared 50% of the LY from the recirculating perfusate within 1 h of addition of either 22 or 220 microM LY, with only 4.5 and 9% of the LY remaining in the perfusate after 7 h, respectively. Most of the LY was excreted into bile, resulting in high biliary LY concentrations (1 and 10 mM at the two doses, respectively), indicating concentrative transport into bile canalicular lumen. LY uptake by freshly isolated skate hepatocytes was temperature sensitive, exhibited saturation kinetics, and was inhibited by other organic anions. Uptake was mediated by both sodium-dependent [Michaelis-Menten constant (K(m)), 125 +/- 57 microM; maximal velocity (V(max)), 1.5 +/- 0.2 pmol. min(-1). mg cells(-1)] and sodium-independent (K(m), 207 +/- 55 microM; V(max), 1.7 +/- 0.2 pmol. min(-1). mg cells(-1)) mechanisms. Both of these uptake mechanisms were inhibited by various organic anions and transport inhibitors, including furosemide, bumetanide, sulfobromophthalein, rose bengal, probenecid, N-ethylmaleimide, taurocholate, and p-aminohippuric acid. Fluorescent imaging techniques showed intracellular vesicular compartmentation of LY in skate hepatocyte clusters. Studies in perfused rat livers also indicated that LY is taken up against a concentration gradient and concentrated in bile. LY uptake in isolated rat hepatocytes was saturable, but only at high concentrations, and demonstrated a K(m) of 3.7 +/- 1.0 mM and a V(max) of 1.75 +/- 0.16 nmol. min(-1). mg wet wt(-1). These results indicate that LY is transported into skate and rat hepatocytes and bile largely by carrier-mediated mechanisms, rather than by fluid-phase endocytosis.
Collapse
Affiliation(s)
- N Ballatori
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester 14642, New York, USA.
| | | | | | | | | |
Collapse
|