1
|
Müller R, Stumpf M, Wehrstedt R, Sukumaran SK, Karow MA, Marko M, Noegel AA, Eichinger L. The regulatory subunit phr2AB of Dictyostelium discoideum phosphatase PP2A interacts with the centrosomal protein CEP161, a CDK5RAP2 ortholog. Genes Cells 2018; 23:923-931. [PMID: 30133996 DOI: 10.1111/gtc.12637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022]
Abstract
phr2AB is the regulatory subunit of the Dictyostelium discoideum phosphatase PP2A and is the ortholog of the human B55 regulatory subunit of PP2A. phr2AB was isolated as a binding partner of the centrosomal protein CEP161, an ortholog of mammalian CDK5RAP2. CEP161 is presumably a phosphoprotein and a component of the Hippo pathway. The interaction site was located in the N-terminal half of CEP161 which encompasses the γTURC binding domain in CEP161. This binding domain is responsible for binding of the γ-tubulin ring complex which allows microtubule nucleation at the centrosome. GFP-tagged phr2AB is diffusely distributed throughout the cell and enriched at the centrosome. Ectopic expression of phr2AB as GFP fusion protein led to multinucleation, aberrant nucleus centrosome ratios and an altered sensitivity to okadaic acid. Some of these features were also affected in cells over-expressing domains of CEP161 and in cells from patients suffering from primary microcephaly, which carried a mutated CDK5RAP2 gene.
Collapse
Affiliation(s)
- Rolf Müller
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Maria Stumpf
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Regina Wehrstedt
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Salil K Sukumaran
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Malte A Karow
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Marija Marko
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Angelika A Noegel
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ludwig Eichinger
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Kim LW. Dual TORCs driven and B56 orchestrated signaling network guides eukaryotic cell migration. BMB Rep 2017; 50:437-444. [PMID: 28571594 PMCID: PMC5625690 DOI: 10.5483/bmbrep.2017.50.9.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 11/20/2022] Open
Abstract
Different types of eukaryotic cells may adopt seemingly distinct modes of directional cell migration. However, several core aspects are regarded common whether the movement is either ameoboidal or mesenchymal. The region of cells facing the attractive signal is often termed leading edge where lamellipodial structures dominates and the other end of the cell called rear end is often mediating cytoskeletal F-actin contraction involving Myosin-II. Dynamic remodeling of cell-to-matrix adhesion involving integrin is also evident in many types of migrating cells. All these three aspects of cell migration are significantly affected by signaling networks of TorC2, TorC1, and PP2A/B56. Here we review the current views of the mechanistic understanding of these regulatory signaling networks and how these networks affect eukaryotic cell migration.
Collapse
Affiliation(s)
- Lou W Kim
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
3
|
Role of B regulatory subunits of protein phosphatase type 2A in myosin II assembly control in Dictyostelium discoideum. EUKARYOTIC CELL 2011; 10:604-10. [PMID: 21357476 DOI: 10.1128/ec.00296-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Dictyostelium discoideum, myosin II resides predominantly in a soluble pool as the result of phosphorylation of the myosin heavy chain (MHC), and dephosphorylation of the MHC is required for myosin II filament assembly, recruitment to the cytoskeleton, and force production. Protein phosphatase type 2A (PP2A) was identified in earlier studies in Dictyostelium as a key biochemical activity that can drive MHC dephosphorylation. We report here gene targeting and cell biological studies addressing the roles of candidate PP2A B regulatory subunits (phr2aBα and phr2aBβ) in myosin II assembly control in vivo. Dictyostelium phr2aBα- and phr2aBβ-null cells show delayed development, reduction in the assembly of myosin II in cytoskeletal ghost assays, and defects in cytokinesis when grown in suspension compared to parental cell lines. These results demonstrate that the PP2A B subunits phr2aBα and phr2aBβ contribute to myosin II assembly control in vivo, with phr2aBα having the predominant role facilitating MHC dephosphorylation to facilitate filament assembly.
