1
|
Banala S, Arts R, Aper SJA, Merkx M. No washing, less waiting: engineering biomolecular reporters for single-step antibody detection in solution. Org Biomol Chem 2013; 11:7642-9. [DOI: 10.1039/c3ob41315b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Mathieu V, Fastrez J, Soumillion P. Engineering allosteric regulation into the hinge region of a circularly permuted TEM-1 beta-lactamase. Protein Eng Des Sel 2010; 23:699-709. [PMID: 20591901 DOI: 10.1093/protein/gzq041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In nature, the activity of many enzymes involved in important biochemical pathways is controlled by binding a ligand in a site remote from the active site. The allosteric sites are frequently located in hinge regulatory subunits, in which a conformational change can occur and propagate to the active site. The enzymatic activity is then enhanced or decreased depending on the type of effectors. Many artificial binding sites have been created to engineer an allosteric regulation. Generally, these sites were engineered near the active site in loops or at the surface of contiguous helices or strands but rarely in hinge regions. This work aims at exploring the possibility of regulating a monomeric enzyme whose active site is located at the interface between two domains. We anticipated that binding of a ligand in the hinge region linking the domains would modify their positioning and, consequently, modulate the activity. Here, we describe the design of two mutants in a circularly permuted TEM-1 (cpTEM-1) beta-lactamase. The first one, cpTEM-1-His(3) was created by a rational design. It shows little regulation upon metal ion binding except for a weak activation with Zn(2+). The second one, cpTEM-1-3M-His(2), was selected by a directed evolution strategy. It is allosterically down-regulated by Zn(2+), Ni(2+) and Co(2+) with binding affinities around 300 microM.
Collapse
Affiliation(s)
- Valéry Mathieu
- Biochimie et Génétique Moléculaire Bactérienne, Institut des Sciences de la Vie, Université catholique de Louvain, Place Croix du Sud, 4-5 boîte 3, 1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
3
|
|
4
|
Discriminating foot-and-mouth disease virus-infected and vaccinated animals by use of beta-galactosidase allosteric biosensors. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1228-35. [PMID: 19553549 DOI: 10.1128/cvi.00139-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recombinant beta-galactosidases accommodating one or two different peptides from the foot-and-mouth disease virus (FMDV) nonstructural protein 3B per enzyme monomer showed a drastic enzymatic activity reduction, which mainly affected proteins with double insertions. Recombinant beta-galactosidases were enzymatically reactivated by 3B-specific murine monoclonal and rabbit polyclonal antibodies. Interestingly, these recombinant beta-galactosidases, particularly those including one copy of each of the two 3B sequences, were efficiently reactivated by sera from infected pigs. We found reaction conditions that allowed differentiation between sera of FMDV-infected pigs, cattle, and sheep and those of naïve and conventionally vaccinated animals. These FMDV infection-specific biosensors can provide an effective and versatile alternative for the serological distinction of FMDV-infected animals.
Collapse
|
5
|
Ferraz RM, Rodríguez-Carmona E, Ferrer-Miralles N, Meyerhans A, Villaverde A. Screening HIV-1 antigenic peptides as receptors for antibodies and CD4 in allosteric nanosensors. J Mol Recognit 2009; 22:255-60. [DOI: 10.1002/jmr.940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Laczka O, Ferraz RM, Ferrer-Miralles N, Villaverde A, Muñoz FX, Campo FJD. Fast electrochemical detection of anti-HIV antibodies: Coupling allosteric enzymes and disk microelectrode arrays. Anal Chim Acta 2009; 641:1-6. [DOI: 10.1016/j.aca.2009.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/28/2022]
|
7
|
Andou T, Endoh T, Mie M, Kobatake E. RNA detection using peptide-inserted Renilla luciferase. Anal Bioanal Chem 2008; 393:661-8. [PMID: 18979090 DOI: 10.1007/s00216-008-2473-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/06/2008] [Accepted: 10/09/2008] [Indexed: 11/26/2022]
Abstract
A novel complementation system with short peptide-inserted-Renilla luciferase (PI-Rluc) and split-RNA probes was constructed for noninvasive RNA detection. The RNA binding peptides HIV-1 Rev and BIV Tat were used as inserted peptides. They display induced fit conformational changes upon binding to specific RNAs and trigger complementation or discomplementation of Rluc. Split-RNA probes were designed to reform the peptide binding site upon hybridization with arbitrarily selected target RNA. This set of recombinant protein and split-RNA probes enabled a high degree of sensitivity in RNA detection. In this study, we show that the Rluc system is comparable to Fluc, but that its detection limit for arbitrarily selected RNA (at least 100 pM) exceeds that of Fluc by approximately two orders of magnitude.
