1
|
Rial MS, Reigada C, Prado N, Bua J, Esteva M, Pereira CA, Fichera LE. Effectiveness of the repurposed drug isotretinoin in an experimental murine model of Chagas disease. Acta Trop 2023; 242:106920. [PMID: 37028584 DOI: 10.1016/j.actatropica.2023.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Benznidazole and nifurtimox are the drugs currently used for the treatment of Chagas disease, however its side effects may affect patient adherence. In the search for new alternative therapies, we previously identified isotretinoin (ISO), an FDA-approved drug widely used for the treatment of severe acne through a drug repurposing strategy. ISO shows a strong activity against Trypanosoma cruzi parasites in the nanomolar range, and its mechanism of action is through the inhibition of T. cruzi polyamine and amino acid transporters from the Amino Acid/Auxin Permeases (AAAP) family. In this work, a murine model of chronic Chagas disease (C57BL/6 J mice), intraperitoneally infected with T. cruzi Nicaragua isolate (DTU TcI), were treated with different oral administrations of ISO: daily doses of 5 mg/kg/day for 30 days and weekly doses of 10 mg/kg during 13 weeks. The efficacy of the treatments was evaluated by monitoring blood parasitemia by qPCR, anti-T. cruzi antibodies by ELISA, and cardiac abnormalities by electrocardiography. No parasites were detected in blood after any of the ISO treatments. The electrocardiographic study of the untreated chronic mice showed a significant decrease in heart rate, while in the treated mice this negative chronotropic effect was not observed. Atrioventricular nodal conduction time in untreated mice was significantly longer than in treated animals. Mice treated even with ISO 10 mg/kg dose every 7 days, showed a significant reduction in anti-T. cruzi IgG levels. In conclusion, the intermittent administration of ISO 10 mg/kg would improve myocardial compromise during the chronic stage.
Collapse
Affiliation(s)
- Marcela S Rial
- Instituto Nacional de Parasitología Dr. M Fatala Chaben/ANLIS-Malbrán, Buenos Aires, Argentina
| | - Chantal Reigada
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nilda Prado
- Instituto Nacional de Parasitología Dr. M Fatala Chaben/ANLIS-Malbrán, Buenos Aires, Argentina
| | - Jacqueline Bua
- Instituto Nacional de Parasitología Dr. M Fatala Chaben/ANLIS-Malbrán, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mónica Esteva
- Instituto Nacional de Parasitología Dr. M Fatala Chaben/ANLIS-Malbrán, Buenos Aires, Argentina
| | - Claudio A Pereira
- Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Laura E Fichera
- Instituto Nacional de Parasitología Dr. M Fatala Chaben/ANLIS-Malbrán, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
2
|
Abirami M, Karan Kumar B, Dey S, Johri S, Reguera RM, Balaña-Fouce R, Gowri Chandra Sekhar KV, Sankaranarayanan M. Molecular-level strategic goals and repressors in Leishmaniasis - Integrated data to accelerate target-based heterocyclic scaffolds. Eur J Med Chem 2023; 257:115471. [PMID: 37257213 DOI: 10.1016/j.ejmech.2023.115471] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Leishmaniasis is a complex of neglected tropical diseases caused by various species of leishmanial parasites that primarily affect the world's poorest people. A limited number of standard medications are available for this disease that has been used for several decades, these drugs have many drawbacks such as resistance, higher cost, and patient compliance, making it difficult to reach the poor. The search for novel chemical entities to treat leishmaniasis has led to target-based scaffold research. Among several identified potential molecular targets, enzymes involved in the purine salvage pathway include polyamine biosynthetic process, such as arginase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase, trypanothione reductase as well as enzymes in the DNA cell cycle, such as DNA topoisomerases I and II plays vital role in the life cycle survival of leishmanial parasite. This review mainly focuses on various heterocyclic scaffolds, and their specific inhibitory targets against leishmaniasis, particularly those from the polyamine biosynthesis pathway and DNA topoisomerases with estimated activity studies of various heterocyclic analogs in terms of their IC50 or EC50 value, reported molecular docking analysis from available published literatures.
Collapse
Affiliation(s)
- M Abirami
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India; Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Sanchita Dey
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Samridhi Johri
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Rosa M Reguera
- Department of Biomedical Sciences, University of León, 24071, León, Spain
| | | | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, Telangana, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India.
| |
Collapse
|
3
|
Llanos MA, Alberca LN, Ruiz MD, Sbaraglini ML, Miranda C, Pino-Martinez A, Fraccaroli L, Carrillo C, Alba Soto CD, Gavernet L, Talevi A. A combined ligand and target-based virtual screening strategy to repurpose drugs as putrescine uptake inhibitors with trypanocidal activity. J Comput Aided Mol Des 2023; 37:75-90. [PMID: 36494599 DOI: 10.1007/s10822-022-00491-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
Chagas disease, also known as American trypanosomiasis, is a neglected tropical disease caused by the protozoa Trypanosoma cruzi, affecting nearly 7 million people only in the Americas. Polyamines are essential compounds for parasite growth, survival, and differentiation. However, because trypanosomatids are auxotrophic for polyamines, they must be obtained from the host by specific transporters. In this investigation, an ensemble of QSAR classifiers able to identify polyamine analogs with trypanocidal activity was developed. Then, a multi-template homology model of the dimeric polyamine transporter of T. cruzi, TcPAT12, was created with Rosetta, and then refined by enhanced sampling molecular dynamics simulations. Using representative snapshots extracted from the trajectory, a docking model able to discriminate between active and inactive compounds was developed and validated. Both models were applied in a parallel virtual screening campaign to repurpose known drugs as anti-trypanosomal compounds inhibiting polyamine transport in T. cruzi. Montelukast, Quinestrol, Danazol, and Dutasteride were selected for in vitro testing, and all of them inhibited putrescine uptake in biochemical assays, confirming the predictive ability of the computational models. Furthermore, all the confirmed hits proved to inhibit epimastigote proliferation, and Quinestrol and Danazol were able to inhibit, in the low micromolar range, the viability of trypomastigotes and the intracellular growth of amastigotes.
Collapse
Affiliation(s)
- Manuel A Llanos
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Facultad de Ciencias Exactas, Universidad Nacional de La Plata. La Plata (B1900ADU), Buenos Aires, Argentina
| | - Lucas N Alberca
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Facultad de Ciencias Exactas, Universidad Nacional de La Plata. La Plata (B1900ADU), Buenos Aires, Argentina
| | - María D Ruiz
- Laboratorio de Biología Molecular y Bioquímica en Trypanosoma cruzi y otros agentes infecciosos, Instituto de Ciencia y Tecnología (ICT) Milstein - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - María L Sbaraglini
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Facultad de Ciencias Exactas, Universidad Nacional de La Plata. La Plata (B1900ADU), Buenos Aires, Argentina
| | - Cristian Miranda
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires., Buenos Aires, Argentina
| | - Agustina Pino-Martinez
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires., Buenos Aires, Argentina
| | - Laura Fraccaroli
- Laboratorio de Biología Molecular y Bioquímica en Trypanosoma cruzi y otros agentes infecciosos, Instituto de Ciencia y Tecnología (ICT) Milstein - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Carolina Carrillo
- Laboratorio de Biología Molecular y Bioquímica en Trypanosoma cruzi y otros agentes infecciosos, Instituto de Ciencia y Tecnología (ICT) Milstein - Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Catalina D Alba Soto
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires., Buenos Aires, Argentina
| | - Luciana Gavernet
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Facultad de Ciencias Exactas, Universidad Nacional de La Plata. La Plata (B1900ADU), Buenos Aires, Argentina.
| | - Alan Talevi
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Facultad de Ciencias Exactas, Universidad Nacional de La Plata. La Plata (B1900ADU), Buenos Aires, Argentina
| |
Collapse
|
4
|
Makhoba XH, Makumire S. The capture of host cell’s resources: The role of heat shock proteins and polyamines in SARS-COV-2 (COVID-19) pathway to viral infection. Biomol Concepts 2022; 13:220-229. [DOI: 10.1515/bmc-2022-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Abstract
The exposure of organisms and cells to unfavorable conditions such as increased temperature, antibiotics, reactive oxygen species, and viruses could lead to protein misfolding and cell death. The increased production of proteins such as heat shock proteins (HSPs) and polyamines has been linked to protein misfolding sequestration, thus maintaining, enhancing, and regulating the cellular system. For example, heat shock protein 40 (Hsp40) works hand in hand with Hsp70 and Hsp90 to successfully assist the newly synthesized proteins in folding properly. On the other hand, polyamines such as putrescine, spermidine, and spermine have been widely studied and reported to keep cells viable under harsh conditions, which are also involved in cell proliferation, differentiation, and growth. Polyamines are found in all living organisms, including humans and viruses. Some organisms have developed a mechanism to hijack mammalian host cell machinery for their benefit like viruses need polyamines for infection. Therefore, the role of HSPs and polyamines in SARS-CoV-2 (COVID-19) viral infection, how these molecules could delay the effectiveness of the current treatment in the market, and how COVID-19 relies on the host molecules for its successful infection are reviewed.
