1
|
Ijaz M, Shahbaz M, Jiang W, Shi Y, Guo X, Wang F. Thymic Immunosuppressive Pentapeptide (TIPP) Showed Anticancer Activity in Breast Cancer and Chronic Myeloid Leukemia Both In Vitro and In Vivo. Protein Pept Lett 2021; 28:1148-1156. [PMID: 34161204 DOI: 10.2174/0929866528666210622150500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
AIM Being the common cause and major burden of deaths globally, timely management of cancer is crucial. BACKGROUND Thymic immunosuppressive pentapeptide (TIPP) is a novel pentapeptide originally obtained from calf thymic immunosuppressive extract. Previously, TIPP has been proved to suppress the allergic and inflammatory responses in allergic mice via blocking MAP kinases/NF-κB signaling pathways. OBJECTIVE In this study, in vitro anticancer activity of TIPP was tested on two different types of cancers using MCF-7 and K562 cell lines. METHODS Tumor xenograft models for breast cancer and chronic myeloid leukemia were designed. In vivo anticancer activity of TIPP was investigated on both cancer types. The liver and tumor tissues of the mice were preserved for immunohistochemistry analysis. RESULTS In vitro anticancer activity of TIPP showed significant inhibition on cell viability of both breast cancer and chronic myeloid leukemia. In vivo anticancer effect of TIPP in both types of cancer models further proved the potent anticancer nature of TIPP. Immunohistochemistry analysis assured that TIPP is a safe drug for normal organs such as the liver. CONCLUSION Our present study revealed that TIPP is a potent anticancer drug and an important treatment option for various diseases. Further work is needed to test the flexible and proficient activity of the novel peptide.
Collapse
Affiliation(s)
- Muhammad Ijaz
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, No.44 Wenhuaxi Road, Jinan 250012, China
| | - Muhammad Shahbaz
- Department of General Surgery, Qilu Hospital affiliated to Shandong University, No.107 Wenhuaxi Road, Jinan 250012, P.R.China. . Research Center for Sectional and Imaging Anatomy, Digital Human Institute, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Wenjie Jiang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States
| | - Yikang Shi
- Department of Pharmacology, Shandong University, No.44 Wenhuaxi Road, Jinan 250012, China
| | - Xiuli Guo
- Department of Pharmacology, Shandong University, No.44 Wenhuaxi Road, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, No.44 Wenhuaxi Road, Jinan 250012, China
| |
Collapse
|
2
|
Fahim A, Rehman Z, Bhatti MF, Virk N, Ali A, Rashid A, Paracha RZ. The Route to 'Chemobrain' - Computational probing of neuronal LTP pathway. Sci Rep 2019; 9:9630. [PMID: 31270411 PMCID: PMC6610097 DOI: 10.1038/s41598-019-45883-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/19/2019] [Indexed: 02/08/2023] Open
Abstract
Chemotherapy causes deleterious side effects during the course of cancer management. The toxic effects may be extended to CNS chronically resulting in altered cognitive function like learning and memory. The present study follows a computational assessment of 64 chemotherapeutic drugs for their off-target interactions against the major proteins involved in neuronal long term potentiation pathway. The cancer chemo-drugs were subjected to induced fit docking followed by scoring alignment and drug-targets interaction analysis. The results were further probed by electrostatic potential computation and ligand binding affinity prediction of the top complexes. The study identified novel off-target interactions by Dactinomycin, Temsirolimus, and Everolimus against NMDA, AMPA, PKA and ERK2, while Irinotecan, Bromocriptine and Dasatinib were top interacting drugs for CaMKII. This study presents with basic foundational knowledge regarding potential chemotherapeutic interference in LTP pathway which may modulate neurotransmission and synaptic plasticity in patient receiving these chemotherapies.
