1
|
Diversity of Cytochrome c Oxidase Assembly Proteins in Bacteria. Microorganisms 2022; 10:microorganisms10050926. [PMID: 35630371 PMCID: PMC9145763 DOI: 10.3390/microorganisms10050926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Cytochrome c oxidase in animals, plants and many aerobic bacteria functions as the terminal enzyme of the respiratory chain where it reduces molecular oxygen to form water in a reaction coupled to energy conservation. The three-subunit core of the enzyme is conserved, whereas several proteins identified to function in the biosynthesis of the common family A1 cytochrome c oxidase show diversity in bacteria. Using the model organisms Bacillus subtilis, Corynebacterium glutamicum, Paracoccus denitrificans, and Rhodobacter sphaeroides, the present review focuses on proteins for assembly of the heme a, heme a3, CuB, and CuA metal centers. The known biosynthesis proteins are, in most cases, discovered through the analysis of mutants. All proteins directly involved in cytochrome c oxidase assembly have likely not been identified in any organism. Limitations in the use of mutants to identify and functionally analyze biosynthesis proteins are discussed in the review. Comparative biochemistry helps to determine the role of assembly factors. This information can, for example, explain the cause of some human mitochondrion-based diseases and be used to find targets for new antimicrobial drugs. It also provides information regarding the evolution of aerobic bacteria.
Collapse
|
2
|
Rivett ED, Heo L, Feig M, Hegg EL. Biosynthesis and trafficking of heme o and heme a: new structural insights and their implications for reaction mechanisms and prenylated heme transfer. Crit Rev Biochem Mol Biol 2021; 56:640-668. [PMID: 34428995 DOI: 10.1080/10409238.2021.1957668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aerobic respiration is a key energy-producing pathway in many prokaryotes and virtually all eukaryotes. The final step of aerobic respiration is most commonly catalyzed by heme-copper oxidases embedded in the cytoplasmic or mitochondrial membrane. The majority of these terminal oxidases contain a prenylated heme (typically heme a or occasionally heme o) in the active site. In addition, many heme-copper oxidases, including mitochondrial cytochrome c oxidases, possess a second heme a cofactor. Despite the critical role of heme a in the electron transport chain, the details of the mechanism by which heme b, the prototypical cellular heme, is converted to heme o and then to heme a remain poorly understood. Recent structural investigations, however, have helped clarify some elements of heme a biosynthesis. In this review, we discuss the insight gained from these advances. In particular, we present a new structural model of heme o synthase (HOS) based on distance restraints from inferred coevolutionary relationships and refined by molecular dynamics simulations that are in good agreement with the experimentally determined structures of HOS homologs. We also analyze the two structures of heme a synthase (HAS) that have recently been solved by other groups. For both HOS and HAS, we discuss the proposed catalytic mechanisms and highlight how new insights into the heme-binding site locations shed light on previously obtained biochemical data. Finally, we explore the implications of the new structural data in the broader context of heme trafficking in the heme a biosynthetic pathway and heme-copper oxidase assembly.
Collapse
Affiliation(s)
- Elise D Rivett
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Lim Heo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Eric L Hegg
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Hederstedt L. Heme A biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:920-7. [PMID: 22484221 DOI: 10.1016/j.bbabio.2012.03.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/07/2012] [Accepted: 03/22/2012] [Indexed: 02/06/2023]
Abstract
Respiration in plants, most animals and many aerobic microbes is dependent on heme A. This is a highly specialized type of heme found as prosthetic group in cytochrome a-containing respiratory oxidases. Heme A differs structurally from heme B (protoheme IX) by the presence of a hydroxyethylfarnesyl group instead of a vinyl side group at the C2 position and a formyl group instead of a methyl side group at position C8 of the porphyrin macrocycle. Heme A synthase catalyzes the formation of the formyl side group and is a poorly understood heme-containing membrane bound atypical monooxygenase. This review presents our current understanding of heme A synthesis at the molecular level in mitochondria and aerobic bacteria. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Lars Hederstedt
- Microbiology Group, Department of Biology, Lund University, Sweden.