Collapse
Affiliation(s)
- Xolani Henry Makhoba
- Department of Biochemistry and Microbiology, University of Fort Hare , Alice Campus , Alice , South Africa
| | - Stanley Makumire
- Department of Integrative Biomedical Sciences, Structural Biology Research Unit, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town , Observatory 7925 , South Africa
| |
Collapse
|
5
|
Azeredo CM, Saraiva MF, de Oliveira MR, Barbosa G, de Almeida MV, de Souza MVN, Soares MJ. The terpenic diamine GIB24 inhibits the growth of Trypanosoma cruzi epimastigotes and intracellular amastigotes, with proteomic analysis of drug-resistant epimastigotes. Chem Biol Interact 2020; 330:109165. [PMID: 32771326 DOI: 10.1016/j.cbi.2020.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 10/23/2022]
Abstract
The effect of N-geranyl-ethane-1,2-diamine dihydochloride (GIB24), a synthetic diamine, was assayed against different developmental forms of the parasitic protozoan Trypanosoma cruzi (strain Dm28c). The compound was effective against culture epimastigote forms (IC50/24h = 5.64 μM; SI = 16.4) and intracellular amastigotes (IC50/24h = 12.89 μM; SI = 7.18), as detected by the MTT methodology and by cell counting, respectively. Incubation of epimastigotes for 6h with 6 μM GIB24 (IC50/24h value) resulted in significant dissipation of the mitochondrial membrane potential, prior to permeabilization of the plasma membrane. Rounded epimastigotes with cell size reduction were observed by scanning electron microscopy. These morpho-physiological changes induced by GIB24 suggest an incidental death process. Treatment of infected Vero cells did not prevent the intracellular amastigotes from completing the intracellular cycle. However, there was a decrease in the number of released parasites, increasing the ratio amastigotes/trypomastigotes. Proteomic analysis of 15 μM GIB24 resistant epimastigotes indicated that the compound acts mainly on mitochondrial components involved in the Krebs cycle and in maintaining the oxidative homeostasis of the parasites. Our data suggest that GIB24 is active against the main morphological forms of T. cruzi.
Collapse
Affiliation(s)
- Camila Maria Azeredo
- Laboratory of Cell Biology, Carlos Chagas Institute/Fiocruz-PR, Curitiba, PR, Brazil
| | | | | | - Gisele Barbosa
- Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | | | - Maurilio José Soares
- Laboratory of Cell Biology, Carlos Chagas Institute/Fiocruz-PR, Curitiba, PR, Brazil
| |
Collapse
|
6
|
Talevi A, Carrillo C, Comini M. The Thiol-polyamine Metabolism of Trypanosoma cruzi: Molecular Targets and Drug Repurposing Strategies. Curr Med Chem 2019; 26:6614-6635. [PMID: 30259812 DOI: 10.2174/0929867325666180926151059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/23/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
Abstract
Chagas´ disease continues to be a challenging and neglected public health problem in many American countries. The etiologic agent, Trypanosoma cruzi, develops intracellularly in the mammalian host, which hinders treatment efficacy. Progress in the knowledge of parasite biology and host-pathogen interaction has not been paralleled by the development of novel, safe and effective therapeutic options. It is then urgent to seek for novel therapeutic candidates and to implement drug discovery strategies that may accelerate the discovery process. The most appealing targets for pharmacological intervention are those essential for the pathogen and, whenever possible, absent or significantly different from the host homolog. The thiol-polyamine metabolism of T. cruzi offers interesting candidates for a rational design of selective drugs. In this respect, here we critically review the state of the art of the thiolpolyamine metabolism of T. cruzi and the pharmacological potential of its components. On the other hand, drug repurposing emerged as a valid strategy to identify new biological activities for drugs in clinical use, while significantly shortening the long time and high cost associated with de novo drug discovery approaches. Thus, we also discuss the different drug repurposing strategies available with a special emphasis in their applications to the identification of drug candidates targeting essential components of the thiol-polyamine metabolism of T. cruzi.
Collapse
Affiliation(s)
- Alan Talevi
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata, La Plata, Argentina
| | - Carolina Carrillo
- Instituto de Ciencias y Tecnología Dr. César Milstein (ICT Milstein) - CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Comini
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| |
Collapse
|
7
|
Reigada C, Sayé M, Phanstiel O, Valera-Vera E, Miranda MR, Pereira CA. Identification of Trypanosoma cruzi Polyamine Transport Inhibitors by Computational Drug Repurposing. Front Med (Lausanne) 2019; 6:256. [PMID: 31781568 PMCID: PMC6857147 DOI: 10.3389/fmed.2019.00256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/24/2019] [Indexed: 01/22/2023] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a parasitic infection endemic in Latin America. In T. cruzi the transport of polyamines is essential because this organism is unable to synthesize these compounds de novo. Therefore, the uptake of polyamines from the extracellular medium is critical for survival of the parasite. The anthracene-putrescine conjugate Ant4 was first designed as a polyamine transport probe in cancer cells. Ant4 was also found to inhibit the polyamine transport system and produced a strong trypanocidal effect in T. cruzi. Considering that Ant4 is not currently approved by the FDA, in this work we performed computer simulations to find trypanocidal drugs approved for use in humans that have structures and activities similar to Ant4. Through a similarity ligand-based virtual screening using Ant4 as reference molecule, four possible inhibitors of polyamine transport were found. Three of them, promazine, chlorpromazine, and clomipramine, showed to be effective inhibitors of putrescine uptake, and also revealed a high trypanocidal activity against T. cruzi amastigotes (IC50 values of 3.8, 1.9, and 2.9 μM, respectively) and trypomastigotes (IC50 values of 3.4, 2.7, and 1.3 μM, respectively) while in epimastigotes the IC50 were significantly higher (34.7, 41.4, and 39.7 μM, respectively). Finally, molecular docking simulations suggest that the interactions between the T. cruzi polyamine transporter TcPAT12 and all the identified inhibitors occur in the same region of the protein. However, this location is different from the site occupied by the natural substrates. The value of this effort is that repurposing known drugs in the treatment of other pathologies, especially neglected diseases such as Chagas disease, significantly decreases the time and economic cost of implementation.
Collapse
Affiliation(s)
- Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Otto Phanstiel
- Department of Medical Education, University of Central Florida, Orlando, FL, United States
| | - Edward Valera-Vera
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana R Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudio A Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Sayé M, Reigada C, Gauna L, Valera-Vera EA, Pereira CA, Miranda MR. Amino Acid and Polyamine Membrane Transporters in Trypanosoma cruzi: Biological Function and Evaluation as Drug Targets. Curr Med Chem 2019; 26:6636-6651. [PMID: 31218951 DOI: 10.2174/0929867326666190620094710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/12/2018] [Accepted: 02/04/2019] [Indexed: 01/19/2023]
Abstract
Amino acids and polyamines are involved in relevant processes for the parasite Trypanosoma cruzi, like protein synthesis, stress resistance, life cycle progression, infection establishment and redox balance, among others. In addition to the biosynthetic routes of amino acids, T. cruzi possesses transport systems that allow the active uptake from the extracellular medium; and in the case of polyamines, the uptake is the unique way to obtain these compounds. The TcAAAP protein family is absent in mammals and its members are responsible for amino acid and derivative uptake, thus the TcAAAP permeases are not only interesting and promising therapeutic targets but could also be used to direct the entry of toxic compounds into the parasite. Although there is a treatment available for Chagas disease, its limited efficacy in the chronic stage of the disease, as well as the side effects reported, highlight the urgent need to develop new therapies. Discovery of new drugs is a slow and cost-consuming process, and even during clinical trials the drugs can fail. In this context, drug repositioning is an interesting and recommended strategy by the World Health Organization since costs and time are significantly reduced. In this article, amino acids and polyamines transport and their potential as therapeutic targets will be revised, including examples of synthetic drugs and drug repurposing.
Collapse
Affiliation(s)
- Melisa Sayé
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Chantal Reigada
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Lucrecia Gauna
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Edward A Valera-Vera
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Claudio A Pereira
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| | - Mariana R Miranda
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones Medicas A. Lanari, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Laboratorio de Parasitología Molecular, Buenos Aires, Argentina
| |
Collapse
|
9
|
Alberca LN, Sbaraglini ML, Morales JF, Dietrich R, Ruiz MD, Pino Martínez AM, Miranda CG, Fraccaroli L, Alba Soto CD, Carrillo C, Palestro PH, Talevi A. Cascade Ligand- and Structure-Based Virtual Screening to Identify New Trypanocidal Compounds Inhibiting Putrescine Uptake. Front Cell Infect Microbiol 2018; 8:173. [PMID: 29888213 PMCID: PMC5981162 DOI: 10.3389/fcimb.2018.00173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/04/2018] [Indexed: 12/18/2022] Open
Abstract
Chagas disease is a neglected tropical disease endemic to Latin America, though migratory movements have recently spread it to other regions. Here, we have applied a cascade virtual screening campaign combining ligand- and structure-based methods. In order to find novel inhibitors of putrescine uptake in Trypanosoma cruzi, an ensemble of linear ligand-based classifiers obtained by has been applied as initial screening filter, followed by docking into a homology model of the putrescine permease TcPAT12. 1,000 individual linear classifiers were inferred from a balanced dataset. Subsequently, different schemes were tested to combine the individual classifiers: MIN operator, average ranking, average score, average voting, with MIN operator leading to the best performance. The homology model was based on the arginine/agmatine antiporter (AdiC) from Escherichia coli as template. It showed 64% coverage of the entire query sequence and it was selected based on the normalized Discrete Optimized Protein Energy parameter and the GA341 score. The modeled structure had 96% in the allowed area of Ramachandran's plot, and none of the residues located in non-allowed regions were involved in the active site of the transporter. Positivity Predictive Value surfaces were applied to optimize the score thresholds to be used in the ligand-based virtual screening step: for that purpose Positivity Predictive Value was charted as a function of putative yields of active in the range 0.001-0.010 and the Se/Sp ratio. With a focus on drug repositioning opportunities, DrugBank and Sweetlead databases were subjected to screening. Among 8 hits, cinnarizine, a drug frequently prescribed for motion sickness and balance disorder, was tested against T. cruzi epimastigotes and amastigotes, confirming its trypanocidal effects and its inhibitory effects on putrescine uptake. Furthermore, clofazimine, an antibiotic with already proven trypanocidal effects, also displayed inhibitory effects on putrescine uptake. Two other hits, meclizine and butoconazole, also displayed trypanocidal effects (in the case of meclizine, against both epimastigotes and amastigotes), without inhibiting putrescine uptake.