Collapse
Affiliation(s)
- Takashi Andou
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259, Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | | | | | | |
Collapse
|
8
|
Endoh T, Mie M, Funabashi H, Sawasaki T, Endo Y, Kobatake E. Construction of intramolecular luciferase complementation probe for detecting specific RNA. Bioconjug Chem 2007; 18:956-62. [PMID: 17367182 DOI: 10.1021/bc060351o] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intermolecular enzyme complementation assay is a useful method for detecting protein-protein interactions. Specifically, bioluminescent signals produced from reconstructed split luciferase fragments are powerful tools for in vivo analysis because the bioluminescent signals have been visualized both in cultured cells and living animals. However, they are limited for detection and evaluation of biological events relevant to intermolecular protein-protein interactions. In this study, we constructed an intramolecular luciferase complementation probe for detecting target biomolecules other than protein-protein interactions. It consists of peptide-inserted firefly luciferase (PI-FLuc) containing a short peptide between internally divided firefly luciferase. The inserted short peptide triggers FLuc complementation or discomplementation and subsequent reactivation or inactivation of FLuc activity through its induced fit conformational changes. We chose RNA binding arginine rich motif (ARM) peptides, Rev and/or Tat, for model peptide insertion, and expressed constructed PI-FLuc probe variants using a wheat germ cell-free protein synthesis system. They showed FLuc activity changes, reactivation, or inactivation after binding to their specific RNA targets. Furthermore, to expand the versatility of the PI-FLuc RNA detection system, we designed split-RNA probes built to reform the ARM peptide binding site in the presence of arbitrarily selected target-RNA. As a result, the target RNA was homogeneously detected by FLuc luminescent signals mediated by a cooperative function of the PI-FLuc and split-RNA probe sets.
Collapse
Affiliation(s)
- Tamaki Endoh
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, 4259, Nagatsuta, Yokohama, 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Ferraz RM, Arís A, Martínez MA, Villaverde A. High-throughput, functional screening of the anti-HIV-1 humoral response by an enzymatic nanosensor. Mol Immunol 2006; 43:2119-23. [PMID: 16464501 DOI: 10.1016/j.molimm.2005.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/14/2005] [Accepted: 12/23/2005] [Indexed: 11/29/2022]
Abstract
The impact of antibodies on the target's epitope conformation is a major determinant of HIV-1 neutralization and a potential contributor to disease progression. We explore here a conformation-sensitive enzymatic nanosensor for the high-throughput functional screening of human anti-HIV-1 antibodies in sera. When displaying a model epitope from a gp41 immunodominant region (Env residues from 579 to 613), the sensing signal quantitatively distinguishes between adaptive and non-adaptive antibody binding. By using this tool, we have identified IgG4 as the immunoglobulin subpopulation most efficient in the structural modification of the target epitope.
Collapse
Affiliation(s)
- Rosa María Ferraz
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
10
|
Ferraz RM, Vera A, Arís A, Villaverde A. Insertional protein engineering for analytical molecular sensing. Microb Cell Fact 2006; 5:15. [PMID: 16584558 PMCID: PMC1459189 DOI: 10.1186/1475-2859-5-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 04/03/2006] [Indexed: 11/10/2022] Open
Abstract
The quantitative detection of low analyte concentrations in complex samples is becoming an urgent need in biomedical, food and environmental fields. Biosensors, being hybrid devices composed by a biological receptor and a signal transducer, represent valuable alternatives to non biological analytical instruments because of the high specificity of the biomolecular recognition. The vast range of existing protein ligands enable those macromolecules to be used as efficient receptors to cover a diversity of applications. In addition, appropriate protein engineering approaches enable further improvement of the receptor functioning such as enhancing affinity or specificity in the ligand binding. Recently, several protein-only sensors are being developed, in which either both the receptor and signal transducer are parts of the same protein, or that use the whole cell where the protein is produced as transducer. In both cases, as no further chemical coupling is required, the production process is very convenient. However, protein platforms, being rather rigid, restrict the proper signal transduction that necessarily occurs through ligand-induced conformational changes. In this context, insertional protein engineering offers the possibility to develop new devices, efficiently responding to ligand interaction by dramatic conformational changes, in which the specificity and magnitude of the sensing response can be adjusted up to a convenient level for specific analyte species. In this report we will discuss the major engineering approaches taken for the designing of such instruments as well as the relevant examples of resulting protein-only biosensors.