| |
Collapse
|
4
|
MacMillan F, Kacprzak S, Hellwig P, Grimaldi S, Michel H, Kaupp M. Elucidating mechanisms in haemcopperoxidases: The high-affinity QHbinding site in quinol oxidase as studied by DONUT-HYSCOREspectroscopy and density functional theory. Faraday Discuss 2011; 148:315-44; discussion 421-41. [DOI: 10.1039/c005149g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Mogi T. Effects of replacement of low-spin haem b by haem O on Escherichia coli cytochromes bo and bd quinol oxidases. J Biochem 2009; 145:599-607. [PMID: 19174546 DOI: 10.1093/jb/mvp015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytochromes bo and bd are terminal ubiquinol oxidases in the aerobic respiratory chain of Escherichia coli and generate proton motive force across the membrane. To probe roles of haem species in the oxidation of quinols, intramolecular electron transfer and the dioxygen reduction, we replaced b-haems with haem O by using the haem O synthase-overproducing system, which can accumulate haem O in cytoplasmic membranes. Characterizations of spectroscopic properties of cytochromes bo and bd isolated from BL21 (DE3)/pLysS and BL21 (DE3)/pLysS/pTTQ18-cyoE after 4 h of the aerobic induction of haem O synthase (CyoE) showed the specific incorporation of haem O into the low-spin haem-binding site in both oxidases. We found that the resultant haem oo- and obd-type oxidase severely reduced the ubiquinol-1 oxidase activity due to the perturbations of the quinol oxidation site. Our observations suggest that haem B is required at the low-spin haem site for the oxidation of quinols by cytochromes bo and bd.
Collapse
Affiliation(s)
- Tatsushi Mogi
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, Japan.
| |
Collapse
|
6
|
Mogi T. Probing structure of heme A synthase from Bacillus subtilis by site-directed mutagenesis. J Biochem 2009; 145:625-33. [PMID: 19174544 DOI: 10.1093/jb/mvp017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biosynthesis of heme A from heme B is catalysed by two enzymes, heme O and heme A synthases, in the membrane. Heme A synthase in Bacillus subtilis (CtaA) has eight transmembrane helices and oxidizes a methyl group on pyrrole ring D of heme O to an aldehyde. In this study, to explore structure of heme binding site(s) in heme A synthase, we overproduced the B. subtilis His(6)-CtaA in Escherichia coli and characterized spectroscopic properties of the purified CtaA. On the contrary to a previous report (Svensson, B., Andersson, K.K., and Hederstedt, L. (1996) Low-spin heme A in the heme A biosynthetic protein CtaA from Bacillus subtilis. Eur. J. Biochem. 238, 287-295), we found that two molecules of heme B were bound to CtaA. Further, we demonstrated that substitutions of His60 and His126 did not affect heme binding while His216 and His278 in the carboxy-halves are essential in heme binding. And we found that Ala substitutions of Cys191 and Cys197 in loop 5/6 reduced heme content to a half of the wild-type level. On the basis of our findings, we proposed a helical-wheel-projection model of CtaA.
Collapse
Affiliation(s)
- Tatsushi Mogi
- Department of Biomedical Chemistry, Graduate School of Medicine, the University of Tokyo, Hongo, Tokyo, Japan.
