1
|
Ford P, Rivarola V, Chara O, Blot-Chabaud M, Cluzeaud F, Farman N, Parisi M, Capurro C. Volume regulation in cortical collecting duct cells: role of AQP2. Biol Cell 2012; 97:687-97. [PMID: 15859948 DOI: 10.1042/bc20040116] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND INFORMATION The renal CCD (cortical collecting duct) plays a role in final volume and concentration of urine by a process that is regulated by the antidiuretic hormone, [arginine]vasopressin. This hormone induces an increase in water permeability due to the translocation of AQP2 (aquaporin 2) from the intracellular vesicles to the apical membrane of principal cells. During the transition from antidiuresis to diuresis, CCD cells are exposed to changes in environmental osmolality, and cell-volume regulation may be especially important for the maintenance of intracellular homoeostasis. Despite its importance, cell-volume regulation in CCD cells has not been widely investigated. Moreover, no studies have been carried out till date to evaluate the putative role of AQPs during this process in renal cells. RESULTS In the present study, we have studied the regulatory cell-volume responses to hypo-osmotic or hyperosmotic challenges in two CCD cell lines: one not expressing AQPs and the other stably transfected with AQP2. We have used a fluorescent probe technique in which the acquisition of single-cell kinetic data can be simultaneously recorded with the intracellular pH. Experiments with hyperosmotic mannitol media demonstrated that, independent of AQP2 expression, CCD cells shrink but fail to show regulatory volume increase, at least under the studied conditions. In contrast, under hypo-osmotic shocks, regulatory volume decrease occurs and the activation of these mechanisms is more rapid in AQP2 transfected cells. This regulatory response takes place in parallel with intracellular acidification, which is faster in cells expressing AQP2. The acidification and the initial regulatory volume decrease response were inhibited by glibenclamide and BaCl2 only in AQP2 cells. CONCLUSIONS These results suggest that increases in the osmotic water permeability due to the expression of AQP2 are critical for a rapid activation of regulatory volume decrease mechanisms, which would be linked to cystic fibrosis transmembrane conductance regulator and to barium-sensitive potassium channels.
Collapse
Affiliation(s)
- Paula Ford
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, piso 7, 1121 Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Boulkroun S, Ruffieux-Daidié D, Vitagliano JJ, Poirot O, Charles RP, Lagnaz D, Firsov D, Kellenberger S, Staub O. Vasopressin-inducible ubiquitin-specific protease 10 increases ENaC cell surface expression by deubiquitylating and stabilizing sorting nexin 3. Am J Physiol Renal Physiol 2008; 295:F889-900. [DOI: 10.1152/ajprenal.00001.2008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adjustment of Na+balance in extracellular fluids is achieved by regulated Na+transport involving the amiloride-sensitive epithelial Na+channel (ENaC) in the distal nephron. In this context, ENaC is controlled by a number of hormones, including vasopressin, which promotes rapid translocation of water and Na+channels to the plasma membrane and long-term effects on transcription of vasopressin-induced and -reduced transcripts. We have identified a mRNA encoding the deubiquitylating enzyme ubiquitin-specific protease 10 (Usp10), whose expression is increased by vasopressin at both the mRNA and the protein level. Coexpression of Usp10 in ENaC-transfected HEK-293 cells causes a more than fivefold increase in amiloride-sensitive Na+currents, as measured by whole cell patch clamping. This is accompanied by a three- to fourfold increase in surface expression of α- and γ-ENaC, as shown by cell surface biotinylation experiments. Although ENaC is well known to be regulated by its direct ubiquitylation, Usp10 does not affect the ubiquitylation level of ENaC, suggesting an indirect effect. A two-hybrid screen identified sorting nexin 3 (SNX3) as a novel substrate of Usp10. We show that it is a ubiquitylated protein that is degraded by the proteasome; interaction with Usp10 leads to its deubiquitylation and stabilization. When coexpressed with ENaC, SNX3 increases the channel's cell surface expression, similarly to Usp10. In mCCDcl1cells, vasopressin increases SNX3 protein but not mRNA, supporting the idea that the vasopressin-induced Usp10 deubiquitylates and stabilizes endogenous SNX3 and consequently promotes cell surface expression of ENaC.
Collapse
|
3
|
Rivarola V, Ford P, del Pilar Flamenco M, Galizia L, Capurro C. Arginine-Vasopressin Modulates Intracellular pH via V1 and V2 Receptors in Renal Collecting Duct Cells. Cell Physiol Biochem 2008; 20:549-58. [PMID: 17762181 DOI: 10.1159/000107538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2007] [Indexed: 11/19/2022] Open
Abstract
Arginine-vasopressin (AVP) has been proposed to be involved in the modulation of acid-base transporters; however, the nature of the mechanisms underlying AVP direct action on intracellular pH (pH(i)) in the cortical collecting duct (CCD) is not yet clearly defined. The aim of the present study was to elucidate which are the proteins implicated in AVP modulation of pH(i), as well as the receptors involved in these responses using a CCD cell line (RCCD(1)); pH(i) was monitored with the fluorescent dye BCECF in basal conditions and after stimulation with basolateral 10(-8) M AVP. Specific V1- or V2-receptor antagonists were also used. RT-PCR studies demonstrated that RCCD(1) cells express V1a and V2 receptors. Functional studies showed that while V2-receptor activation induced a biphasic response (alkalinization-acidification), V1-receptor activation resulted in an intracellular acidification. The V2-mediated alkalinization phase involves the activation of basolateral NHE-1 isoform of the Na(+)/H(+) exchanger while in the acidification phase CFTR is probably implicated. On the other hand, V1-mediated acidification was due to activation of a Cl(-)/HCO(3)(-) exchanger. We conclude that in RCCD(1) cells AVP selectively activates, via a complex of V1 and V2 receptor-mediated actions, different ion transporters linked to pH(i) regulation which might have physiological implications.