Collapse
Affiliation(s)
- Lucas N. Alberca
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Science, Exact Sciences College, National University of La PlataBuenos Aires, Argentina
| | - María L. Sbaraglini
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Science, Exact Sciences College, National University of La PlataBuenos Aires, Argentina
| | - Juan F. Morales
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Science, Exact Sciences College, National University of La PlataBuenos Aires, Argentina
| | - Roque Dietrich
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Science, Exact Sciences College, National University of La PlataBuenos Aires, Argentina
| | - María D. Ruiz
- Institute of Sciences and Technology Dr César Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET)Buenos Aires, Argentina
| | - Agustina M. Pino Martínez
- Department of Microbiology, Parasitology and Immunology, School of Medicine, Institute of Microbiology and Medical Parasitology (CONICET), University of Buenos AiresBuenos Aires, Argentina
| | - Cristian G. Miranda
- Department of Microbiology, Parasitology and Immunology, School of Medicine, Institute of Microbiology and Medical Parasitology (CONICET), University of Buenos AiresBuenos Aires, Argentina
| | - Laura Fraccaroli
- Institute of Sciences and Technology Dr César Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET)Buenos Aires, Argentina
| | - Catalina D. Alba Soto
- Department of Microbiology, Parasitology and Immunology, School of Medicine, Institute of Microbiology and Medical Parasitology (CONICET), University of Buenos AiresBuenos Aires, Argentina
| | - Carolina Carrillo
- Institute of Sciences and Technology Dr César Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET)Buenos Aires, Argentina
| | - Pablo H. Palestro
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Science, Exact Sciences College, National University of La PlataBuenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Science, Exact Sciences College, National University of La PlataBuenos Aires, Argentina
| |
Collapse
|
10
|
Dietrich R, Alberca L, Ruiz M, Palestro P, Carrillo C, Talevi A, Gavernet L. Identification of cisapride as new inhibitor of putrescine uptake in Trypanosoma cruzi by combined ligand- and structure-based virtual screening. Eur J Med Chem 2018; 149:22-29. [DOI: 10.1016/j.ejmech.2018.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
|
11
|
Reigada C, Phanstiel O, Miranda MR, Pereira CA. Targeting polyamine transport in Trypanosoma cruzi. Eur J Med Chem 2018; 147:1-6. [DOI: 10.1016/j.ejmech.2018.01.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/26/2018] [Indexed: 02/05/2023]
|
12
|
L-arginine supplementation reduces mortality and improves disease outcome in mice infected with Trypanosoma cruzi. PLoS Negl Trop Dis 2018; 12:e0006179. [PMID: 29337988 PMCID: PMC5786330 DOI: 10.1371/journal.pntd.0006179] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/26/2018] [Accepted: 12/19/2017] [Indexed: 11/19/2022] Open
Abstract
Chagas disease caused by Trypanosoma cruzi is a neglected disease that affects about 7 million people in Latin America, recently emerging on other continents due to migration. As infection in mice is characterized by depletion of plasma L-arginine, the effect on infection outcome was tested in mice with or without L-arginine supplementation and treatment with 1400W, a specific inhibitor of inducible nitric oxide synthase (iNOS). We found that levels of L-arginine and citrulline were reduced in the heart and plasma of infected mice, whereas levels of asymmetric dimethylarginine, an endogenous iNOS inhibitor, were higher. Moreover, L-arginine supplementation decreased parasitemia and heart parasite burden, improving clinical score and survival. Nitric oxide production in heart tissue and plasma was increased by L-arginine supplementation, while pharmacological inhibition of iNOS yielded an increase in parasitemia and worse clinical score. Interestingly, electrocardiograms improved in mice supplemented with L-arginine, suggesting that it modulates infection and heart function and is thus a potential biomarker of pathology. More importantly, L-arginine may be useful for treating T. cruzi infection, either alone or in combination with other antiparasitic drugs. Trypanosoma cruzi is the causative agent of the neglected Chagas disease in humans. During infection in mice, depletion of plasma L-arginine is correlated with mortality. L-arginine is a semi-essential amino acid needed for cell proliferation, and is the substrate of arginase 1 (Arg-1) and inducible nitric oxide synthase (iNOS), which is involved in the immune response against infections. Observed L-arginine depletion is likely caused by increased Arg-1 activity, but the effect on immune response are still unknown. Our hypothesis is that L-arginine depletion may block nitric oxide (NO) production by iNOS, which is needed for parasite killing. To test this hypothesis, mice were supplemented with and without L-arginine, and the differential effect of treatment with an iNOS inhibitor was determined. L-arginine supplement was beneficial to the mice, lowering mortality and improving disease outcome and heart function. The beneficial effect was associated with increased levels of NO, thus low levels of L-arginine and NO are considered candidate markers of pathology. Finally, as L-arginine is a common dietary supplement, it may be useful for treatment of Chagas patients, either alone or in combination with antiparasitic drugs.
Collapse
|
13
|
Vanrell MC, Losinno AD, Cueto JA, Balcazar D, Fraccaroli LV, Carrillo C, Romano PS. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis. PLoS Negl Trop Dis 2017; 11:e0006049. [PMID: 29091711 PMCID: PMC5683653 DOI: 10.1371/journal.pntd.0006049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/13/2017] [Accepted: 10/18/2017] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients) to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression. In spite of its old discovery, more than one hundred years ago, Trypanosoma cruzi, the causative agent of Chagas’ disease, is still prevalent in the world, infecting more than 6 million people mostly in Latin America, where this illness is endemic. Only two approved drugs, benznidazole and nifurtimox, are currently used for the treatment of Chagas’ disease. Although efficient for the acute phase, they are poorly effective in the chronic period of the disease and they cause many undesirable side effects. There is an urgent need for therapeutic alternatives. To this end, identifying and validating novel molecular targets is critically relevant. This study describes the effect of different inhibitors on the T. cruzi autophagic pathway, a process required for parasite differentiation. Herein, we demonstrate that the regulation of parasite autophagy exhibits similarities and differences with host cell autophagy. Our study provides new insights that could be used to avoid T. cruzi cycle progression in both insect and mammalian hosts.
Collapse
Affiliation(s)
- María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Antonella Denisse Losinno
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Juan Agustín Cueto
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Darío Balcazar
- Instituto de Ciencias y Tecnología Dr. César Milstein—CONICET; Buenos Aires, Argentina
| | | | - Carolina Carrillo
- Instituto de Ciencias y Tecnología Dr. César Milstein—CONICET; Buenos Aires, Argentina
| | - Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
- * E-mail:
| |
Collapse
|
14
|
Macedo JP, Currier RB, Wirdnam C, Horn D, Alsford S, Rentsch D. Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei. FASEB J 2017; 31:4649-4660. [PMID: 28679527 PMCID: PMC5602898 DOI: 10.1096/fj.201700311r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/27/2017] [Indexed: 12/02/2022]
Abstract
Trypanosoma brucei, protozoan parasites that cause human African trypanosomiasis (HAT), depend on ornithine uptake and metabolism by ornithine decarboxylase (ODC) for survival. Indeed, ODC is the target of the WHO “essential medicine” eflornithine, which is antagonistic to another anti-HAT drug, suramin. Thus, ornithine uptake has important consequences in T. brucei, but the transporters have not been identified. We describe these amino acid transporters (AATs). In a heterologous expression system, TbAAT10-1 is selective for ornithine, whereas TbAAT2-4 transports both ornithine and histidine. These AATs are also necessary to maintain intracellular ornithine and polyamine levels in T. brucei, thereby decreasing sensitivity to eflornithine and increasing sensitivity to suramin. Consistent with competition for histidine, high extracellular concentrations of this amino acid phenocopied a TbAAT2-4 genetic defect. Our findings established TbAAT10-1 and TbAAT2-4 as the parasite ornithine transporters, one of which can be modulated by histidine, but both of which affect sensitivity to important anti-HAT drugs.—Macedo, J. P., Currier, R. B., Wirdnam, C., Horn, D., Alsford, S., Rentsch, D. Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei.
Collapse
Affiliation(s)
- Juan P Macedo
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Rachel B Currier
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Corina Wirdnam
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - David Horn
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sam Alsford
- London School of Hygiene and Tropical Medicine, London, United Kingdom;
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland;
| |
Collapse
|
15
|
The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists. PLoS Negl Trop Dis 2017; 11:e0005513. [PMID: 28406895 PMCID: PMC5404878 DOI: 10.1371/journal.pntd.0005513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/25/2017] [Accepted: 03/21/2017] [Indexed: 01/07/2023] Open
Abstract
Background Trypanosomatid parasites represent a major health issue affecting hundreds of million people worldwide, with clinical treatments that are partially effective and/or very toxic. They are responsible for serious human and plant diseases including Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (Sleeping sickness), Leishmania spp. (Leishmaniasis), and Phytomonas spp. (phytoparasites). Both, animals and trypanosomatids lack the biosynthetic riboflavin (vitamin B2) pathway, the vital precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors. While metazoans obtain riboflavin from the diet through RFVT/SLC52 transporters, the riboflavin transport mechanisms in trypanosomatids still remain unknown. Methodology/Principal findings Here, we show that riboflavin is imported with high affinity in Trypanosoma cruzi, Trypanosoma brucei, Leishmania (Leishmania) mexicana, Crithidia fasciculata and Phytomonas Jma using radiolabeled riboflavin transport assays. The vitamin is incorporated through a saturable carrier-mediated process. Effective competitive uptake occurs with riboflavin analogs roseoflavin, lumiflavin and lumichrome, and co-factor derivatives FMN and FAD. Moreover, important biological processes evaluated in T. cruzi (i.e. proliferation, metacyclogenesis and amastigote replication) are dependent on riboflavin availability. In addition, the riboflavin competitive analogs were found to interfere with parasite physiology on riboflavin-dependent processes. By means of bioinformatics analyses we identified a novel family of riboflavin transporters (RibJ) in trypanosomatids. Two RibJ members, TcRibJ and TbRibJ from T. cruzi and T. brucei respectively, were functionally characterized using homologous and/or heterologous expression systems. Conclusions/Significance The RibJ family represents the first riboflavin transporters found in protists and the third eukaryotic family known to date. The essentiality of riboflavin for trypanosomatids, and the structural/biochemical differences that RFVT/SLC52 and RibJ present, make the riboflavin transporter -and its downstream metabolism- a potential trypanocidal drug target. In this work, we show that riboflavin plays a key role in the trypanosomatid life cycles and describe a novel family of riboflavin transporters (RibJ) with uptake function. Despite the vital importance of riboflavin for all living cells, RibJ are the first transporters described in protists. We functionally characterized the T. cruzi and T. brucei RibJ members and the effect of riboflavin analogs on parasite physiology. The structural and biochemical differences presented between human transporters and RibJ members make riboflavin transport and downstream metabolism, attractive and potential trypanosomatid targets.
