1
|
Priel A, Dai XQ, Chen XZ, Scarinci N, Cantero MDR, Cantiello HF. Electrical recordings from dendritic spines of adult mouse hippocampus and effect of the actin cytoskeleton. Front Mol Neurosci 2022; 15:769725. [PMID: 36090255 PMCID: PMC9453158 DOI: 10.3389/fnmol.2022.769725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Dendritic spines (DS) are tiny protrusions implicated in excitatory postsynaptic responses in the CNS. To achieve their function, DS concentrate a high density of ion channels and dynamic actin networks in a tiny specialized compartment. However, to date there is no direct information on DS ionic conductances. Here, we used several experimental techniques to obtain direct electrical information from DS of the adult mouse hippocampus. First, we optimized a method to isolate DS from the dissected hippocampus. Second, we used the lipid bilayer membrane (BLM) reconstitution and patch clamping techniques and obtained heretofore unavailable electrical phenotypes on ion channels present in the DS membrane. Third, we also patch clamped DS directly in cultured adult mouse hippocampal neurons, to validate the electrical information observed with the isolated preparation. Electron microscopy and immunochemistry of PDS-95 and NMDA receptors and intrinsic actin networks confirmed the enrichment of the isolated DS preparation, showing open and closed DS, and multi-headed DS. The preparation was used to identify single channel activities and “whole-DS” electrical conductance. We identified NMDA and Ca2+-dependent intrinsic electrical activity in isolated DS and in situ DS of cultured adult mouse hippocampal neurons. In situ recordings in the presence of local NMDA, showed that individual DS intrinsic electrical activity often back-propagated to the dendrite from which it sprouted. The DS electrical oscillations were modulated by changes in actin cytoskeleton dynamics by addition of the F-actin disrupter agent, cytochalasin D, and exogenous actin-binding proteins. The data indicate that DS are elaborate excitable electrical devices, whose activity is a functional interplay between ion channels and the underlying actin networks. The data argue in favor of the active contribution of individual DS to the electrical activity of neurons at the level of both the membrane conductance and cytoskeletal signaling.
Collapse
Affiliation(s)
- Avner Priel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Xiao-Qing Dai
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Noelia Scarinci
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Horacio F. Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
- *Correspondence: Horacio F. Cantiello,
| |
Collapse
|
2
|
Schieweck R, Ninkovic J, Kiebler MA. RNA-binding proteins balance brain function in health and disease. Physiol Rev 2020; 101:1309-1370. [PMID: 33000986 DOI: 10.1152/physrev.00047.2019] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttranscriptional gene expression including splicing, RNA transport, translation, and RNA decay provides an important regulatory layer in many if not all molecular pathways. Research in the last decades has positioned RNA-binding proteins (RBPs) right in the center of posttranscriptional gene regulation. Here, we propose interdependent networks of RBPs to regulate complex pathways within the central nervous system (CNS). These are involved in multiple aspects of neuronal development and functioning, including higher cognition. Therefore, it is not sufficient to unravel the individual contribution of a single RBP and its consequences but rather to study and understand the tight interplay between different RBPs. In this review, we summarize recent findings in the field of RBP biology and discuss the complex interplay between different RBPs. Second, we emphasize the underlying dynamics within an RBP network and how this might regulate key processes such as neurogenesis, synaptic transmission, and synaptic plasticity. Importantly, we envision that dysfunction of specific RBPs could lead to perturbation within the RBP network. This would have direct and indirect (compensatory) effects in mRNA binding and translational control leading to global changes in cellular expression programs in general and in synaptic plasticity in particular. Therefore, we focus on RBP dysfunction and how this might cause neuropsychiatric and neurodegenerative disorders. Based on recent findings, we propose that alterations in the entire regulatory RBP network might account for phenotypic dysfunctions observed in complex diseases including neurodegeneration, epilepsy, and autism spectrum disorders.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Michael A Kiebler