Collapse
|
4
|
Charest PG, Shen Z, Lakoduk A, Sasaki AT, Briggs SP, Firtel RA. A Ras signaling complex controls the RasC-TORC2 pathway and directed cell migration. Dev Cell 2010; 18:737-49. [PMID: 20493808 DOI: 10.1016/j.devcel.2010.03.017] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/25/2010] [Accepted: 03/03/2010] [Indexed: 11/17/2022]
Abstract
Ras was found to regulate Dictyostelium chemotaxis, but the mechanisms that spatially and temporally control Ras activity during chemotaxis remain largely unknown. We report the discovery of a Ras signaling complex that includes the Ras guanine exchange factor (RasGEF) Aimless, RasGEFH, protein phosphatase 2A (PP2A), and a scaffold designated Sca1. The Sca1/RasGEF/PP2A complex is recruited to the plasma membrane in a chemoattractant- and F-actin-dependent manner and is enriched at the leading edge of chemotaxing cells where it regulates F-actin dynamics and signal relay by controlling the activation of RasC and the downstream target of rapamycin complex 2 (TORC2)-Akt/protein kinase B (PKB) pathway. In addition, PKB and PKB-related PKBR1 phosphorylate Sca1 and regulate the membrane localization of the Sca1/RasGEF/PP2A complex, and thereby RasC activity, in a negative feedback fashion. Thus, our study uncovered a molecular mechanism whereby RasC activity and the spatiotemporal activation of TORC2 are tightly controlled at the leading edge of chemotaxing cells.
Collapse
Affiliation(s)
- Pascale G Charest
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | | | | | | | | | | |
Collapse
|
5
|
Schulz I, Erle A, Gräf R, Krüger A, Lohmeier H, Putzler S, Samereier M, Weidenthaler S. Identification and cell cycle-dependent localization of nine novel, genuine centrosomal components inDictyostelium discoideum. ACTA ACUST UNITED AC 2009; 66:915-28. [DOI: 10.1002/cm.20384] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Dobbelaere J, Josué F, Suijkerbuijk S, Baum B, Tapon N, Raff J. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PLoS Biol 2008; 6:e224. [PMID: 18798690 PMCID: PMC2535660 DOI: 10.1371/journal.pbio.0060224] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 07/30/2008] [Indexed: 01/16/2023] Open
Abstract
Centrosomes comprise a pair of centrioles surrounded by an amorphous pericentriolar material (PCM). Here, we have performed a microscopy-based genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins required for centriole duplication and mitotic PCM recruitment. We analysed 92% of the Drosophila genome (13,059 genes) and identified 32 genes involved in centrosome function. An extensive series of secondary screens classified these genes into four categories: (1) nine are required for centriole duplication, (2) 11 are required for centrosome maturation, (3) nine are required for both functions, and (4) three genes regulate centrosome separation. These 32 hits include several new centrosomal components, some of which have human homologs. In addition, we find that the individual depletion of only two proteins, Polo and Centrosomin (Cnn) can completely block centrosome maturation. Cnn is phosphorylated during mitosis in a Polo-dependent manner, suggesting that the Polo-dependent phosphorylation of Cnn initiates centrosome maturation in flies. A major goal of the cell cycle is to accurately separate the duplicated chromosomes between two daughter cells. To achieve this, a pair of centrosomes organise a bipolar spindle made of microtubules; the chromosomes line up on the spindle and are then separated to the two spindle poles. Centrosomes are also required for the formation of cilia and flagella, which are present in many eukaryotic cells; centrosome dysfunction is a common feature of many human cancers and several neurological disorders, whereas mutations in genes that affect cilia function give rise to several human diseases. Here, we perform a genome-wide screen using RNA interference to try to identify all of the proteins required for centrosome function in the model organism Drosophila melanogaster (a fruitfly). We identified all 16 of the centrosomal proteins that were already known to be required for centrosome function in Drosophila, as well as 16 new centrosomal components or regulators. We confirmed the centrosomal location of several of the components and performed some analysis of their functions. We believe we are approaching a complete inventory of the proteins required for centrosome function in flies. An RNAi screen identifies 16 new centrosomal components or regulators inDrosophila, and molecular dissection of their function addresses the role of Polo kinase in the maturation of pericentriolar material.