Collapse
Affiliation(s)
- Rosa María Ferraz
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Departament de Matemática Aplicada IV, Universitat Politècnica de Catalunya, Campus Nord, Jordi Girona, 1-3, 08034 Barcelona, Spain
| | - Andrea Vera
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Anna Arís
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
11
|
Ferraz RM, Arís A, Villaverde A. Enhanced molecular recognition signal in allosteric biosensing by proper substrate selection. Biotechnol Bioeng 2006; 94:193-9. [PMID: 16538674 DOI: 10.1002/bit.20798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Among protein biosensors, those based on enzymatic responses to specific analytes offer convenient instruments for fast and ultra-fast molecular diagnosis, through the comparative analysis of the product formed in presence and in absence of the effector. We have explored here the performance of five beta-galactosidase substrates during the activation of a beta-galactosidase sensor by antibodies against the human immunodeficiency virus (HIV). Interestingly, the employed substrate determines the dynamic range of the allosteric signal and significantly influences the sensitivity of the senso-enzymatic reaction. While ortho-nitrophenyl beta-D-galactopyranoside allows the detection of a model anti-gp41 monoclonal antibody below 0.024 ng/microL, phenol red beta-D-galactopyranoside offers the most dynamic response with signal/background ratios higher than 12-fold and a detection limit around 0.071 ng/microL. The hydrolysis of both chromogenic substrates generates linear sensing responses to immune human sera and parallel time-course topologies of the allosteric reaction. Therefore, the obtained results stress the potential of chromogenic substrates versus those rendering quimioluminescent, amperometric, or fluorescent signals, for the further automatization, miniaturization, or adaptation of beta-galactosidase-based biosensing to high-throughput applications.
Collapse
Affiliation(s)
- Rosa María Ferraz
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | |
Collapse
|
12
|
Abstract
Biosensors are hybrid analytical devices that amplify signals generated from the specific interaction between a receptor and the analyte, through a biochemical mechanism. Biosensors use tissues, whole cells, artificial membranes or cell components like proteins or nucleic acids as receptors, coupled to a physicochemical signal transducer. Allosteric enzymes exhibit a catalytic activity that is modulated by specific effectors, through binding to receptor sites that are distinct from the active site. Several enzymes, catalyzing easily measurable reactions, have been engineered to allosterically respond to specific ligands, being themselves the main constituent of new-generation biosensors. The molecular basis, robustness and application of allosteric enzymatic biosensing are revised here.
Collapse
Affiliation(s)
- Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
13
|
Legendre D, Vucic B, Hougardy V, Girboux AL, Henrioul C, Van Haute J, Soumillion P, Fastrez J. TEM-1 beta-lactamase as a scaffold for protein recognition and assay. Protein Sci 2002; 11:1506-18. [PMID: 12021449 PMCID: PMC2373628 DOI: 10.1110/ps.0203102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2002] [Revised: 03/07/2002] [Accepted: 03/15/2002] [Indexed: 10/14/2022]
Abstract
A large number of different proteins or protein domains have been investigated as possible scaffolds to engineer antibody-like molecules. We have previously shown that the TEM-1 beta-lactamase can accommodate insertions of random sequences in two loops surrounding its active site without compromising its activity. From the libraries that were generated, active enzymes binding with high affinities to monoclonal antibodies raised against prostate-specific antigen, a protein unrelated to beta-lactamase, could be isolated. Antibody binding was shown to affect markedly the enzyme activity. As a consequence, these enzymes have the potential to be used as signaling molecules in direct or competitive homogeneous immunoassay. Preliminary results showed that beta-lactamase clones binding to streptavidin could also be isolated, indicating that some enzymes in the libraries have the ability to recognize proteins other than antibodies. In this paper, we show that, in addition to beta-lactamases binding to streptavidin, beta-lactamase clones binding to horse spleen ferritin and beta-galactosidase could be isolated. Affinity maturation of a clone binding to ferritin allowed obtaining beta-lactamases with affinities comprised between 10 and 20 nM (Kd) for the protein. Contrary to what was observed for beta-lactamases issued from selections on antibodies, enzyme complexation induced only a modest effect on enzyme activity, in the three cases studied. This kind of enzyme could prove useful in replacement of enzyme-conjugated antibodies in enzyme-linked immunosorbant assays (ELISA) or in other applications that use antibodies conjugated to an enzyme.