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Gasperini L, Rossi A, Cornella N, Peroni D, Zuccotti P, Potrich V, Quattrone A, Macchi P. The hnRNP RALY regulates PRMT1 expression and interacts with the ALS-linked protein FUS: implication for reciprocal cellular localization. Mol Biol Cell 2018; 29:3067-3081. [PMID: 30354839 PMCID: PMC6340211 DOI: 10.1091/mbc.e18-02-0108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The RBP associated with lethal yellow mutation (RALY) is a member of the heterogeneous nuclear ribonucleoprotein family whose transcriptome and interactome have been recently characterized. RALY binds poly-U rich elements within several RNAs and regulates the expression as well as the stability of specific transcripts. Here we show that RALY binds PRMT1 mRNA and regulates its expression. PRMT1 catalyzes the arginine methylation of Fused in Sarcoma (FUS), an RNA-binding protein that interacts with RALY. We demonstrate that RALY down-regulation decreases protein arginine N-methyltransferase 1 levels, thus reducing FUS methylation. It is known that mutations in the FUS nuclear localization signal (NLS) retain the protein to the cytosol, promote aggregate formation, and are associated with amyotrophic lateral sclerosis. Confirming that inhibiting FUS methylation increases its nuclear import, we report that RALY knockout enhances FUS NLS mutants’ nuclear translocation, hence decreasing aggregate formation. Furthermore, we characterize the RNA-dependent interaction of RALY with FUS in motor neurons. We show that mutations in FUS NLS as well as in RALY NLS reciprocally alter their localization and interaction with target mRNAs. These data indicate that RALY’s activity is impaired in FUS pathology models, raising the possibility that RALY might modulate disease onset and/or progression.
Collapse
Affiliation(s)
- Lisa Gasperini
- Laboratory of Molecular and Cellular Neurobiology, University of Trento, 38123 Povo, Trento, Italy
| | - Annalisa Rossi
- Laboratory of Molecular and Cellular Neurobiology, University of Trento, 38123 Povo, Trento, Italy
| | - Nicola Cornella
- Laboratory of Molecular and Cellular Neurobiology, University of Trento, 38123 Povo, Trento, Italy
| | - Daniele Peroni
- Laboratory of Translational Genomics, CIBIO-Centre for Integrative Biology, University of Trento, 38123 Povo, Trento, Italy
| | - Paola Zuccotti
- Laboratory of Translational Genomics, CIBIO-Centre for Integrative Biology, University of Trento, 38123 Povo, Trento, Italy
| | - Valentina Potrich
- Laboratory of Translational Genomics, CIBIO-Centre for Integrative Biology, University of Trento, 38123 Povo, Trento, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, CIBIO-Centre for Integrative Biology, University of Trento, 38123 Povo, Trento, Italy
| | - Paolo Macchi
- Laboratory of Molecular and Cellular Neurobiology, University of Trento, 38123 Povo, Trento, Italy
| |
Collapse
|
4
|
Fritzsche R, Karra D, Bennett KL, Ang FY, Heraud-Farlow JE, Tolino M, Doyle M, Bauer KE, Thomas S, Planyavsky M, Arn E, Bakosova A, Jungwirth K, Hörmann A, Palfi Z, Sandholzer J, Schwarz M, Macchi P, Colinge J, Superti-Furga G, Kiebler MA. Interactome of two diverse RNA granules links mRNA localization to translational repression in neurons. Cell Rep 2013; 5:1749-62. [PMID: 24360960 DOI: 10.1016/j.celrep.2013.11.023] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/07/2013] [Accepted: 11/12/2013] [Indexed: 01/07/2023] Open
Abstract
Transport of RNAs to dendrites occurs in neuronal RNA granules, which allows local synthesis of specific proteins at active synapses on demand, thereby contributing to learning and memory. To gain insight into the machinery controlling dendritic mRNA localization and translation, we established a stringent protocol to biochemically purify RNA granules from rat brain. Here, we identified a specific set of interactors for two RNA-binding proteins that are known components of neuronal RNA granules, Barentsz and Staufen2. First, neuronal RNA granules are much more heterogeneous than previously anticipated, sharing only a third of the identified proteins. Second, dendritically localized mRNAs, e.g., Arc and CaMKIIα, associate selectively with distinct RNA granules. Third, our work identifies a series of factors with known roles in RNA localization, translational control, and RNA quality control that are likely to keep localized transcripts in a translationally repressed state, often in distinct types of RNPs.