Collapse
Affiliation(s)
- Jeroen Dobbelaere
- The Gurdon Institute, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail: (JD); (JR)
| | - Filipe Josué
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | | | - Buzz Baum
- Research Institute Medical Research Council (MRC) Laboratory of Molecular Cell Biology, University College London (UCL), London, United Kingdom
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Jordan Raff
- The Gurdon Institute, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail: (JD); (JR)
| |
Collapse
|
7
|
Urwyler S, Nyfeler Y, Ragaz C, Lee H, Mueller LN, Aebersold R, Hilbi H. Proteome analysis of Legionella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 2008; 10:76-87. [PMID: 18980612 DOI: 10.1111/j.1600-0854.2008.00851.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, replicates in macrophages and amoebae within 'Legionella-containing vacuoles' (LCVs), which communicate with the early secretory pathway and the endoplasmic reticulum. Formation of LCVs requires the bacterial Icm/Dot type IV secretion system. The Icm/Dot-translocated effector protein SidC selectively anchors to LCVs by binding the host lipid phosphatidylinositol-4-phosphate (PtdIns(4)P). Here, we describe a novel and simple approach to purify intact vacuoles formed by L. pneumophila within Dictyostelium discoideum by using magnetic immunoseparation with an antibody against SidC, followed by density gradient centrifugation. To monitor LCV purification by fluorescence microscopy, we used Dictyostelium producing the LCV marker calnexin-GFP and L. pneumophila labeled with the red fluorescent protein DsRed. A proteome analysis of purified LCVs by liquid chromatography coupled to tandem mass spectrometry revealed 566 host proteins, including known LCV components, such as the small GTPases Arf1, Rab1 and Rab7. Rab8, an endosomal regulator of the late secretory pathway originating from the trans Golgi network, and the endosomal GTPase Rab14 were identified as novel LCV components, which were found to be present on vacuoles harboring wild-type but not Icm/Dot-deficient L. pneumophila. Thus, LCVs also communicate with the late secretory and endosomal pathways. Depletion of Rab8 or Arf1 by RNA interference reduced the amount of SidC on LCVs, indicating that the GTPases promote the recruitment of Legionella effectors by regulating the level of PtdIns(4)P.
Collapse
Affiliation(s)
- Simon Urwyler
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
8
|
Lee NS, Veeranki S, Kim B, Kim L. The function of PP2A/B56 in non-metazoan multicellular development. Differentiation 2008; 76:1104-10. [PMID: 18673380 DOI: 10.1111/j.1432-0436.2008.00301.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DB56, the Dictyostelium B56 homolog, displayed high sequence homology to other eukaryotic B56 subunits of the PP2A and a specific association with the PP2A catalytic subunit. Cells lacking DB56, psrA(-), displayed higher PP2A phosphatase activity compared with the wild type, approximately 10 hr of delayed expression of ecmA and ecmB prestalk markers, and inefficient culmination. The prespore marker cotB declined as wild-type cells culminate, but no such decline was observed from psrA(-) cells. Interestingly, psrA(-) cells exhibited higher GSK3 kinase activity. Furthermore, the expression of the dominant negative GSK3 mutant (K84/85M) in psrA(-) cells improved both prestalk and prespore expression patterns similarly to wild-type cells. However, culmination was not restored in psrA(-) cells expressing dominant negative GSK3, which suggests that PP2A/DB56 has an extra target during terminal differentiation. This report shows that PP2A/DB56 controls not only metazoan development, but also non-metazoan cell fate decision processes.