| |
Collapse
|
7
|
Yeung N, Lu Y. One heme, diverse functions: using biosynthetic myoglobin models to gain insights into heme-copper oxidases and nitric oxide reductases. Chem Biodivers 2008; 5:1437-1454. [PMID: 18729107 PMCID: PMC2770894 DOI: 10.1002/cbdv.200890134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Natasha Yeung
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Greiner P, Hannappel A, Werner C, Ludwig B. Biogenesis of cytochrome c oxidase — in vitro approaches to study cofactor insertion into a bacterial subunit I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:904-11. [DOI: 10.1016/j.bbabio.2008.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/25/2008] [Accepted: 04/02/2008] [Indexed: 11/24/2022]
|
9
|
Wang N, Zhao X, Lu Y. Role of heme types in heme-copper oxidases: effects of replacing a heme b with a heme o mimic in an engineered heme-copper center in myoglobin. J Am Chem Soc 2006; 127:16541-7. [PMID: 16305243 DOI: 10.1021/ja052659g] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To address the role of the secondary hydroxyl group of heme a/o in heme-copper oxidases, we incorporated Fe(III)-2,4 (4,2) hydroxyethyl vinyl deuterioporphyrin IX, as a heme o mimic, into the engineered heme-copper center in myoglobin (sperm whale myoglobin L29H/F43H, called Cu(B)Mb). The only difference between the heme b of myoglobin and the heme o mimic is the substitution of one of the vinyl side chains of the former with a hydroxyethyl group of the latter. This substitution resulted in an approximately 4 nm blue shift in the Soret band and approximately 20 mV decrease in the heme reduction potential. In a control experiment, the heme b in Cu(B)Mb was also replaced with a mesoheme, which resulted in an approximately 13 nm blue shift and approximately 30 mV decrease in the heme reduction potential. Kinetic studies of the heme o mimic-substituted Cu(B)Mb showed significantly different reactivity toward copper-dependent oxygen reduction from that of the b-type Cu(B)Mb. In reaction with O2, Cu(B)Mb with a native heme b showed heme oxygenase activity by generating verdoheme in the presence of Cu(I). This heme degradation reaction was slowed by approximately 19-fold in the heme o mimic-substituted Cu(B)Mb (from 0.028 s(-1) to 0.0015 s(-1)), while the mesoheme-substituted Cu(B)Mb shared a similar heme degradation rate with that of Cu(B)Mb (0.023 s(-1)). No correlation was found between the heme reduction potential and its O2 reactivity. These results strongly suggest the critical role of the hydroxyl group of heme o in modulating heme-copper oxidase activity through participation in an extra hydrogen-bonding network.
Collapse
Affiliation(s)
- Ningyan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
10
|
Chen CY, Wu KM, Chang YC, Chang CH, Tsai HC, Liao TL, Liu YM, Chen HJ, Shen ABT, Li JC, Su TL, Shao CP, Lee CT, Hor LI, Tsai SF. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res 2004; 13:2577-87. [PMID: 14656965 PMCID: PMC403799 DOI: 10.1101/gr.1295503] [Citation(s) in RCA: 310] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The halophile Vibrio vulnificus is an etiologic agent of human mortality from seafood-borne infections. We applied whole-genome sequencing and comparative analysis to investigate the evolution of this pathogen. The genome of biotype 1 strain, V. vulnificus YJ016, was sequenced and includes two chromosomes of estimated 3377 kbp and 1857 kbp in size, and a plasmid of 48,508 bp. A super-integron (SI) was identified, and the SI region spans 139 kbp and contains 188 gene cassettes. In contrast to non-SI sequences, the captured gene cassettes are unique for any given Vibrio species and are highly variable among V. vulnificus strains. Multiple rearrangements were found when comparing the 5.3-Mbp V. vulnificus YJ016 genome and the 4.0-Mbp V. cholerae El Tor N16961 genome. The organization of gene clusters of capsular polysaccharide, iron metabolism, and RTX toxin showed distinct genetic features of V. vulnificus and V. cholerae. The content of the V. vulnificus genome contained gene duplications and evidence of horizontal transfer, allowing for genetic diversity and function in the marine environment. The genomic information obtained in this study can be applied to monitoring vibrio infections and identifying virulence genes in V. vulnificus.
Collapse
Affiliation(s)
- Chung-Yung Chen
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Grimaldi S, Ostermann T, Weiden N, Mogi T, Miyoshi H, Ludwig B, Michel H, Prisner TF, MacMillan F. Asymmetric binding of the high-affinity Q(H)(*)(-) ubisemiquinone in quinol oxidase (bo3) from Escherichia coli studied by multifrequency electron paramagnetic resonance spectroscopy. Biochemistry 2003; 42:5632-9. [PMID: 12741819 DOI: 10.1021/bi034010z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ubiquinone-2 (UQ-2) selectively labeled with (13)C (I =(1)/(2)) at either the position 1- or the 4-carbonyl carbon is incorporated into the ubiquinol oxidase bo(3) from Escherichia coli in which the native quinone (UQ-8) has been previously removed. The resulting stabilized anion radical in the high-affinity quinone-binding site (Q(H)(*)(-)) is investigated using multifrequency (9, 34, and 94 GHz) electron paramagnetic resonance (EPR) spectroscopy. The corresponding spectra reveal dramatic differences in (13)C hyperfine couplings indicating a strongly asymmetric spin density distribution over the quinone headgroup. By comparison with previous results on labeled ubisemiquinones in proteins as well as in organic solvents, it is concluded that Q(H)(*)(-) is most probably bound to the protein via a one-sided hydrogen bond or a strongly asymmetric hydrogen-bonding network. This observation is discussed with regard to the function of Q(H) in the enzyme and contrasted with the information available on other protein-bound semiquinone radicals.