Collapse
Affiliation(s)
- Daniel Legendre
- Laboratoire de Biochimie Physique et des Biopolyméres, Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Feliu JX, Ferrer-Miralles N, Blanco E, Cazorla D, Sobrino F, Villaverde A. Enhanced response to antibody binding in engineered beta-galactosidase enzymatic sensors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1596:212-24. [PMID: 12007603 DOI: 10.1016/s0167-4838(02)00226-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Peptide display on solvent-exposed surfaces of engineered enzymes allows them to respond to anti-peptide antibodies by detectable changes in their enzymatic activity, offering a new principle for biosensor development. In this work, we show that multiple peptide insertion in the vicinity of the Escherichia coli beta-galactosidase active site dramatically increases the enzyme responsiveness to specific anti-peptide antibodies. The modified enzymes HD7872A and HT7278CA, carrying eight and 12 copies respectively of a foot-and-mouth disease peptide per enzyme molecule, show antibody-mediated activation factors higher than those previously observed in the first generation enzymatic sensors, for HT7278CA being close to 400%. The analysis of the signal transduction process with multiple inserted proteins strongly suggests a new, non-exclusive mechanism of enzymatic regulation in which the target proteins might be stabilised by the bound antibody, extending the enzyme half-life and consequently enhancing the signal-background ratio. In addition, the tested sensors are differently responsive to sera from immune farm animals, depending on the antigenic similarity between the B-cell epitopes in the immunising virus and those in the peptide used as sensing element on the enzyme surface. Altogether, these results point out the utility of these enzymatic biosensors for a simple diagnosis of foot-and-mouth disease in an extremely fast homogeneous assay.
Collapse
Affiliation(s)
- Jordi X Feliu
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Ferrer-Miralles N, Feliu JX, Vandevuer S, Müller A, Cabrera-Crespo J, Ortmans I, Hoffmann F, Cazorla D, Rinas U, Prévost M, Villaverde A. Engineering regulable Escherichia coli beta-galactosidases as biosensors for anti-HIV antibody detection in human sera. J Biol Chem 2001; 276:40087-95. [PMID: 11479300 DOI: 10.1074/jbc.m104704200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of engineered, peptide-displaying enzymes is modulated by binding to specific anti-peptide antibodies. This new concept of a quantitative antibody detection system allows test kits to be set up for fast diagnosis of infectious diseases. To develop a quick and homogeneous assay for the detection of human immunodeficiency virus (HIV) infection, we have explored two acceptor sites of the bacterial Escherichia coli beta-galactosidase for the accommodation of HIV antigenic peptides. Two overlapping epitopes (namely P1 and P2) from the gp41 envelope glycoprotein, contained in different sized peptides, were inserted in the vicinity of the enzyme active site to generate a set of hybrid, enzymatically active beta-galactosidases. Regulable enzymes of different responsiveness to monoclonal antibody binding were generated with both acceptor sites tested. These biosensors were also sensitive to immune sera from HIV-infected patients. Modeling data provide insight into the structural modifications in the vicinity of the active site induced by peptide insertion that strongly affect the responsiveness of the engineered proteins through different parameters of their catalytic properties.
Collapse
Affiliation(s)
- N Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alcalá P, Feliu JX, Arís A, Villaverde A. Efficient accommodation of recombinant, foot-and-mouth disease virus RGD peptides to cell-surface integrins. Biochem Biophys Res Commun 2001; 285:201-6. [PMID: 11444826 DOI: 10.1006/bbrc.2001.5157] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The engineering of either complete virus cell-binding proteins or derived ligand peptides generates promising nonviral vectors for cell targeting and gene therapy. In this work, we have explored the molecular interaction between a recombinant, integrin-binding foot-and-mouth disease virus RGD peptide displayed on the surface of a carrier protein and its receptors on the cell surface. By increasing the number of viral segments, cell binding to recombinant proteins was significantly improved. This fact resulted in a dramatic growth stimulation of virus-sensitive BHK(21) cells but not virus-resistant HeLa cells in protein-coated wells. Surprisingly, growth stimulation was not observed in vitronectin-coated plates, suggesting that integrins other than alpha(v)beta(3) could be involved in binding of the recombinant peptide, maybe as coreceptors. On the other hand, both free and cell-linked integrins did not modify the enzymatic activity of RGD-based enzymatic sensors that contrarily, were activated by the induced fit of anti-RGD antibodies. Those findings are discussed in the context of a proper mimicry of the unusually complex architecture of this cell-binding site as engineered in multifunctional proteins.