Collapse
Affiliation(s)
- Nam-Sihk Lee
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | | | | | | |
Collapse
|
9
|
Arachchige Don AS, Dallapiazza RF, Bennin DA, Brake T, Cowan CE, Horne MC. Cyclin G2 is a centrosome-associated nucleocytoplasmic shuttling protein that influences microtubule stability and induces a p53-dependent cell cycle arrest. Exp Cell Res 2006; 312:4181-204. [PMID: 17123511 PMCID: PMC1862360 DOI: 10.1016/j.yexcr.2006.09.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/21/2006] [Accepted: 09/26/2006] [Indexed: 01/14/2023]
Abstract
Cyclin G2 is an atypical cyclin that associates with active protein phosphatase 2A. Cyclin G2 gene expression correlates with cell cycle inhibition; it is significantly upregulated in response to DNA damage and diverse growth inhibitory stimuli, but repressed by mitogenic signals. Ectopic expression of cyclin G2 promotes cell cycle arrest, cyclin dependent kinase 2 inhibition and the formation of aberrant nuclei [Bennin, D. A., Don, A. S., Brake, T., McKenzie, J. L., Rosenbaum, H., Ortiz, L., DePaoli-Roach, A. A., and Horne, M. C. (2002). Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B' subunits in active complexes and induces nuclear aberrations and a G(1)/S-phase cell cycle arrest. J Biol Chem 277, 27449-67]. Here we report that endogenous cyclin G2 copurifies with centrosomes and microtubules (MT) and that ectopic G2 expression alters microtubule stability. We find exogenous and endogenous cyclin G2 present at microtubule organizing centers (MTOCs) where it colocalizes with centrosomal markers in a variety of cell lines. We previously reported that cyclin G2 forms complexes with active protein phosphatase 2A (PP2A) and colocalizes with PP2A in a detergent-resistant compartment. We now show that cyclin G2 and PP2A colocalize at MTOCs in transfected cells and that the endogenous proteins copurify with isolated centrosomes. Displacement of the endogenous centrosomal scaffolding protein AKAP450 that anchors PP2A at the centrosome resulted in the depletion of centrosomal cyclin G2. We find that ectopic expression of cyclin G2 induces microtubule bundling and resistance to depolymerization, inhibition of polymer regrowth from MTOCs and a p53-dependent cell cycle arrest. Furthermore, we determined that a 100 amino acid carboxy-terminal region of cyclin G2 is sufficient to both direct GFP localization to centrosomes and induce cell cycle inhibition. Colocalization of endogenous cyclin G2 with only one of two GFP-centrin-tagged centrioles, the mature centriole present at microtubule foci, indicates that cyclin G2 resides primarily on the mother centriole. Copurification of cyclin G2 and PP2A subunits with microtubules and centrosomes, together with the effects of ectopic cyclin G2 on cell cycle progression, nuclear morphology and microtubule growth and stability, suggests that cyclin G2 may modulate the cell cycle and cellular division processes through modulation of PP2A and centrosomal associated activities.
Collapse
Affiliation(s)
| | | | - David A. Bennin
- The Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532
| | - Tiffany Brake
- The Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532
| | - Colleen E. Cowan
- The Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109
| | - Mary C. Horne
- The Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109
- The Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532
- *Correspondence to: Mary C. Horne, 2-530 BSB, 51 Newton Rd, Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, Phone: (319) 335-8267, FAX: (319) 335-8930, E-mail:
| |
Collapse
|
10
|
Abstract
Dictyostelium conventional myosin (myosin II) is an abundant protein that plays a role in various cellular processes such as cytokinesis, cell protrusion and development. This review will focus on the signal transduction pathways that regulate myosin II during cell movement. Myosin II appears to have two modes of action in Dictyostelium: local stabilization of the cytoskeleton by myosin filament association to the actin meshwork (structural mode) and force generation by contraction of actin filaments (motor mode). Some processes, such as cell movement under restrictive environment, require only the structural mode of myosin. However, cytokinesis in suspension and uropod retraction depend on motor activity as well. Myosin II can self-assemble into bipolar filaments. The formation of these filaments is negatively regulated by heavy chain phosphorylation through the action of a set of novel alpha kinases and is relatively well understood. However, only recently it has become clear that the formation of bipolar filaments and their translocation to the cortex are separate events. Translocation depends on filamentous actin, and is regulated by a cGMP pathway and possibly also by the cAMP phosphodiesterase RegA and the p21-activated kinase PAKa. Myosin motor activity is regulated by phosphorylation of the regulatory light chain through myosin light chain kinase A. Unlike conventional light chain kinases, this enzyme is not regulated by calcium but is activated by cGMP-induced phosphorylation via an upstream kinase and subsequent autophosphorylation.