Collapse
|
16
|
Barisón MJ, Rapado LN, Merino EF, Furusho Pral EM, Mantilla BS, Marchese L, Nowicki C, Silber AM, Cassera MB. Metabolomic profiling reveals a finely tuned, starvation-induced metabolic switch in Trypanosoma cruzi epimastigotes. J Biol Chem 2017; 292:8964-8977. [PMID: 28356355 DOI: 10.1074/jbc.m117.778522] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/20/2017] [Indexed: 01/22/2023] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, is a protozoan parasite with a complex life cycle involving a triatomine insect and mammals. Throughout its life cycle, the T. cruzi parasite faces several alternating events of cell division and cell differentiation in which exponential and stationary growth phases play key biological roles. It is well accepted that arrest of the cell division in the epimastigote stage, both in the midgut of the triatomine insect and in vitro, is required for metacyclogenesis, and it has been previously shown that the parasites change the expression profile of several proteins when entering this quiescent stage. However, little is known about the metabolic changes that epimastigotes undergo before they develop into the metacyclic trypomastigote stage. We applied targeted metabolomics to measure the metabolic intermediates in the most relevant pathways for energy metabolism and oxidative imbalance in exponentially growing and stationary growth-arrested epimastigote parasites. We show for the first time that T. cruzi epimastigotes transitioning from the exponential to the stationary phase exhibit a finely tuned adaptive metabolic mechanism that enables switching from glucose to amino acid consumption, which is more abundant in the stationary phase. This metabolic plasticity appears to be crucial for survival of the T. cruzi parasite in the myriad different environmental conditions to which it is exposed during its life cycle.
Collapse
Affiliation(s)
- María Julia Barisón
- From the Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Ludmila Nakamura Rapado
- From the Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Emilio F Merino
- the Department of Biochemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, and
| | - Elizabeth Mieko Furusho Pral
- From the Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Brian Suarez Mantilla
- From the Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Letícia Marchese
- From the Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil
| | - Cristina Nowicki
- the Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB-CONICET), Universidad de Buenos Aires, 1113 Buenos Aires, Argentina
| | - Ariel Mariano Silber
- From the Laboratory of Biochemistry of Tryps-LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, Brazil,
| | - Maria Belen Cassera
- the Department of Biochemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, and
| |
Collapse
|
17
|
Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi. PLoS Negl Trop Dis 2017; 11:e0005472. [PMID: 28306713 PMCID: PMC5371382 DOI: 10.1371/journal.pntd.0005472] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/29/2017] [Accepted: 03/09/2017] [Indexed: 12/04/2022] Open
Abstract
Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP), with calculated IC50 values in the range of 4.6–10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920) being significantly less effective on the epimastigote stage (IC50 = 30.6 μM). The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the treatment of Chagas disease. Polyamines are polycationic compounds essential for the regulation of cell growth and differentiation. In contrast with other protozoa, Trypanosoma cruzi, the etiological agent of Chagas disease, is auxotrophic for polyamines; therefore the intracellular availability of these molecules depends exclusively on transport processes. It was previously demonstrated that the lack of polyamines in T. cruzi leads to its death, making the polyamine transporter an excellent therapeutic target for Chagas disease. In this work, the polyamine permease TcPAT12 was selected as a target for drug screening using 3000 FDA-approved compounds and computational simulation techniques. Using two combined virtual screening methods, isotretinoin, a well-known and safe drug used for acne treatment, bound to substrate recognition residues of TcPAT12 and was chosen for further in vitro studies. Isotretinoin inhibited not only the polyamine transport but also all tested amino acid transporters from the same protein family as TcPAT12. Interestingly, isotretinoin showed a high trypanocidal effect on trypomastigotes, with an IC50 in the nanomolar range. Autophagy and apoptosis were proposed as mechanisms of parasites death induced by isotretinoin. These results suggest that isotretinoin is a promising trypanocidal drug, being a multi-target inhibitor of essential metabolites transporters.
Collapse
|
18
|
Hasne MP, Soysa R, Ullman B. The Trypanosoma cruzi Diamine Transporter Is Essential for Robust Infection of Mammalian Cells. PLoS One 2016; 11:e0152715. [PMID: 27050410 PMCID: PMC4822861 DOI: 10.1371/journal.pone.0152715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/17/2016] [Indexed: 12/01/2022] Open
Abstract
Trypanosoma cruzi is incapable of synthesizing putrescine or cadaverine de novo, and, therefore, salvage of polyamines from the host milieu is an obligatory nutritional function for the parasite. A high-affinity diamine transporter (TcPOT1) from T. cruzi has been identified previously that recognizes both putrescine and cadaverine as ligands. In order to assess the functional role of TcPOT1 in intact parasites, a Δtcpot1 null mutant was constructed by targeted gene replacement and characterized. The Δtcpot1 mutant lacked high-affinity putrescine-cadaverine transport capability but retained the capacity to transport diamines via a non-saturable, low-affinity mechanism. Transport of spermidine and arginine was not impacted by the Δtcpot1 lesion. The Δtcpot1 cell line exhibited a significant but not total defect in its ability to subsist in Vero cells, although initial infection rates were not affected by the lesion. These findings reveal that TcPOT1 is the sole high-affinity diamine permease in T. cruzi, that genetic obliteration of TcPOT1 impairs the ability of the parasite to maintain a robust infection in mammalian cells, and that a secondary low-affinity uptake mechanism for this key parasite nutrient is operative but insufficient for optimal infection.
Collapse
Affiliation(s)
- Marie-Pierre Hasne
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| | - Radika Soysa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
19
|
Trypanosoma cruzi Polyamine Transporter: Its Role on Parasite Growth and Survival Under Stress Conditions. J Membr Biol 2016; 249:475-81. [DOI: 10.1007/s00232-016-9888-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
|
20
|
Alberca LN, Sbaraglini ML, Balcazar D, Fraccaroli L, Carrillo C, Medeiros A, Benitez D, Comini M, Talevi A. Discovery of novel polyamine analogs with anti-protozoal activity by computer guided drug repositioning. J Comput Aided Mol Des 2016; 30:305-21. [PMID: 26891837 DOI: 10.1007/s10822-016-9903-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/12/2016] [Indexed: 12/01/2022]
Abstract
Chagas disease is a parasitic infection caused by the protozoa Trypanosoma cruzi that affects about 6 million people in Latin America. Despite its sanitary importance, there are currently only two drugs available for treatment: benznidazole and nifurtimox, both exhibiting serious adverse effects and limited efficacy in the chronic stage of the disease. Polyamines are ubiquitous to all living organisms where they participate in multiple basic functions such as biosynthesis of nucleic acids and proteins, proliferation and cell differentiation. T. cruzi is auxotroph for polyamines, which are taken up from the extracellular medium by efficient transporters and, to a large extent, incorporated into trypanothione (bis-glutathionylspermidine), the major redox cosubstrate of trypanosomatids. From a 268-compound database containing polyamine analogs with and without inhibitory effect on T. cruzi we have inferred classificatory models that were later applied in a virtual screening campaign to identify anti-trypanosomal compounds among drugs already used for other therapeutic indications (i.e. computer-guided drug repositioning) compiled in the DrugBank and Sweetlead databases. Five of the candidates identified with this strategy were evaluated in cellular models from different pathogenic trypanosomatids (T. cruzi wt, T. cruzi PAT12, T. brucei and Leishmania infantum), and in vitro models of aminoacid/polyamine transport assays and trypanothione synthetase inhibition assay. Triclabendazole, sertaconazole and paroxetine displayed inhibitory effects on the proliferation of T. cruzi (epimastigotes) and the uptake of putrescine by the parasite. They also interfered with the uptake of others aminoacids and the proliferation of infective T. brucei and L. infantum (promastigotes). Trypanothione synthetase was ruled out as molecular target for the anti-parasitic activity of these compounds.