Collapse
Affiliation(s)
- P Alcalá
- Institut de Biotecnologia i de Biomedicina, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Daniel Cazorla
- Institut de Biologia Fonamental and Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; telephone: 34‐935812148; fax: 34‐935812011
| | - Jordi X. Feliu
- Institut de Biologia Fonamental and Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; telephone: 34‐935812148; fax: 34‐935812011
| | - Antonio Villaverde
- Institut de Biologia Fonamental and Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; telephone: 34‐935812148; fax: 34‐935812011
| |
Collapse
|
18
|
Ferrer-Miralles N, Feliu JX, Villaverde A. Molecular mechanisms for antibody-mediated modulation of peptide-displaying enzyme sensors. Biochem Biophys Res Commun 2000; 275:360-4. [PMID: 10964671 DOI: 10.1006/bbrc.2000.3309] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The generation of molecular sensors based on peptide-displaying enzymes for the detection of antibodies or antigens represents an innovative field of protein engineering. The knowledge of the underlying molecular mechanisms of enzymatic modulation in such sensors would be of great importance for the rational construction and improvement of responsiveness of new peptide-enzyme molecules. Here we analyze the enzymatic characteristics of three different kinds of sensors based in engineered beta-galactosidase, alkaline phosphatase and beta-lactamase, to explore a common activation basis. We describe two different categories of enzyme sensors. In one of them, including only some modified beta-lactamases, the enzymatic activity is inhibited upon ligand binding and it seems to be caused by the steric coverage of the active site by the bound antibody. In a second group, embracing members of the three studied enzymes, the ability to be modulated upon effector binding depends on the ratio between the k(cat) of the engineered enzyme and the k(cat) of the intact enzyme. This proves a common mechanism for enzymatic modulation of enzyme biosensors that is probably caused by conformational effects induced by the bound antibody on the enzyme.
Collapse
Affiliation(s)
- N Ferrer-Miralles
- Departament de Genètica i Microbiologia, Institut de Biologia Fonamental, Barcelona, 08193, Spain.
| | | | | |
Collapse
|
19
|
Feliu JX, Carbonell X, Villaverde A. Successful mimicry of a complex viral antigen by multiple peptide insertions in a carrier protein. FEBS Lett 2000; 474:87-92. [PMID: 10828457 DOI: 10.1016/s0014-5793(00)01582-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antigenic properties of a viral peptide from the surface of foot-and-mouth disease virus particles have been successfully mimicked by multiple insertion in solvent-exposed regions of Escherichia coli beta-galactosidase. By increasing the number of viral peptides per enzyme monomer, the average IC(50) of hybrid proteins in a competitive enzyme-linked immunosorbent assay) have decreased to values close to that presented by natural virions. Moreover, the antigenic diversity of these new recombinant enzymes when measured with different anti-virus antibodies has also been largely reduced, indicating a better presentation of the epitopes located in the viral peptide. Although bivalent antibody binding could have been favoured by multiple presentation, conformational modifications of the viral peptide, due to the presence of other insertions or a cooperative antibody binding cannot be excluded. In addition, a multidimensional antigenic analysis have grouped together the multiple-inserted proteins with the native virus, suggesting that increasing the number of insertions could be a good strategy to reproduce the antigenic properties of an immunoreactive peptide in a natural multimeric disposition.
Collapse
Affiliation(s)
- J X Feliu
- Institut de Biologia Fonamental and Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Belllaterra, 08193, Barcelona, Spain.
| | | | | |
Collapse
|
20
|
Ramírez E, Mas JM, Carbonell X, Avilés FX, Villaverde A. Detection of molecular interactions by using a new peptide-displaying bacteriophage biosensor. Biochem Biophys Res Commun 1999; 262:801-5. [PMID: 10471405 DOI: 10.1006/bbrc.1999.1268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Foreign peptides fused to the carboxy terminus of P22 tailspike protein are solvent-exposed and highly antigenic when displayed on the surface of infectious virus particles. Binding of an anti-peptide specific Fab antibody fragment enhances the infectivity of chimeric bacteriophage particles in a titre-dependent fashion. Although the precise molecular basis of this enhanced infectivity remains unclear, experimental data and modelling approaches suggest that the antibody binding might restore conformational impairments in the assembled tail protein affecting its activity and performance during infection. These results suggest that in addition to free enzymes, peptide-displaying bacteriophages could be engineered as new biosensors to detect molecular interactions by using natural viral enzymes critical for cell infection.
Collapse
Affiliation(s)
- E Ramírez
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, 08193, Spain
| | | | | | | | | |
Collapse
|