Collapse
Affiliation(s)
- Leonard Bosgraaf
- Department of Biology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
11
|
Yumura S, Yoshida M, Betapudi V, Licate LS, Iwadate Y, Nagasaki A, Uyeda TQP, Egelhoff TT. Multiple myosin II heavy chain kinases: roles in filament assembly control and proper cytokinesis in Dictyostelium. Mol Biol Cell 2005; 16:4256-66. [PMID: 15987738 PMCID: PMC1196335 DOI: 10.1091/mbc.e05-03-0219] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Myosin II filament assembly in Dictyostelium discoideum is regulated via phosphorylation of residues located in the carboxyl-terminal portion of the myosin II heavy chain (MHC) tail. A series of novel protein kinases in this system are capable of phosphorylating these residues in vitro, driving filament disassembly. Previous studies have demonstrated that at least three of these kinases (MHCK A, MHCK B, and MHCK C) display differential localization patterns in living cells. We have created a collection of single, double, and triple gene knockout cell lines for this family of kinases. Analysis of these lines reveals that three MHC kinases appear to represent the majority of cellular activity capable of driving myosin II filament disassembly, and reveals that cytokinesis defects increase with the number of kinases disrupted. Using biochemical fractionation of cytoskeletons and in vivo measurements via fluorescence recovery after photobleaching (FRAP), we find that myosin II overassembly increases incrementally in the mutants, with the MHCK A(-)/B(-)/C(-) triple mutant showing severe myosin II overassembly. These studies suggest that the full complement of MHC kinases that significantly contribute to growth phase and cytokinesis myosin II disassembly in this organism has now been identified.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Egelhoff TT, Croft D, Steimle PA. Actin Activation of Myosin Heavy Chain Kinase A in Dictyostelium. J Biol Chem 2005; 280:2879-87. [PMID: 15545285 DOI: 10.1074/jbc.m410803200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies in Dictyostelium discoideum have established that the cycle of myosin II bipolar filament assembly and disassembly controls the temporal and spatial localization of myosin II during critical cellular processes, such as cytokinesis and cell locomotion. Myosin heavy chain kinase A (MHCK A) is a key enzyme regulating myosin II filament disassembly through myosin heavy chain phosphorylation in Dictyostelium. Under various cellular conditions, MHCK A is recruited to actin-rich cortical sites and is preferentially enriched at sites of pseudopod formation, and thus MHCK A is proposed to play a role in regulating localized disassembly of myosin II filaments in the cell. MHCK A possesses an aminoterminal coiled-coil domain that participates in the oligomerization, cellular localization, and actin binding activities of the kinase. In the current study, we show that the interaction between the coiled-coil domain of MHCK A and filamentous actin leads to an approximately 40-fold increase in the initial rate of kinase catalytic activity. Actin-mediated activation of MHCK A involves increased rates of kinase autophosphorylation and requires the presence of the coiled-coil domain. Structure-function analyses revealed that the coiled-coil domain alone binds to actin filaments (apparent K(D) = 0.9 microm) and thus mediates the direct interaction with F-actin required for MHCK A activation. Collectively, these results indicate that MHCK A recruitment to actin-rich sites could lead to localized activation of the kinase via direct interaction with actin filaments, and thus this mode of kinase regulation may represent an important mechanism by which the cell achieves localized disassembly of myosin II filaments required for specific changes in cell shape.