Collapse
Affiliation(s)
- Ammad Fahim
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Zaira Rehman
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Nasar Virk
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
- EBS Universität für Wirtschaft und Recht, EBS Business School, Rheingaustrasse 1, Oestrich-Winkel, 65375, Germany
| | - Amjad Ali
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amir Rashid
- Department of Biochemistry, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Rehan Zafar Paracha
- Research Centre for Modeling and Simulation, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
3
|
Mphahlele MJ, Maluleka MM, Parbhoo N, Malindisa ST. Synthesis, Evaluation for Cytotoxicity and Molecular Docking Studies of Benzo[ c]furan-Chalcones for Potential to Inhibit Tubulin Polymerization and/or EGFR-Tyrosine Kinase Phosphorylation. Int J Mol Sci 2018; 19:E2552. [PMID: 30154363 PMCID: PMC6164331 DOI: 10.3390/ijms19092552] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
A series of 2-arylbenzo[c]furan-chalcone hybrids 3a⁻y have been synthesized and evaluated for antiproliferative effects against the human breast cancer (MCF-7) cell line and for its potential to induce apoptosis and also to inhibit tubulin polymerization and/or epidermal growth factor receptor-tyrosine kinase (EGFR-TK) phosphorylation. Most of these compounds exhibited moderate to significant antigrowth effects in vitro against the MCF-7 cell line when compared to the reference standard actinomycin D. The capabilities of the most cytotoxic benzofuran-chalcone hybrids 3b and 3i, to induce apoptosis, have been evaluated by Annexin V-Cy3 SYTOX staining and caspase-3 activation. The experimental and molecular docking results suggest that the title compounds have the potential to exhibit inhibitory effects against tubulin polymerization and epidermal growth factor receptor tyrosine kinase (EGFR-TK) phosphorylation. The modeled structures of representative compounds displayed hydrophobic interactions as well as hydrogen and/or halogen bonding with the protein residues. These interactions are probably responsible for the observed increased binding affinity for the two receptors and their significant antigrowth effect against the MCF-7 cell line.
Collapse
Affiliation(s)
- Malose J Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| | - Marole M Maluleka
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| | - Nishal Parbhoo
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| | - Sibusiso T Malindisa
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| |
Collapse
|
4
|
Sperl B, Seifert MHJ, Berg T. Natural product inhibitors of protein-protein interactions mediated by Src-family SH2 domains. Bioorg Med Chem Lett 2009; 19:3305-9. [PMID: 19427202 DOI: 10.1016/j.bmcl.2009.04.083] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
Abstract
In this Letter, we report the natural products salvianolic acid A, salvianolic acid B, and caftaric acid as inhibitors of the protein-protein interactions mediated by the SH2 domains of the Src-family kinases Src and Lck, two established disease targets. Moreover, we propose a binding mode for the inhibitors based on molecular modeling, which will facilitate chemical optimization efforts of these important lead structures for drug discovery.
Collapse
Affiliation(s)
- Bianca Sperl
- Department of Molecular Biology, Max Planck Institute of Biochemistry, and Center for Integrated Protein Science Munich, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | |
Collapse
|
5
|
Giubellino A, Burke TR, Bottaro DP. Grb2 signaling in cell motility and cancer. Expert Opin Ther Targets 2008; 12:1021-33. [PMID: 18620523 DOI: 10.1517/14728222.12.8.1021] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Metastasis is the primary cause of death in most human cancers, and understanding the molecular mechanisms underpinning this multistep process is fundamental to identifying novel molecular targets and developing more effective therapies. OBJECTIVE/METHODS Here we review the role of growth factor receptor-bound protein 2 (Grb2) in cancer and specifically in metastasis-related processes, and summarize the development of anticancer therapeutics selectively targeting this adapter protein. RESULTS/CONCLUSION Grb2 is a key molecule in intracellular signal transduction, linking activated cell surface receptors to downstream targets by binding to specific phosphotyrosine-containing and proline-rich sequence motifs. Grb2 signaling is critical for cell cycle progression and actin-based cell motility, and, consequently, more complex processes such as epithelial morphogenesis, angiogenesis and vasculogenesis. These functions make Grb2 a therapeutic target for strategies designed to prevent the spread of solid tumors through local invasion and metastasis.
Collapse
Affiliation(s)
- Alessio Giubellino
- National Cancer Institute, Urologic Oncology Branch, CCR, Building 10, 10 Center Drive MSC 1107, Bethesda, MD 20892-1107, USA.
| | | | | |
Collapse
|
6
|
Li W, Cai S, Cai L, Li X. Anti-apoptotic effect of hepatocyte growth factor from actinomycin D in hepatocyte-derived HL7702 cells is associated with activation of PI3K/Akt signaling. Toxicol Lett 2006; 165:142-8. [PMID: 16616440 DOI: 10.1016/j.toxlet.2006.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 02/24/2006] [Accepted: 02/24/2006] [Indexed: 10/24/2022]
Abstract
Actinomycin D (ActD) is a well-known cytotoxic chemotherapeutic reagent and the prevention of ActD-induced apoptotic cell death has been an attractive issue for biomedical investigators. Since phosphatidylinositol-3 kinase (PI3K)/Akt pathway is essential for cell survival, the present study has examined whether the preventive effect of hepatocyte growth factor (HGF) on ActD-induced apoptotic cell death in a human hepatocyte-derived cell line (HL7702) is associated with PI3K/Akt activation. Apoptotic cell death was measured by several methods including Hoechst 33342 staining, DNA fragmentation, and flow cytometry. We found that ActD caused a significant increase in apoptotic cell death, an effect significantly prevented by pre-addition of HGF in the cultures. HGF was found to significantly activate Akt phosphorylation while pre-treatment with PI3K specific inhibitor wortmannin further enhanced ActD-induced apoptotic effect, and also significantly prevented HGF's protection against ActD-induced apoptosis. These results suggest that HGF's prevention of ActD-induced apoptotic cell death in HL7702 cells is associated with the activation of PI3K/Akt signaling.