Collapse
Affiliation(s)
- Renate Fritzsche
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Karra
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Foong Yee Ang
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; Department for Anatomy & Cell Biology, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Jacki E Heraud-Farlow
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Marco Tolino
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Doyle
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Karl E Bauer
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; Department for Anatomy & Cell Biology, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Sabine Thomas
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany; Department for Anatomy & Cell Biology, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Melanie Planyavsky
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Eric Arn
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Anetta Bakosova
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Kerstin Jungwirth
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Alexandra Hörmann
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Zsofia Palfi
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Sandholzer
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Martina Schwarz
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Paolo Macchi
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Michael A Kiebler
- Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; Max-Planck-Institute for Developmental Biology, 72076 Tübingen, Germany; Department for Anatomy & Cell Biology, Ludwig-Maximilians-University, 80336 Munich, Germany.
| |
Collapse
|
5
|
La Via L, Bonini D, Russo I, Orlandi C, Barlati S, Barbon A. Modulation of dendritic AMPA receptor mRNA trafficking by RNA splicing and editing. Nucleic Acids Res 2012; 41:617-31. [PMID: 23166306 PMCID: PMC3592400 DOI: 10.1093/nar/gks1223] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA trafficking to dendrites and local translation are crucial processes for superior neuronal functions. To date, several α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) mRNAs have been detected in dendrites and are subject to local protein synthesis. Here, we report the presence of all AMPAR GluA1-4 mRNAs in hippocampal and cortical rat synaptic spines by synaptoneurosomes analysis. In particular, we showed that dendritic AMPAR mRNAs are present in the Flip versions in the cortex and hippocampus. To further confirm these data, we demonstrate, using in situ hybridization, the dendritic localization of the GluA2 Flip isoform in vitro and in vivo, whereas the Flop variant is restricted mainly to the soma. In addition, we report that dendritic AMPA mRNAs are edited at low levels at their R/G sites; this result was also supported with transfection experiments using chimeric GluA2 DNA vectors, showing that transcripts carrying an unedited nucleotide at the R/G site, in combination with the Flip exon, are more efficiently targeted to dendrites when compared with the edited-Flip versions. Our data show that post-transcriptional regulations such as RNA splicing, editing and trafficking might be mutually coordinated and that the localization of different AMPAR isoforms in dendrites might play a functional role in the regulation of neuronal transmission.
Collapse
Affiliation(s)
- Luca La Via
- Department of Biomedical Sciences and Biotechnology, Division of Biology and Genetics, National Institute of Neuroscience, University of Brescia, Viale Europa 11, Brescia 25123, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Filiou MD, Martins-de-Souza D, Guest PC, Bahn S, Turck CW. To label or not to label: Applications of quantitative proteomics in neuroscience research. Proteomics 2012; 12:736-47. [DOI: 10.1002/pmic.201100350] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/18/2011] [Accepted: 10/24/2011] [Indexed: 01/09/2023]
|
7
|
Davidovic L, Bechara E, Gravel M, Jaglin XH, Tremblay S, Sik A, Bardoni B, Khandjian EW. The nuclear MicroSpherule protein 58 is a novel RNA-binding protein that interacts with fragile X mental retardation protein in polyribosomal mRNPs from neurons. Hum Mol Genet 2006; 15:1525-38. [PMID: 16571602 DOI: 10.1093/hmg/ddl074] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The fragile X syndrome, the leading cause of inherited mental retardation, is due to the inactivation of the fragile mental retardation 1 gene (FMR1) and the subsequent absence of its gene product FMRP. This RNA-binding protein is thought to control mRNA translation and its absence in fragile X cells leads to alteration in protein synthesis. In neurons, FMRP is thought to repress specific mRNAs during their transport as silent ribonucleoparticles (mRNPs) from the cell body to the distant synapses which are the sites of local synthesis of neuro-specific proteins. The mechanism by which FMRP sorts out its different mRNAs targets might be tuned by the intervention of different proteins. Using a yeast two-hybrid system, we identified MicroSpherule Protein 58 (MSP58) as a novel FMRP-cellular partner. In cell cultures, we found that MSP58 is predominantly present in the nucleus where it interacts with the nuclear isoform of FMRP. However, in neurons but not in glial cells, MSP58 is also present in the cytoplasmic compartment, as well as in neurites, where it co-localizes with FMRP. Biochemical evidence is given that MSP58 is associated with polyribosomal poly(A)+ mRNPs. We also show that MSP58, similar to FMRP, is present on polyribosomes prepared from synaptoneurosomes and that it behaves as an RNA-binding protein with a high affinity to the G-quartet structure. We propose that this novel cellular partner for FMRP escorts FMRP-containing mRNP from the nucleus and nucleolus to the somato-dendritic compartment where it might participate in neuronal translation regulation.