Collapse
Affiliation(s)
- Thomas T Egelhoff
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | | | | |
Collapse
|
13
|
De la Roche MA, Smith JL, Betapudi V, Egelhoff TT, Côté GP. Signaling pathways regulating Dictyostelium myosin II. J Muscle Res Cell Motil 2003; 23:703-18. [PMID: 12952069 DOI: 10.1023/a:1024467426244] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dictyostelium myosin II is a conventional, two-headed myosin that consists of two copies each of a myosin heavy chain (MHC), an essential light chain (ELC) and a regulatory light chain (RLC). The MHC is comprised of an amino-terminal motor domain, a neck region that binds the RLC and ELC and a carboxyl-terminal alpha-helical coiled-coil tail. Electrostatic interactions between the tail domains mediate the self-assembly of myosin II into bipolar filaments that are capable of interacting with actin filaments to generate a contractile force. In this review we discuss the regulation of Dictyostelium myosin II by a myosin light chain kinase (MLCK-A) that phosphorylates the RLC and increases motor activity and by MHC kinases (MHCKs) that phosphorylate the tail and prevent filament assembly. Dictyostelium may express as many as four MHCKs (MHCK A-D) consisting of an atypical alpha-kinase catalytic domain and a carboxyl-terminal WD repeat domain that targets myosin II filaments. A previously reported MHCK, termed MHC-PKC, now seems more likely to be a diacylglycerol kinase (DgkA). The relationship of the MHCKs to the larger family of alpha-kinases is discussed and key features of the structure of the alpha-kinase catalytic domain are reviewed. Potential upstream regulators of myosin II are described, including DgkA, cGMP, cAMP and PAKa, a target for Rac GTPases. Recent results point to a complex network of signaling pathways responsible for controling the activity and localization of myosin II in the cell.
Collapse
Affiliation(s)
- Marc A De la Roche
- Department of Biochemistry, Botterell Hall, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
14
|
Andrioli LPM, Zaini PA, Viviani W, Da Silva AM. Dictyostelium discoideum protein phosphatase-1 catalytic subunit exhibits distinct biochemical properties. Biochem J 2003; 373:703-11. [PMID: 12737629 PMCID: PMC1223547 DOI: 10.1042/bj20021964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Revised: 04/29/2003] [Accepted: 05/09/2003] [Indexed: 01/04/2023]
Abstract
Protein phosphatase-1 (PP1) is expressed ubiquitously and is involved in many eukaryotic cellular functions, although PP1 enzyme activity could not be detected in the social amoeba Dictyostelium discoideum cell extracts. In the present paper, we show that D. discoideum has a single copy gene that codes for the catalytic subunit of PP1 (DdPP1c). DdPP1c is expressed throughout the D. discoideum life cycle with constant levels of mRNA, and its protein and amino acid sequence show a mean identity of 80% with other PP1c enzymes. However, it has a distinctive difference: the substitution of a phenylalanine residue (Phe(269) in the DdPP1c) for a highly conserved cysteine residue (Cys(273) in rabbit PP1c) in a region that was shown to have a critical role in the interaction of rabbit PP1c with toxin inhibitors. Wild-type DdPP1c and an engineered mutant form in which Phe(269) was replaced by a cysteine residue were expressed in Escherichia coli. Both recombinant activities were similarly inhibited by okadaic acid, tautomycin and microcystin. However, the Phe(269)-->Cys mutation resulted in a large increase in enzyme activity towards phosphorylase a and a higher sensitivity to calyculin A. These results, together with the molecular modelling of DdPP1c structure, indicate that the Phe(269) residue, which occurs naturally in D. discoideum, confers distinct biochemical properties on this enzyme.