Collapse
Affiliation(s)
- Lucas N Alberca
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Science, Exact Sciences College, National University of La Plata (UNLP), Argentina, 47 & 115, B1900AJI, La Plata, Buenos Aires, Argentina
| | - María L Sbaraglini
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Science, Exact Sciences College, National University of La Plata (UNLP), Argentina, 47 & 115, B1900AJI, La Plata, Buenos Aires, Argentina
| | - Darío Balcazar
- Instituto de Ciencias y Tecnología Dr. César Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Laura Fraccaroli
- Instituto de Ciencias y Tecnología Dr. César Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Carolina Carrillo
- Instituto de Ciencias y Tecnología Dr. César Milstein (ICT Milstein), Argentinean National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Andrea Medeiros
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Diego Benitez
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Marcelo Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Alan Talevi
- Laboratory of Bioactive Compounds Research and Development (LIDeB), Medicinal Chemistry, Department of Biological Science, Exact Sciences College, National University of La Plata (UNLP), Argentina, 47 & 115, B1900AJI, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J Mol Biol 2015; 427:3389-406. [DOI: 10.1016/j.jmb.2015.06.020] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/12/2015] [Accepted: 06/29/2015] [Indexed: 11/23/2022]
|
22
|
De Paula Lima CV, Batista M, Kugeratski FG, Vincent IM, Soares MJ, Probst CM, Krieger MA, Marchini FK. LM14 defined medium enables continuous growth of Trypanosoma cruzi. BMC Microbiol 2014; 14:238. [PMID: 25213265 PMCID: PMC4172853 DOI: 10.1186/s12866-014-0238-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the etiologic agent of Chagas disease, alternates between distinct morphological and functional forms during its life cycle. Axenic multiplication and differentiation processes of this protozoan parasite can be reproduced in vitro, enabling the isolation and study of the different evolutionary forms. Although there are several publications attempting the cultivation of T. cruzi under chemically defined conditions, in our experience none of the published media are capable of maintaining T. cruzi in continuous growth. RESULTS In this work we modified a known chemically defined medium for Trypanosoma brucei growth. The resulting LM14 and LM14B defined media enabled cultivation of five different strains of T. cruzi for more than forty passages until now. The parasite's biological characteristics such as morphology and differentiation to metacyclic trypomastigotes were maintained when defined media is used. CONCLUSIONS The establishment of a defined medium for T. cruzi cultivation is an important tool for basic biological research allowing several different approaches, providing new perspectives for further studies related to cell biology of this parasite.
Collapse
|
23
|
Abstract
A decade of genome sequencing has transformed our understanding of how
trypanosomatid parasites have evolved and provided fresh impetus to explaining
the origins of parasitism in the Kinetoplastida. In this review, I will consider
the many ways in which genome sequences have influenced our view of genomic
reduction in trypanosomatids; how species-specific genes, and the genomic
domains they occupy, have illuminated the innovations in trypanosomatid genomes;
and how comparative genomics has exposed the molecular mechanisms responsible
for innovation and adaptation to a parasitic lifestyle.
Collapse
|
24
|
Cloning and expression of transgenes using linear vectors in Trypanosoma cruzi. Int J Parasitol 2014; 44:447-56. [DOI: 10.1016/j.ijpara.2014.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/13/2014] [Accepted: 03/02/2014] [Indexed: 11/15/2022]
|
25
|
Díaz MV, Miranda MR, Campos-Estrada C, Reigada C, Maya JD, Pereira CA, López-Muñoz R. Pentamidine exerts in vitro and in vivo anti Trypanosoma cruzi activity and inhibits the polyamine transport in Trypanosoma cruzi. Acta Trop 2014; 134:1-9. [PMID: 24560964 DOI: 10.1016/j.actatropica.2014.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/17/2014] [Accepted: 02/11/2014] [Indexed: 01/31/2023]
Abstract
Pentamidine is an antiprotozoal and fungicide drug used in the treatment of leishmaniasis and African trypanosomiasis. Despite its extensive use as antiparasitic drug, little evidence exists about the effect of pentamidine in Trypanosoma cruzi, the etiological agent of Chagas' disease. Recent studies have shown that pentamidine blocks a polyamine transporter present in Leishmania major; consequently, its might also block these transporters in T. cruzi. Considering that T. cruzi lacks the ability to synthesize putrescine de novo, the inhibition of polyamine transport can bring a new therapeutic target against the parasite. In this work, we show that pentamidine decreases, not only the viability of T. cruzi trypomastigotes, but also the parasite burden of infected cells. In T. cruzi-infected mice pentamidine decreases the inflammation and parasite burden in hearts from infected mice. The treatment also decreases parasitemia, resulting in an increased survival rate. In addition, pentamidine strongly inhibits the putrescine and spermidine transport in T. cruzi epimastigotes and amastigotes. Thus, this study points to reevaluate the utility of pentamidine and introduce evidence of a potential new action mechanism. In the quest of new therapeutic strategies against Chagas disease, the extensive use of pentamidine in human has led to a well-known clinical profile, which could be an advantage over newly synthesized molecules that require more comprehensive trials prior to their clinical use.
Collapse
|
26
|
Soares CO, Boiani M, Marnett LJ, Bechara EJH. Cytotoxicity of 1,4-diamino-2-butanone, a putrescine analogue, to RKO cells: mechanism and redox imbalance. Free Radic Res 2013; 47:672-82. [PMID: 23758064 DOI: 10.3109/10715762.2013.814126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
α-Aminocarbonyl metabolites (e.g., 5-aminolevulinic acid and aminoacetone) and the wide spectrum microbicide 1,4-diamino-2-butanone (DAB) have been shown to exhibit pro-oxidant properties. In vitro, these compounds undergo phosphate-catalyzed enolization at physiological pH and subsequent superoxide radical-propagated aerobic oxidation, yielding a reactive α-oxoaldehyde and H2O2. DAB cytotoxicity to pathogenic microorganisms has been attributed to the inhibition of polyamine biosynthesis. However, the role played in cell death by reactive DAB oxidation products is still poorly understood. This work aims to clarify the mechanism of DAB-promoted pro-oxidant action on mammalian cells. DAB (0.05-10 mM) treatment of RKO cells derived from human colon carcinoma led to a decrease in cell viability (IC50 ca. 0.3 mM DAB, 24 h incubation). Pre-addition of either catalase (5 μM) or aminoguanidine (20 mM) was observed to partially inhibit the toxic effects of DAB to the cells, while N-acetyl-L-cysteine (NAC, 5 mM) or reduced glutathione (GSH, 5 mM) provided almost complete protection against DAB. Changes in redox balance and stress response pathways were indicated by the increased expression of HO-1, NQO1 and xCT. Moreover, the observation of caspase 3 and PARP cleavage products is consistent with DAB-triggered apoptosis in RKO cells, which was corroborated by the partial protection afforded by the pan-caspase inhibitor z-VAD-FMK. Finally, DAB treatment disrupted the cell cycle in response to increased p53 and activation of ATM. Altogether, these data support the hypothesis that DAB exerts cytotoxicity via a mechanism involving not only polyamine biosynthesis but also by DAB oxidation products.
Collapse
Affiliation(s)
- C O Soares
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
27
|
Vanrell MC, Cueto JA, Barclay JJ, Carrillo C, Colombo MI, Gottlieb RA, Romano PS. Polyamine depletion inhibits the autophagic response modulating Trypanosoma cruzi infectivity. Autophagy 2013; 9:1080-93. [PMID: 23697944 DOI: 10.4161/auto.24709] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a cell process that in normal conditions serves to recycle cytoplasmic components and aged or damaged organelles. The autophagic pathway has been implicated in many physiological and pathological situations, even during the course of infection by intracellular pathogens. Many compounds are currently used to positively or negatively modulate the autophagic response. Recently it was demonstrated that the polyamine spermidine is a physiological inducer of autophagy in eukaryotic cells. We have previously shown that the etiological agent of Chagas disease, the protozoan parasite Trypanosoma cruzi, interacts with autophagic compartments during host cell invasion and that preactivation of autophagy significantly increases host cell colonization by this parasite. In the present report we have analyzed the effect of polyamine depletion on the autophagic response of the host cell and on T. cruzi infectivity. Our data showed that depleting intracellular polyamines by inhibiting the biosynthetic enzyme ornithine decarboxylase with difluoromethylornithine (DFMO) suppressed the induction of autophagy in response to starvation or rapamycin treatment in two cell lines. This effect was associated with a decrease in the levels of LC3 and ATG5, two proteins required for autophagosome formation. As a consequence of inhibiting host cell autophagy, DFMO impaired T. cruzi colonization, indicating that polyamines and autophagy facilitate parasite infection. Thus, our results point to DFMO as a novel autophagy inhibitor. While other autophagy inhibitors such as wortmannin and 3-methyladenine are nonspecific and potentially toxic, DFMO is an FDA-approved drug that may have value in limiting autophagy and the spread of the infection in Chagas disease and possibly other pathological settings.
Collapse
Affiliation(s)
- María C Vanrell
- Laboratorio de Biología Celular y Molecular; Instituto de Histología y Embriología (IHEM); Universidad Nacional de Cuyo; CONICET; Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
28
|
Trypanothione: A unique bis-glutathionyl derivative in trypanosomatids. Biochim Biophys Acta Gen Subj 2013; 1830:3199-216. [DOI: 10.1016/j.bbagen.2013.01.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 11/21/2022]
|
29
|
Abstract
SIGNIFICANCE Parasitic infections continue to be a major problem for global human health. Vaccines are practically not available and chemotherapy is highly unsatisfactory. One approach toward a novel antiparasitic drug development is to unravel pathways that may be suited as future targets. Parasitic organisms show a remarkable diversity with respect to the nature and functions of their main low-molecular-mass antioxidants and many of them developed pathways that do not have a counterpart in their mammalian hosts. RECENT ADVANCES Work of the last years disclosed the individual antioxidants employed by parasites and their distinct pathways. Entamoeba, Trichomonas, and Giardia directly use cysteine as main low-molecular-mass thiol but have divergent cysteine metabolisms. Malarial parasites rely exclusively on cysteine uptake and generate glutathione (GSH) as main free thiol as do metazoan parasites. Trypanosomes and Leishmania have a unique trypanothione-based thiol metabolism but employ individual mechanisms for their cysteine supply. In addition, some trypanosomatids synthesize ovothiol A and/or ascorbate. Various essential parasite enzymes such as trypanothione synthetase and trypanothione reductase in Trypanosomatids and the Schistosoma thioredoxin GSH reductase are currently intensively explored as drug target molecules. CRITICAL ISSUES Essentiality is a prerequisite but not a sufficient property of an enzyme to become a suited drug target. The availability of an appropriate in vivo screening system and many other factors are equally important. FUTURE DIRECTIONS The current organism-wide RNA-interference and proteome analyses are supposed to reveal many more interesting candidates for future drug development approaches directed against the parasite antioxidant defense systems.