Collapse
Affiliation(s)
- Wenjun Li
- School of Pharmacy, Wenzhou Medical College, Wenzhou, PR China
| | | | | | | |
Collapse
|
7
|
Lung FDT, Chang CW, Chong MC, Liou CC, Li P, Peach ML, Nicklaus MC, Lou BS, Roller PP. Small nonphosphorylated Grb2-SH2 domain antagonists evaluated by surface plasmon resonance technology. Biopolymers 2005; 80:628-35. [PMID: 15660381 DOI: 10.1002/bip.20209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The growth factor receptor-binding protein-Src homology 2 (Grb2-SH2) domain plays an important role in the oncogenic Ras signal transduction pathway, which involves cell proliferation and differentiation. Therefore, the Grb2-SH2 domain has been chosen as our target for development of potential antiproliferative agents. Herein, we report the study of the inhibitory effects of small nonphosphorylated peptide analogs interacting with the Grb2-SH2 domain protein by surface plasmon resonance (SPR) technology. A set of 8 related peptide analogs were synthesized, purified, and characterized. Their inhibitory effects on Grb2-SH2 were evaluated by the SPR technology developed with the BIACORE X instrument. The lead peptide, Fmoc-Glu-Tyr-Aib-Asn-NH2 (Fmoc-E-Y-Aib-N; Fmoc: 9-fluorenylmethyoxycarbonyl; Aib=alpha-amino isobutyric acid) inhibited Grb2-SH2 domain function with an IC50 value of 8.7 microM. A molecular modeling study of the lead peptide indicated that the glutamate in the Fmoc peptide is ideally positioned to form a strong salt bridge to Arg 67 in the Grb2-SH2 domain, using both its backbone carbonyl and its acidic group. Residue Glu 89 in Grb2-SH2 flips inward to fill the binding site and partially replace the phosphate group as a hydrogen-bond acceptor. Results of these studies provide important information for further development of potent nonphosphorylated peptide inhibitors of the Grb2-SH2 domain.
Collapse
Affiliation(s)
- Feng-Di T Lung
- Department of Chemistry, Tunghai University, Taichung, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kim HK, Kong MY, Jeong MJ, Han DC, Choi JD, Kim HY, Yoon KS, Kim JM, Son KH, Kwon BM. Investigation of cell cycle arrest effects of actinomycin D at G1 phase using proteomic methods in B104-1-1 cells. Int J Biochem Cell Biol 2005; 37:1921-9. [PMID: 15964235 DOI: 10.1016/j.biocel.2005.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/20/2005] [Accepted: 04/28/2005] [Indexed: 11/15/2022]
Abstract
Actinomycin D was previously reported as an inhibitor of Shc/Grb2 interaction in B104-1-1 cells. Actinomycin D arrested the cell cycle at the G1 phase at 1nM, which is about 10 times lower than the inhibition of Shc/Grb2 interactions in B104-1-1 cells. To evaluate other mechanisms of actinomycin D affected suppression of tumors and cell growth, except inhibition of Shc/Grb2 interactions, we examined the proteomic expression profile by proteomic technology. We found up-regulation of MEKK3 and down-regulation of Hsp70 expression from proteomic analysis, which is a very interesting observation because MEKK3 is strongly related with G1 arrest of cell cycle and Hsp70 is also involved in cell cycle regulation. These results indicate that the anti-tumor effects of actinomycin D is due to synergic effects of various proteins regulated by the compound including inhibition of the Shc/Grb2 interaction and other signaling pathways in the cytoplasm. Here we provide a mechanism-based explanation for growth inhibition by actinomycin D using proteomic technology. Thus, this approach may be a potentially useful method to reveal new mechanisms of active compounds or drugs with unknown cellular function.