Collapse
Affiliation(s)
- S Grimaldi
- Institut für Physikalische und Theoretische Chemie, J. W. Goethe Universität Frankfurt, Centre for Biological Magnetic Resonance, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Grimaldi S, MacMillan F, Ostermann T, Ludwig B, Michel H, Prisner T. QH*- ubisemiquinone radical in the bo3-type ubiquinol oxidase studied by pulsed electron paramagnetic resonance and hyperfine sublevel correlation spectroscopy. Biochemistry 2001; 40:1037-43. [PMID: 11170426 DOI: 10.1021/bi001641+] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The high-affinity QH ubiquinone-binding site in the bo(3) ubiquinol oxidase from Escherichia coli has been characterized by an investigation of the native ubiquinone radical anion QH(*-) by pulsed electron paramagnetic resonance (EPR) spectroscopy. One- and two-dimensional electron spin-echo envelope modulation (ESEEM) spectra reveal strong interactions of the unpaired electron of QH(*-) with a nitrogen nucleus from the surrounding protein matrix. From analysis of the experimental data, the (14)N nuclear quadrupolar parameters have been determined: kappa = e(2)qQ/4h = 0.93 MHz and eta = 0.50. This assignment is confirmed by hyperfine sublevel correlation (HYSCORE) spectroscopy. On the basis of a comparison of these data with those obtained previously for other membrane-protein bound semiquinone radicals and model systems, this nucleus is assigned to a protein backbone nitrogen. This result is discussed with regard to the location and potential function of QH in the enzyme.
Collapse
Affiliation(s)
- S Grimaldi
- Institut für Physikalische und Theoretische Chemie and Institut für Biochemie, J. W. Goethe Universität Frankfurt, D-60439 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Kannt A, Pfitzner U, Ruitenberg M, Hellwig P, Ludwig B, Mäntele W, Fendler K, Michel H. Mutation of Arg-54 strongly influences heme composition and rate and directionality of electron transfer in Paracoccus denitrificans cytochrome c oxidase. J Biol Chem 1999; 274:37974-81. [PMID: 10608865 DOI: 10.1074/jbc.274.53.37974] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of a single site mutation of Arg-54 to methionine in Paracoccus denitrificans cytochrome c oxidase was studied using a combination of optical spectroscopy, electrochemical and rapid kinetics techniques, and time-resolved measurements of electrical membrane potential. The mutation resulted in a blue-shift of the heme a alpha-band by 15 nm and partial occupation of the low-spin heme site by heme O. Additionally, there was a marked decrease in the midpoint potential of the low-spin heme, resulting in slow reduction of this heme species. A stopped-flow investigation of the reaction with ferrocytochrome c yielded a kinetic difference spectrum resembling that of heme a(3). This observation, and the absence of transient absorbance changes at the corresponding wavelength of the low-spin heme, suggests that, in the mutant enzyme, electron transfer from Cu(A) to the binuclear center may not occur via heme a but that instead direct electron transfer to the high-spin heme is the dominating process. This was supported by charge translocation measurements where Deltapsi generation was completely inhibited in the presence of KCN. Our results thus provide an example for how the interplay between protein and cofactors can modulate the functional properties of the enzyme complex.
Collapse
Affiliation(s)
- A Kannt
- Max-Planck-Institut für Biophysik, Abteilung Molekulare Membranbiologie, Heinrich-Hoffmann-Strasse 7, D-60528, Germany
| | | | | | | | | | | | | | | |
Collapse
|