Collapse
|
30
|
Barclay JJ, Morosi LG, Vanrell MC, Trejo EC, Romano PS, Carrillo C. Trypanosoma cruzi Coexpressing Ornithine Decarboxylase and Green Fluorescence Proteins as a Tool to Study the Role of Polyamines in Chagas Disease Pathology. Enzyme Res 2011; 2011:657460. [PMID: 21687606 PMCID: PMC3112526 DOI: 10.4061/2011/657460] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/24/2011] [Accepted: 03/11/2011] [Indexed: 11/20/2022] Open
Abstract
Polyamines are essential for Trypanosoma cruzi, the causative agent of Chagas disease. As T. cruzi behaves as a natural auxotrophic organism, it relies on host polyamines biosynthesis. In this paper we obtained a double-transfected T. cruzi parasite that expresses the green fluorescent protein (GFP) and a heterologous ornithine decarboxylase (ODC), used itself as a novel selectable marker. These autotrophic and fluorescent parasites were characterized; the ODC presented an apparent Km for ornithine of 0.51 ± 0.16 mM and an estimated Vmax value of 476.2 nmoles/h/mg of protein. These expressing ODC parasites showed higher metacyclogenesis capacity than the auxotrophic counterpart, supporting the idea that polyamines are engaged in this process. This double-transfected T. cruzi parasite results in a powerful tool—easy to follow by its fluorescence—to study the role of polyamines in Chagas disease pathology and in related processes such as parasite survival, invasion, proliferation, metacyclogenesis, and tissue spreading.
Collapse
Affiliation(s)
- Jeremías José Barclay
- Fundación Instituto Leloir-(FIL-IIBBA-) CONICET and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Polyamines are aliphatic polycations that function in key cellular processes such as growth, differentiation, and macromolecular biosynthesis. Intracellular polyamines pools are maintained from de novo synthesis and from transport of polyamines from the extracellular milieu. This acquisition of exogenous polyamines is mediated by cell surface transporter proteins. Protozoan parasites are the etiologic agents of a plethora of devastating and often fatal diseases in humans and their domestic animals. These pathogens accommodate de novo and/or salvage mechanisms for polyamine acquisition. Because of its therapeutic relevance, the polyamine biosynthetic pathway has been thoroughly investigated in many genera of protozoan parasites, but the polyamine permeation pathways have generally been ignored. Our group has now identified at the molecular level polyamine transporters from two species of protozoan parasites, Leishmania major and Trypanosoma cruzi, characterized these polytopic proteins with respect to ligand specificities and affinities, and determined the subcellular environments in which these transporters reside.
Collapse
Affiliation(s)
- Marie-Pierre Hasne
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, USA
| | | |
Collapse
|
32
|
Marcora MS, Cejas S, González NS, Carrillo C, Algranati ID. Polyamine biosynthesis in Phytomonas: biochemical characterisation of a very unstable ornithine decarboxylase. Int J Parasitol 2010; 40:1389-94. [PMID: 20406645 DOI: 10.1016/j.ijpara.2010.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 11/17/2022]
Abstract
The metabolism of polyamines as well as their functions as growth regulators in plants have been extensively studied for many years. However, almost nothing is known about the biosynthesis and roles of these substances in Phytomonas spp., parasites of several plants. We have used HPLC and electrophoretic analyses to investigate the presence and metabolism of polyamines in Phytomonas Jma strain, detecting both putrescine and spermidine but not spermine. Experiments carried out by incubation of intact parasites with labelled ornithine or putrescine showed the formation of radioactive putrescine or spermidine, respectively. These results indicated that Phytomonas Jma can synthesise these polyamines through the action of ornithine decarboxylase (ODC) and spermidine synthase. On the other hand, we could not detect the conversion of arginine to agmatine, suggesting the absence of arginine decarboxylase (ADC) in Phytomonas. However, we cannot ensure the complete absence of this enzymatic activity in the parasite. Phytomonas ODC required pyridoxal 5'-phosphate for maximum activity and was specifically inhibited by α-difluoromethylornithine. The metabolic turnover of the enzyme was very high, with a half-life of 10-15 min, one of the shortest found among all ODC enzymes studied to date. The parasite proteasome seems to be involved in degradation of the enzyme, since Phytomonas ODC can be markedly stabilized by MG-132, a well known proteasome inhibitor. The addition of polyamines to Phytomonas cultures did not decrease ODC activity, strongly suggesting the possible absence of antizyme in this parasite.
Collapse
Affiliation(s)
- M Silvina Marcora
- Fundación Instituto Leloir, IIBBA - CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
33
|
Hasne MP, Coppens I, Soysa R, Ullman B. A high-affinity putrescine-cadaverine transporter from Trypanosoma cruzi. Mol Microbiol 2010; 76:78-91. [PMID: 20149109 DOI: 10.1111/j.1365-2958.2010.07081.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whereas mammalian cells and most other organisms can synthesize polyamines from basic amino acids, the protozoan parasite Trypanosoma cruzi is incapable of polyamine biosynthesis de novo and therefore obligatorily relies upon putrescine acquisition from the host to meet its nutritional requirements. The cell surface proteins that mediate polyamine transport into T. cruzi, as well as most eukaryotes, however, have by-in-large eluded discovery at the molecular level. Here we report the identification and functional characterization of two polyamine transporters, TcPOT1.1 and TcPOT1.2, encoded by alleles from two T. cruzi haplotypes. Overexpression of the TcPOT1.1 and TcPOT1.2 genes in T. cruzi epimastigotes revealed that TcPOT1.1 and TcPOT1.2 were high-affinity transporters that recognized both putrescine and cadaverine but not spermidine or spermine. Furthermore, the activities and subcellular locations of both TcPOT1.1 and TcPOT1.2 in intact parasites were profoundly influenced by extracellular putrescine availability. These results establish TcPOT1.1 and TcPOT1.2 as key components of the T. cruzi polyamine transport pathway, an indispensable nutritional function for the parasite that may be amenable to therapeutic manipulation.
Collapse
Affiliation(s)
- Marie-Pierre Hasne
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | | | |
Collapse
|
34
|
Algranati ID. Polyamine metabolism in Trypanosoma cruzi: studies on the expression and regulation of heterologous genes involved in polyamine biosynthesis. Amino Acids 2009; 38:645-51. [PMID: 19956988 DOI: 10.1007/s00726-009-0425-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/06/2009] [Indexed: 01/27/2023]
Abstract
Biochemical studies have shown that Trypanosoma cruzi and Toxoplasma gondii are the only eukaryotic organisms so far described which are auxotrophic for polyamines. Both parasites are unable to carry out the de novo biosynthesis of putrescine, and therefore they need the addition of exogenous polyamines to the culture medium for their normal proliferation. Further investigations at the molecular level have demonstrated that the wild-type T. cruzi genome does not contain ornithine or arginine decarboxylase-like nucleic acid sequences, and that the corresponding genes have been presumably lost during evolution. Since T. cruzi behaves as a deletion mutant for ornithine decarboxylase (ODC) and arginine decarboxylase (ADC) genes, this parasite has been selected to study the regulation of the expression of heterologous genes involved in polyamine biosynthesis in other organisms. The resulting transgenic parasites have been useful tools to analyze the different stages of gene expression after transformation, as well as the mechanisms of drug resistance induction and the post-translational processing of enzyme precursors.
Collapse
Affiliation(s)
- I D Algranati
- Fundación Instituto Leloir, Ave. Patricias Argentinas 435, 1405, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Serra MP, Senn AM, Algranati ID. Post-translational processing, metabolic stability and catalytic efficiency of oat arginine decarboxylase expressed in Trypanosoma cruzi epimastigotes. Exp Parasitol 2009; 122:169-76. [DOI: 10.1016/j.exppara.2008.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
|
36
|
Cross-species activation of trypanosome S-adenosylmethionine decarboxylase by the regulatory subunit prozyme. Mol Biochem Parasitol 2009; 168:1-6. [PMID: 19523496 DOI: 10.1016/j.molbiopara.2009.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 05/22/2009] [Accepted: 05/30/2009] [Indexed: 11/21/2022]
Abstract
The protozoan parasite Trypanosoma cruzi is the causative agent of Chagas disease (American trypanosomiasis), a neglected disease of Central and South America. Polyamines are small organic cations that are required for cell growth and their biosynthesis has been the target of drug discovery efforts in both T. cruzi and the related Trypanosoma brucei parasites. Here we show that, as previously demonstrated for T. brucei, S-adenosylmethionine decarboxylase (AdoMetDC) from T. cruzi forms a heterodimer with prozyme, an inactive homolog that arose by gene duplication of the canonical enzyme uniquely in the trypanosomatids. The T. cruzi AdoMetDC/prozyme heterodimer is 110-fold more active than homodimeric AdoMetDC. Unlike for T. brucei AdoMetDC, the activity of the T. cruzi heterodimer is further stimulated by putrescine to generate an enzyme with similar catalytic efficiency to the fully activated T. brucei enzyme. The effects of prozyme on T. cruzi AdoMetDC are mediated by an increase in k(cat), while the predominant effect of putrescine is to lower the K(m). Finally we demonstrate that the cross-species heterodimers of T. cruzi and T. brucei AdoMetDC and prozyme pairs are functional, and that putrescine is required for prozyme to fully activate the mixed species heterodimers. These data demonstrate that prozyme mediated activation of AdoMetDC is a common mechanism required to regulate AdoMetDC activity in the trypanosomatids.