Collapse
Affiliation(s)
- Laetitia Davidovic
- Unité de Recherche en Génétique Humaine et Moléculaire, Centre de recherche Hôpital Saint-François d'Assise, le CHUQ, Québec, Canada G1L 3L5
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Håvik B, Røkke H, Bårdsen K, Davanger S, Bramham CR. Bursts of high-frequency stimulation trigger rapid delivery of pre-existing alpha-CaMKII mRNA to synapses: a mechanism in dendritic protein synthesis during long-term potentiation in adult awake rats. Eur J Neurosci 2003; 17:2679-89. [PMID: 12823475 DOI: 10.1046/j.1460-9568.2003.02712.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Messenger ribonucleic acid encoding the alpha-subunit of calcium/calmodulin-dependent protein kinase II (camkII) is abundantly and constitutively expressed in dendrites of pyramidal and granule cell neurons of the adult hippocampus. Recent evidence suggests that camkII messenger ribonucleic acid is stored in a translationally dormant state within ribonucleic acid storage granules. Delivery of camkII messenger ribonucleic acid from sites of storage to sites of translation may therefore be a key step in activity-driven dendritic protein synthesis and synaptic plasticity. Here we explored possible camkII trafficking in the context of long-term potentiation in the dentate gyrus of awake, adult rats. Long-term potentiation was induced by patterned high-frequency stimulation, synaptodendrosomes containing pinched-off dendritic spines were obtained from microdissected dentate gyrus, and messenger ribonucleic acid levels were determined by real-time polymerase chain reaction. High-frequency stimulation triggered a rapid 2.5-fold increase in camkII messenger ribonucleic acid levels in the synaptodendrosome fraction. This increase occurred in the absence of camkII upregulation in the homogenate fraction, indicating trafficking of pre-existing messenger ribonucleic acid to synaptodendrosomes. The elevation in camkII messenger ribonucleic acid was paralleled by an increase in protein expression specific to the synaptodendrosome fraction, and followed by depletion of camkII message. Activity-dependent regulation of camkII messenger ribonucleic acid and protein did not require N-methyl-d-aspartate receptor activation. In contrast, N-methyl-d-aspartate receptor activation was required for induction of the immediate early genes zif268 and activity-regulated cytoskeleton-associated protein in dentate gyrus homogenates. The results support a model in which locally stored camkII messenger ribonucleic acid is rapidly transported to dendritic spines and translated during long-term potentiation in behaving rats.
Collapse
Affiliation(s)
- Bjarte Håvik
- Department of Physiology, Locus on Neuroscience, Jonas Lies vei 91, University of Bergen, N-5009 Bergen, Norway
| | | | | | | | | |
Collapse
|
9
|
Huang YS, Jung MY, Sarkissian M, Richter JD. N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses. EMBO J 2002; 21:2139-48. [PMID: 11980711 PMCID: PMC125376 DOI: 10.1093/emboj/21.9.2139] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activity-dependent local translation of dendritic mRNAs is one process that underlies synaptic plasticity. Here, we demonstrate that several of the factors known to control polyadenylation-induced translation in early vertebrate development [cytoplasmic polyadenylation element-binding protein (CPEB), maskin, poly(A) polymerase, cleavage and polyadenylation specificity factor (CPSF) and Aurora] also reside at synaptic sites of rat hippocampal neurons. The induction of polyadenylation at synapses is mediated by the N-methyl-D-aspartate (NMDA) receptor, which transduces a signal that results in the activation of Aurora kinase. This kinase in turn phosphorylates CPEB, an essential RNA-binding protein, on a critical residue that is necessary for polyadenylation-induced translation. These data demonstrate a remarkable conservation of the regulatory machinery that controls signal-induced mRNA translation, and elucidates an axis connecting the NMDA receptor to localized protein synthesis at synapses.
Collapse
Affiliation(s)
- Yi-Shuian Huang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|