Collapse
Affiliation(s)
- Hyae-Kyeong Kim
- Korea Research Institute of Bioscience and Biotechnology, Taejon
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kim HK, Jeong MJ, Kong MY, Han MY, Son KH, Kim HM, Hong SH, Kwon BM. Inhibition of Shc/Grb2 protein-protein interaction suppresses growth of B104-1-1 tumors xenografted in nude mice. Life Sci 2005; 78:321-8. [PMID: 16146636 DOI: 10.1016/j.lfs.2005.04.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 04/26/2005] [Indexed: 11/19/2022]
Abstract
Actinomycin D was revealed as an inhibitor of Shc/Grb2 interaction in cell lines from our recent study. Shc and Grb2 proteins are important molecules in Ras signaling pathways leading to cellular differentiation and proliferation, which require dramatic morphological changes. It was detected by transmission electron microscopy that actinomycin D induced significant changes in cellular ultrastructures of B104-1-1 cells and confirmed that the changes were due to inhibition of Shc/Grb2 interaction by actinomycin D rather than its inhibitory effect on transcription. Because actinomycin D was dispersed mainly in cytoplasm and Shc peptide (synthetic 13 amino acid tyrosine phosphorylated polypeptide) successfully displaced actinomycin D binding to its cellular targets while the other polypeptide from PDGF receptor could not. We examined the effect of actinomycin D on growth of B104-1-1 tumor xenografted in nude mice. Tumor growth was inhibited in vivo after treatment with this inhibitor. Efficacy was correlated with a reduction in the levels of Shc/Grb2 binding in excised tumors. These results suggest that actinomycin D inhibited Shc/Grb2 interaction in B104-1-1 tumor xenografted in nude mice.
Collapse
Affiliation(s)
- Hyae-Kyeong Kim
- Korea Research Institute of Bioscience and Biotechnology, 52 Uendong Yusung Taejon, 305-333, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wu CH, Pan JS, Chang WC, Hung JS, Mao SJT. The molecular mechanism of actinomycin D in preventing neointimal formation in rat carotid arteries after balloon injury. J Biomed Sci 2005; 12:503-12. [PMID: 15959627 DOI: 10.1007/s11373-005-6900-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 05/02/2005] [Indexed: 11/24/2022] Open
Abstract
The pathological mechanism of restenosis is primarily attributed to excessive proliferation of vascular smooth muscle cells (SMC). Actinomycin D has been regarded as a potential candidate to prevent balloon injury-induced neointimal formation. To explore its molecular mechanism in regulating cell proliferation, we first showed that actinomycin D markedly reduced the SMC proliferation via the inhibition of BrdU incorporation at 80 nM. This was further supported by the G1-phase arrest using a flowcytometric analysis. Actinomycin D was extremely potent with an inhibitory concentration IC50 at 0.4 nM, whereas the lethal dose LD50 was at 260 microM. In an in vivo study, the pluronic gel containing 80 nM and 80 microM actinomycin D was applied topically to surround the rat carotid adventitia; the thickness of neointima was substantially reduced (45 and 55%, respectively). The protein expression levels of proliferating cell nuclear antigen (PCNA), focal adhesion kinase (FAK), and Raf were all suppressed by actinomycin D. Extracellular signal-regulated kinases (Erk) involved in cell-cycle arrest were found to increase by actinomycin D. These observations provide a detailed mechanism of actinomycin D in preventing cell proliferation thus as a potential intervention for restenosis.
Collapse
Affiliation(s)
- C H Wu
- Department of Pharmacology, School of Medicine, China Medical University, 91 Hsueh-Shieh Road, Taichung, 404, Taiwan.
| | | | | | | | | |
Collapse
|
11
|
Shim D, Kang HY, Jeon BW, Kang SS, Chang SI, Kim HY. Protein kinase B inhibits apoptosis induced by actinomycin D in ECV304 cells through phosphorylation of caspase 8. Arch Biochem Biophys 2004; 425:214-20. [PMID: 15111130 DOI: 10.1016/j.abb.2004.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 03/17/2004] [Indexed: 10/26/2022]
Abstract
Actinomycin D (act-D) anchors itself into DNA-base pairs by intercalation and thereby inhibits mRNA synthesis. It has been well established that act-D elicits apoptosis in various cell types involving endothelial cells. However, the regulatory mechanisms of actinomycin D-induced apoptotic cell death still remain unclear. Here, we investigated apoptotic cell death and its underlying regulatory mechanisms elicited by actinomycin D in ECV304. Act-D induced typical apoptotic features including chromatin condensation and translocation of phosphatidylserine. Since the phosphoinositide 3-OH kinase (PI3K)/protein kinase B (PKB) signaling pathway has been shown to prevent apoptosis in various cell types, it was of interest to determine if this pathway could protect against apoptosis induced by act-D. Inhibition of PI3K/PKB significantly increased act-D-induced apoptosis. Moreover, act-D-induced cell death was physiologically linked to PKB-mediated cell survival through caspase-8. These results suggest that cross-talk between the PKB and caspase-8 pathways may regulate the balance between cell survival and cell death in ECV304.