Collapse
|
37
|
Irigoín F, Cibils L, Comini MA, Wilkinson SR, Flohé L, Radi R. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radic Biol Med 2008; 45:733-42. [PMID: 18588970 DOI: 10.1016/j.freeradbiomed.2008.05.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/24/2008] [Accepted: 05/28/2008] [Indexed: 10/22/2022]
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas' disease, an infection that affects several million people in Latin America. With no immediate prospect of a vaccine and problems associated with current chemotherapies, the development of new treatments is an urgent priority. Several aspects of the redox metabolism of this parasite differ enough from those in the mammalian host to be considered targets for drug development. Here, we review the information about a trypanosomatid-specific molecule centrally involved in redox metabolism, the dithiol trypanothione, and the main effectors of cellular antioxidant defense. We focus mainly on data from T. cruzi, making comparisons with other trypanosomatids whenever possible. In these parasites trypanothione participates in crucial thiol-disulfide exchange reactions and serves as electron donor in different metabolic pathways, from synthesis of DNA precursors to oxidant detoxification. Interestingly, the levels of several enzymes involved in trypanothione metabolism and oxidant detoxification increase during the transformation of T. cruzi to its mammalian-infective form and the overexpression of some of them has been associated with increased resistance to macrophage-dependent oxidative killing. Together, the evidence suggests a central role of the trypanothione-dependent antioxidant systems in the infection process.
Collapse
Affiliation(s)
- Florencia Irigoín
- Departmento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Uruguay
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The trypanocidal activity of the ODC (ornithine decarboxylase) inhibitor DFMO (difluoromethylornithine) has validated polyamine biosynthesis as a target for chemotherapy. As DFMO is one of only two drugs used to treat patients with late-stage African trypanosomiasis, the requirement for additional drug targets is paramount. Here, we report the biochemical properties of TbSpSyn (Trypanosoma brucei spermidine synthase), the enzyme immediately downstream of ODC in this pathway. Recombinant TbSpSyn was purified and shown to catalyse the formation of spermidine from putrescine and dcSAM (decarboxylated S-adenosylmethionine). To determine the functional importance of TbSpSyn in BSF (bloodstream form) parasites, we used a tetracycline-inducible RNAi (RNA interference) system. Down-regulation of the corresponding mRNA correlated with a decrease in intracellular spermidine and cessation of growth. This phenotype could be complemented by expressing the SpSyn (spermidine synthase) gene from Leishmania major in cells undergoing RNAi, but could not be rescued by addition of spermidine to the medium due to the lack of a spermidine uptake capacity. These results therefore genetically validate TbSpSyn as a target for drug development and indicate that in the absence of a functional biosynthetic pathway, BSF T. brucei cannot scavenge sufficient spermidine from their environment to meet growth requirements.
Collapse
|
39
|
Carrillo C, González NS, Algranati ID. Trypanosoma cruzi as a model system to study the expression of exogenous genes coding for polyamine biosynthetic enzymes. Induction of DFMO resistance in transgenic parasites. Biochim Biophys Acta Gen Subj 2007; 1770:1605-11. [PMID: 17920200 DOI: 10.1016/j.bbagen.2007.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 08/08/2007] [Accepted: 08/10/2007] [Indexed: 11/17/2022]
Abstract
Trypanosoma cruzi, the etiologic agent of Chagas' disease, is a polyamine auxotroph organism because its genome contains neither ornithine decarboxylase (ODC) nor arginine decarboxylase (ADC) genes, presumably lost during evolution. After transformation with a recombinant plasmid bearing the complete coding region of Crithidia fasciculata ODC gene, the transgenic parasites were able to synthesize putrescine and simultaneously became susceptible to alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC. We have studied the emergence of DFMO-resistant T. cruzi after one-step selection of ODC-transformed parasites cultivated in the presence of high levels of the drug (5 mM). Our results have indicated a duplication of the ODC gene copy number in the drug-resistant cell line. The ODC transcripts and the corresponding translation products showed very significant increases (about 7- and 25-fold, respectively) in DFMO-resistant parasites, while the ODC enzymatic activity was 5 times higher than in drug-sensitive T. cruzi. The unequal increases of ODC protein and enzymatic activity in DFMO-resistant protozoa strongly suggest that in addition to gene amplification and enhanced transcription and translation, the assembly of ODC polypeptide chains into dimeric active enzyme molecules might also contribute to regulate the development of DFMO resistance.
Collapse
Affiliation(s)
- Carolina Carrillo
- Fundación Instituto Leloir, IIBBA-CONICET, and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1405BWE-Buenos Aires, Argentina
| | | | | |
Collapse
|
40
|
Heby O, Persson L, Rentala M. Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas' disease, and leishmaniasis. Amino Acids 2007; 33:359-66. [PMID: 17610127 DOI: 10.1007/s00726-007-0537-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 02/01/2007] [Indexed: 12/11/2022]
Abstract
Trypanosomatids depend on spermidine for growth and survival. Consequently, enzymes involved in spermidine synthesis and utilization, i.e. arginase, ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (AdoMetDC), spermidine synthase, trypanothione synthetase (TryS), and trypanothione reductase (TryR), are promising targets for drug development. The ODC inhibitor alpha-difluoromethylornithine (DFMO) is about to become a first-line drug against human late-stage gambiense sleeping sickness. Another ODC inhibitor, 3-aminooxy-1-aminopropane (APA), is considerably more effective than DFMO against Leishmania promastigotes and amastigotes multiplying in macrophages. AdoMetDC inhibitors can cure animals infected with isolates from patients with rhodesiense sleeping sickness and leishmaniasis, but have not been tested on humans. The antiparasitic effects of inhibitors of polyamine and trypanothione formation, reviewed here, emphasize the relevance of these enzymes as drug targets. By taking advantage of the differences in enzyme structure between parasite and host, it should be possible to design new drugs that can selectively kill the parasites.
Collapse
Affiliation(s)
- O Heby
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| | | | | |
Collapse
|
41
|
Persson L. Ornithine decarboxylase and S-adenosylmethionine decarboxylase in trypanosomatids. Biochem Soc Trans 2007; 35:314-7. [PMID: 17371268 DOI: 10.1042/bst0350314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The production of polyamines has been shown to be an effective target for a drug against the West African form of sleeping sickness caused by Trypanosoma brucei gambiense. T. brucei belongs to the group of protozoan parasites classed as trypanosomatids. Parasitic species of this group are the causative agents of various tropical diseases besides African sleeping sickness, e.g. Chagas' disease (Trypanosoma cruzi), cutaneous (Lesihmania spp.) and visceral (Leishmania donovani) leishmaniasis. The metabolism of polyamines in the parasites is a potential target for the development of new drugs for treatment of these diseases. The key steps in polyamine synthesis are catalysed by ODC (ornithine decarboxylase) and AdoMetDC (S-adenosylmethionine decarboxylase). In the present paper, some of the available information on ODC and AdoMetDC in trypanosomatids will be described and discussed.
Collapse
Affiliation(s)
- L Persson
- Department of Experimental Medical Science, Lund University, BMC F:13, S-221 84 Lund, Sweden.
| |
Collapse
|
42
|
Carrillo C, Canepa GE, Algranati ID, Pereira CA. Molecular and functional characterization of a spermidine transporter (TcPAT12) from Trypanosoma cruzi. Biochem Biophys Res Commun 2006; 344:936-40. [PMID: 16631600 DOI: 10.1016/j.bbrc.2006.03.215] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 03/30/2006] [Indexed: 11/16/2022]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas' disease, is the only eukaryotic cell which lacks the ability to synthesize polyamines de novo. In this work, we describe for the first time the molecular and biochemical properties of a high-affinity spermidine transporter from T. cruzi. The transporter gene TcPAT12 was functionally expressed in Xenopus laevis oocytes, showing high levels of spermidine uptake. Similar apparent affinity constants for spermidine uptake were obtained when comparing T. cruzi epimastigotes and heterologous expressed TcPAT12 in X. laevis. In addition, TcPAT12 also transports putrescine and the amino acid l-arginine at lower rates than spermidine.
Collapse
Affiliation(s)
- Carolina Carrillo
- Fundación Instituto Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
43
|
Serra MP, Carrillo C, González NS, Algranati ID. Modulation of oat arginine decarboxylase gene expression and genome organization in transgenic Trypanosoma cruzi epimastigotes. FEBS J 2006; 273:628-37. [PMID: 16420485 DOI: 10.1111/j.1742-4658.2005.05098.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously demonstrated that wild-type Trypanosoma cruzi epimastigotes lack arginine decarboxylase (ADC) enzymatic activity as well as its encoding gene. A foreign ADC has recently been expressed in T. cruzi after transformation with a recombinant plasmid containing the complete coding region of the oat ADC gene. In the present study, upon modulation of exogenous ADC expression, we found that ADC activity was detected early after transfection; subsequently it decreased to negligible levels between 2 and 3 weeks after electroporation and was again detected approximately 4 weeks after electroporation. After this period, the ADC activity increased markedly and became expressed permanently. These changes of enzymatic activity showed a close correlation with the corresponding levels of ADC transcripts. To investigate whether the genome organization of the transgenic T. cruzi underwent any modification related to the expression of the heterologous gene, we performed PCR amplification assays, restriction mapping and pulse-field gel electrophoresis with DNA samples or chromosomes obtained from parasites collected at different time-points after transfection. The results indicated that the transforming plasmid remained as free episomes during the transient expression of the foreign gene. Afterwards, the free plasmid disappeared almost completely for several weeks and, finally, when the expression of the ADC gene became stable, two or more copies of the transforming plasmid arranged in tandem were integrated into a parasite chromosome (1.4 Mbp) bearing a ribosomal RNA locus. The sensitivity of transcription to alpha-amanitin strongly suggests involvement of the protozoan RNA polymerase I in the transcription of the exogenous ADC gene.