Collapse
Affiliation(s)
- Luiz P M Andrioli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
15
|
Levi S, Polyakov MV, Egelhoff TT. Myosin II dynamics in Dictyostelium: determinants for filament assembly and translocation to the cell cortex during chemoattractant responses. CELL MOTILITY AND THE CYTOSKELETON 2002; 53:177-88. [PMID: 12211100 DOI: 10.1002/cm.10068] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the simple amoeba Dictyostelium discoideum, myosin II filament assembly is regulated primarily by the action of a set of myosin heavy chain (MHC) kinases and by MHC phosphatase activity. Chemoattractant signals acting via G-protein coupled receptors lead to rapid recruitment of myosin II to the cell cortex, but the structural determinants on myosin necessary for translocation and the second messengers upstream of MHC kinases and phosphatases are not well understood. We report here the use of GFP-myosin II fusions to characterize the domains necessary for myosin II filament assembly and cytoskeletal recruitment during responses to global stimulation with the developmental chemoattractant cAMP. Analysis performed with GFP-myosin fusions, and with latrunculin A-treated cells, demonstrated that F-actin binding via the myosin motor domain together with concomitant filament assembly mediates the rapid cortical translocation observed in response to chemoattractant stimulation. A "headless" GFP-myosin construct lacking the motor domain was unable to translocate to the cell cortex in response to chemoattractant stimulation, suggesting that myosin motor-based motility may drive translocation. This lack of localization contrasts with previous work demonstrating accumulation of the same construct in the cleavage furrow of dividing cells, suggesting that recruitment signals and interactions during cytokinesis differ from those during chemoattractant responses. Evaluating upstream signaling, we find that iplA null mutants, devoid of regulated calcium fluxes during chemoattractant stimulation, display full normal chemoattractant-stimulated myosin assembly and translocation. These results indicate that calcium transients are not necessary for chemoattractant-regulated myosin II filament assembly and translocation.
Collapse
Affiliation(s)
- Stephanie Levi
- Department of Physiology and Biophysics, Case Western Reserve School of Medicine, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
16
|
de la Roche MA, Côté GP. Regulation of Dictyostelium myosin I and II. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1525:245-61. [PMID: 11257438 DOI: 10.1016/s0304-4165(01)00110-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dictyostelium expresses 12 different myosins, including seven single-headed myosins I and one conventional two-headed myosin II. In this review we focus on the signaling pathways that regulate Dictyostelium myosin I and myosin II. Activation of myosin I is catalyzed by a Cdc42/Rac-stimulated myosin I heavy chain kinase that is a member of the p21-activated kinase (PAK) family. Evidence that myosin I is linked to the Arp2/3 complex suggests that pathways that regulate myosin I may also influence actin filament assembly. Myosin II activity is stimulated by a cGMP-activated myosin light chain kinase and inhibited by myosin heavy chain kinases (MHCKs) that block bipolar filament assembly. Known MHCKs include MHCK A and MHCK B, which have a novel type of kinase catalytic domain joined to a WD repeat domain, and MHC-protein kinase C (PKC), which contains both diacylglycerol kinase and PKC-related protein kinase catalytic domains. A Dictyostelium PAK (PAKa) acts indirectly to promote myosin II filament formation, suggesting that the MHCKs may be indirectly regulated by Rac GTPases.
Collapse
Affiliation(s)
- M A de la Roche
- Department of Biochemistry, Queen's University, K7L 3N6, Kingston, Ont., Canada
| | | |
Collapse
|
17
|
Abstract
Dynamic phosphorylation and dephosphorylation of proteins are fundamental mechanisms utilized by cells to transduce signals. Whereas transduction by protein kinases has been a major focus of studies in the last decade, protein phosphatase 2A (PP2A) enzymes emerge in this millenium as the most fashionable players in cellular signaling. Viral proteins target specific PP2A enzymes in order to deregulate chosen cellular pathways in the host and promote viral progeny. The observation that a variety of viruses utilize PP2A to alienate cellular behavior emphasizes the fundamental importance of PP2A in signal transduction. This review will primarily focus on discussing the uniqueness of PP2A regulation and uncovering the critical role played by protein-protein interactions in the modulation of PP2A signaling. Moreover, the place of PP2A in signaling pathways and its functional significance for human diseases will be discussed.
Collapse
Affiliation(s)
- E Sontag
- Department of Pathology/Neuropathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9073, USA.
| |
Collapse
|