Collapse
Affiliation(s)
- Donghwan Shim
- Division of Life Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | |
Collapse
|
12
|
Veselovsky AV, Ivanov YD, Ivanov AS, Archakov AI, Lewi P, Janssen P. Protein-protein interactions: mechanisms and modification by drugs. J Mol Recognit 2002; 15:405-22. [PMID: 12501160 DOI: 10.1002/jmr.597] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein-protein interactions form the proteinaceous network, which plays a central role in numerous processes in the cell. This review highlights the main structures, properties of contact surfaces, and forces involved in protein-protein interactions. The properties of protein contact surfaces depend on their functions. The characteristics of contact surfaces of short-lived protein complexes share some similarities with the active sites of enzymes. The contact surfaces of permanent complexes resemble domain contacts or the protein core. It is reasonable to consider protein-protein complex formation as a continuation of protein folding. The contact surfaces of the protein complexes have unique structure and properties, so they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations have been undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or on the other hand, induce protein dimerization.
Collapse
|
13
|
Lung FDT, Tsai JY, Wei SY, Cheng JW, Chen C, Li P, Roller PP. Novel peptide inhibitors for Grb2 SH2 domain and their detection by surface plasmon resonance. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2002; 60:143-9. [PMID: 12213123 DOI: 10.1034/j.1399-3011.2002.02998.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the critical intracellular signal transduction pathways involves the binding of the Grb2 SH2 domain to the phosphotyrosine (pTyr) motifs on growth factor receptors, such as epidermal growth factor receptor (EGFR) and erbB2, leading to downstream activation of the oncogenic Ras signaling pathway. Therefore, the Grb2 SH2 domain has been chosen as our target for the development of potential anticancer agents. As a continuation of our earlier work, herein we report the design and synthesis of new peptide analogs, and their inhibitory effect on the Grb2 SH2 domain using surface plasmon resonance (SPR) technology. These novel agents do not contain phosphotyrosine or phosphotyrosine mimics. Binding interactions between these peptides and the Grb2 SH2 domain were measured and analyzed using a BIAcore X instrument, which provides detailed information on the real-time detection of the binding interaction. The results of this study should provide important information for the further development of peptides or peptidomimetics with high affinity for the Grb2 SH2 domain.
Collapse
Affiliation(s)
- F-D T Lung
- Department of Nutrition, China Medical College, Taichung 404, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Weinstein-Oppenheimer CR, Blalock WL, Steelman LS, Chang F, McCubrey JA. The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors. Pharmacol Ther 2000; 88:229-79. [PMID: 11337027 DOI: 10.1016/s0163-7258(00)00085-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review focuses on the Ras-Raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) signal transduction pathway and the consequences of its unregulation in the development of cancer. The roles of some of the cell membrane receptors involved in the activation of this pathway, the G-protein Ras, the Raf, MEK and ERK kinases, the phosphatases that regulate these kinases, as well as the downstream transcription factors that become activated, are discussed. The roles of the Ras-Raf-MEK-ERK pathway in the regulation of apoptosis and cell cycle progression are also analyzed. In addition, potential targets for pharmacological intervention in growth factor-responsive cells are evaluated.
Collapse
Affiliation(s)
- C R Weinstein-Oppenheimer
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Brody Building of Medical Sciences 5N98C, Greenville, NC 27858, USA
| | | | | | | | | |
Collapse
|
15
|
Kim HK, Nam JY, Han MY, Son KH, Choi JD, Kwon BM, Takusagawa HL, Huang Y, Takusagawa F. Natural and synthetic analogues of actinomycin D as Grb2-SH2 domain blockers. Bioorg Med Chem Lett 2000; 10:1455-7. [PMID: 10888331 DOI: 10.1016/s0960-894x(00)00258-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural analogues (D, C2, and VII) of actinomycin inhibit Grb2 SH2 domain binding with phosphopeptide-derived from Shc in vitro and in intracellular system. To study structure-activity relationships, 13 actinomycin analogues were synthesized and we found that the inhibition activity depended on the substituents of cyclic peptide groups in actinomycin and two analogues with Tyr residue are the most potent inhibitors with IC50 value of 0.5 and 0.8 microM, respectively.
Collapse
Affiliation(s)
- H K Kim
- Korea Research Institute of Bioscience and Biotechnology, Yusung, Taejon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|