Collapse
|
44
|
Reguera RM, Tekwani BL, Balaña-Fouce R. Polyamine transport in parasites: a potential target for new antiparasitic drug development. Comp Biochem Physiol C Toxicol Pharmacol 2005; 140:151-64. [PMID: 15907761 DOI: 10.1016/j.cca.2005.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 02/07/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
The metabolism of the naturally occurring polyamines-putrescine, spermidine and spermine-is a highly integrated system involving biosynthesis, uptake, degradation and interconversion. Metabolic differences in polyamine metabolism have long been considered to be a potential target to arrest proliferative processes ranging from cancer to microbial and parasitic diseases. Despite the early success of polyamine inhibitors such as alpha-difluoromethylornithine (DFMO) in treating the latter stages of African sleeping sickness, in which the central nervous system is affected, they proved to be ineffective in checking other major diseases caused by parasitic protozoa, such as Chagas' disease, leishmaniasis or malaria. In the use and design of new polyamine-based inhibitors, account must be taken of the presence of up-regulated polyamine transporters in the plasma membrane of the infectious agent that are able to circumvent the effect of the drug by providing the parasite with polyamines from the host. This review contains information on the polyamine requirements and molecular, biochemical and genetic characterization of different transport mechanisms in the parasitic agents responsible for a number of the deadly diseases that afflict underdeveloped and developing countries.
Collapse
Affiliation(s)
- Rosa María Reguera
- Department of Pharmacology and Toxicology (INTOXCAL), University of Leon, Campus de Vegazana (s/n) 24071 Leon, Spain
| | | | | |
Collapse
|
45
|
Peluffo G, Piacenza L, Irigoín F, Alvarez MN, Radi R. L-arginine metabolism during interaction of Trypanosoma cruzi with host cells. Trends Parasitol 2004; 20:363-9. [PMID: 15246319 DOI: 10.1016/j.pt.2004.05.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Trypanosoma cruzi invades a diversity of nucleated cells in the mammalian host. Macrophages are among the first cells to be parasitized and, after activation by inflammatory stimuli, they participate in the control of infection. However, some parasites manage to evade the immune response and establish a chronic infection in differentiated cells. L-arginine is located at the crossroads of divergent routes that produce metabolites, including nitric oxide and polyamines, which influence the outcome (i.e. resolution or progression) of infection. This article discusses the fate and actions of L-arginine-derived biomolecules formed both in the host and in the parasite during T. cruzi-host-cell interactions.
Collapse
Affiliation(s)
- Gonzalo Peluffo
- Department of Biochemistry and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
46
|
Roberts SC, Tancer MJ, Polinsky MR, Gibson KM, Heby O, Ullman B. Arginase plays a pivotal role in polyamine precursor metabolism in Leishmania. Characterization of gene deletion mutants. J Biol Chem 2004; 279:23668-78. [PMID: 15023992 DOI: 10.1074/jbc.m402042200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polyamine pathway of protozoan parasites has been successfully targeted in anti-parasitic therapies and is significantly different from that of the mammalian host. To gain knowledge into the metabolic routes by which parasites synthesize polyamines and their precursors, the arginase gene was cloned from Leishmania mexicana, and Deltaarg null mutants were created by double targeted gene replacement and characterized. The ARG sequence exhibited significant homology to ARG proteins from other organisms and predicted a peroxisomal targeting signal (PTS-1) that steers proteins to the glycosome, an organelle unique to Leishmania and related parasites. ARG was subsequently demonstrated to be present in the glycosome, whereas the polyamine biosynthetic enzymes, in contrast, were shown to be cytosolic. The Deltaarg knockouts expressed no ARG activity, lacked an intracellular ornithine pool, and were auxotrophic for ornithine or polyamines. The ability of the Deltaarg null mutants to proliferate could be restored by pharmacological supplementation, either with low putrescine or high ornithine or spermidine concentrations, or by complementation with an arginase episome. Transfection of an arg construct lacking the PTS-1 directed the synthesis of an arg that mislocalized to the cytosol and notably also complemented the genetic lesion and restored polyamine prototrophy to the Deltaarg parasites. This molecular, biochemical, and genetic dissection of ARG function in L. mexicana promastigotes establishes: (i) that the enzyme is essential for parasite viability; (ii) that Leishmania, unlike mammalian cells, expresses only one ARG activity; (iii) that the sole vital function of ARG is to provide polyamine precursors for the parasite; and (iv) that ARG is present in the glycosome, but this subcellular milieu is not essential for its role in polyamine biosynthesis.
Collapse
Affiliation(s)
- Sigrid C Roberts
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland 97239-3098, USA
| | | | | | | | | | | |
Collapse
|
47
|
Carrillo C, Cejas S, Huber A, González NS, Algranati ID. Lack of Arginine Decarboxylase in Trypanosoma cruzi Epimastigotes. J Eukaryot Microbiol 2003; 50:312-6. [PMID: 14563168 DOI: 10.1111/j.1550-7408.2003.tb00141.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The presence of arginine decarboxylase (ADC) enzymatic activity in Trypanosoma cruzi epimastigotes is still a matter of controversy due to conflicting results published during the last few years. We have investigated whether arginine might indeed be a precursor of putrescine via agmatine in these parasites. We have shown that wild-type T. cruzi epimastigotes cultivated in a medium almost free of polyamines stopped their growth after several repeated passages of cultures in the same medium, and that neither arginine nor omithine were able to support or reinitiate parasite multiplication. In contrast, normal growth was quickly resumed after adding exogenous putrescine or spermidine. The in vivo labelling of parasites with radioactive arginine showed no conversion of this amino acid into agmatine, and attempts to detect ADC activity measured by the release of CO2 under different conditions in T. cruzi extracts gave negligible values for all strains assayed. The described data clearly indicate that wild-type T. cruzi epimastigotes lack ADC enzymatic activity.
Collapse
Affiliation(s)
- Carolina Carrillo
- Fundación Instituto Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET. A. Machado 151, 1405 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
48
|
González NS, Huber A, Algranati ID. Spermidine is essential for normal proliferation of trypanosomatid protozoa. FEBS Lett 2001; 508:323-6. [PMID: 11728444 DOI: 10.1016/s0014-5793(01)03091-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Trypanosomatid parasites containing a metabolically unstable ornithine decarboxylase (ODC) are naturally resistant to high levels of alpha-difluoromethylornithine (DFMO) because this ODC inhibitor, though causing a drastic reduction of intracellular putrescine, elicits only a moderate decrease of the spermidine endogenous pool. In this study we have used a combination of DFMO with cyclohexylamine (CHA; bis-cyclohexylammonium sulfate), an inhibitor of spermidine synthase, to reach a more complete depletion of spermidine. Under these conditions we have observed the arrest of proliferation not only in trypanosomatids with stable ODC but also in parasites with an enzyme of high turnover rate. In all cases the reinitiation of proliferation occurred only after the addition of exogenous spermidine, and neither putrescine nor spermine were able to induce the same effect.
Collapse
Affiliation(s)
- N S González
- Instituto de Investigaciones Bioquímicas Fundación Campomar, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, A. Machado 151, 1405, Buenos Aires, Argentina
| | | | | |
Collapse
|
49
|
Abstract
All parasitic protozoa contain polyamines and in recent years they, and their associated enzymes, have attracted attention as drug targets because they might reveal novel antiparasite therapies. How justified is this approach to drug discovery? In this review, Sylke Müller, Graham Coombs and Rolf Walter summarize the current status of research into drugs that exploit polyamine metabolism of trypanosomatid and malaria parasites, and propose priorities for research into such drugs. This review was inspired by an Expert Meeting entitled 'Polyamine Metabolism of Parasitic Protozoa as a Drug Target'.
Collapse
Affiliation(s)
- S Müller
- Wellcome Trust Biocentre, University of Dundee, DD1 5EH, UK
| | | | | |
Collapse
|
50
|
Carrillo C, Cejas S, Cortés M, Ceriani C, Huber A, González NS, Algranati ID. Sensitivity of trypanosomatid protozoa to DFMO and metabolic turnover of ornithine decarboxylase. Biochem Biophys Res Commun 2000; 279:663-8. [PMID: 11118342 DOI: 10.1006/bbrc.2000.3996] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
alpha-Difluoromethylornithine (DFMO), the specific and irreversible inhibitor of ornithine decarboxylase (ODC), was able to induce the arrest of proliferation in Leishmania mexicana and ODC-transformed Trypanosoma cruzi cultures grown in a semi-defined medium essentially free of polyamines. Conversely, Crithidia fasciculata and Phytomonas 274 were not affected by the inhibitor. The drug-resistance of Crithidia and Phytomonas was neither caused by an impairment of DFMO uptake nor by a decrease of the enzyme affinity for the inhibitor. We were also able to rule out the possibility of ODC overexpression in the drug-tolerant parasites. The measurements of ODC metabolic turnover indicated that the enzymes from Crithidia and Phytomonas have a short half-life of 20-40 min, while ODC from Leishmania and transgenic Trypanosoma cruzi are rather stable with a half-life longer than 6 hours. Analyses of polyamine internal pools under different growth conditions have shown that DFMO was able to markedly decrease the levels of putrescine and spermidine in all parasites, but the depletion of spermidine was higher in trypanosomatids containing an ODC with slow turnover. Our results suggest that in these parasites cultivated in the presence of the drug, spermidine might decrease below critical levels needed to maintain trypanothione concentrations or other conditions essential for normal proliferation.
Collapse
Affiliation(s)
- C Carrillo
- Instituto de Investigaciones Bioquímicas "Fundación Campomar,", Facultad de Ciencias Exactas y Naturales, A. Machado 151, Buenos Aires, 1405, Argentina
| | | | | | | | | | | | | |
Collapse
|