Collapse
Affiliation(s)
- Valeria Rivarola
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
4
|
Chara O, Ford P, Rivarola V, Parisi M, Capurro C. Asymmetry in the Osmotic Response of a Rat Cortical Collecting Duct Cell Line: Role of Aquaporin-2. J Membr Biol 2005; 207:143-50. [PMID: 16550485 DOI: 10.1007/s00232-005-0809-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 11/02/2005] [Indexed: 10/24/2022]
Abstract
Transition from antidiuresis to diuresis exposes cortical collecting duct cells (CCD) to asymmetrical changes in environment osmolality, inducing an osmotic stress, which activates numerous membrane-associated events. The aim of the present work was to investigate, either in the presence or not of AQP2, the transepithelial osmotic water permeability (P(osm)) following cell exposure to asymmetrical hyper- or hypotonic gradients. For this purpose, transepithelial net volume fluxes were recorded every minute in two CCD cell lines: one not expressing AQPs (WT-RCCD(1)) and another stably transfected with AQP2 (AQP2-RCCD(1)). Our results demonstrated that the rate of osmosis produced by a given hypotonic shock depends on the gradient direction (osmotic rectification) only in the presence of apical AQP2. In contrast, hypertonic shocks elicit P(osm) rectification independently of AQP2 expression, and this phenomenon may be linked to modulation of basolateral membrane permeability. No asymmetry in transepithelial resistance was observed under hypo- or hypertonicity, indicating that rectification cannot be attributed to a shunt through the tight junction path. We conclude that osmotic rectification may be explained in terms of dynamical changes in membrane permeability probably due to activation/incorporation of AQPs or transporters to the plasma membrane via some mechanism triggered by osmolality.
Collapse
Affiliation(s)
- O Chara
- Laboratorio de Biomembranas, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
5
|
Grikiniene J, Stakisaitis D, Tschaika M. Influence of Sodium Valproate on Sodium and Chloride Urinary Excretion in Rats, Gender Differences. Pharmacology 2005; 75:111-5. [PMID: 16103742 DOI: 10.1159/000087505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 06/29/2005] [Indexed: 11/19/2022]
Abstract
Evidence exists indicating that sodium valproate (VPA) increases diuresis in rats. The chloriuretic and natriuretic effect of VPA has not previously been investigated, so the aim of the present study was to define the peculiarities of 24-hour urinary sodium (Na) and chloride (Cl) excretion in young adult Wistar rats of both genders, and to evaluate the effects of VPA. 24-hour urinary Na, Cl, creatinine and pH levels were measured in 28 control intact Wistar rats and 26 Wistar rats after a single intragastric administration of 300 mg/kg VPA. After VPA administration, 24-hour diuresis and 24-hour diuresis per 100 g of body weight were significantly higher in VPA rats of both genders. 24-hour urine Na and Cl excretion were significantly higher in VPA male and VPA female rats than in gender-matched controls. The 24-hour urinary Cl excretion was found to be significantly higher in VPA male than in VPA female rats. The study data show that VPA, alongside the diuretic effect, enhances Na and Cl excretion with urine. The 24-hour chloriuretic response to VPA in male rats was significantly higher than in female rats. The mechanism of such a gender-related effect is not yet clear.
Collapse
Affiliation(s)
- Jurgita Grikiniene
- Centre of Pediatrics, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | | | | |
Collapse
|
6
|
Wallace DP, Christensen M, Reif G, Belibi F, Thrasher B, Herrell D, Grantham JJ. Electrolyte and fluid secretion by cultured human inner medullary collecting duct cells. Am J Physiol Renal Physiol 2002; 283:F1337-50. [PMID: 12388381 DOI: 10.1152/ajprenal.00165.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inner medullary collecting ducts (IMCD) are the final nephron segments through which urine flows. To investigate epithelial ion transport in human IMCD, we established primary cell cultures from initial (hIMCD(i)) and terminal (hIMCD(t)) inner medullary regions of human kidneys. AVP, PGE(2), and forskolin increased cAMP in both hIMCD(i) and hIMCD(t) cells. The effects of AVP and PGE2 were greatest in hIMCD(i); however, forskolin increased cAMP to the same extent in hIMCD(i) and hIMCD(t). Basal short-circuit current (I(SC)) of hIMCD(i) monolayers was 1.4 +/- 0.5 microA/cm2 and was inhibited by benzamil, a Na+ channel blocker. 8-Bromo-cAMP, AVP, PGE(2), and forskolin increased I(SC); the current was reduced by blocking PKA, apical Cl- channels, basolateral NKCC1 (a Na+ - K+ - 2Cl- cotransporter), and basolateral Cl-/HCO(3)(-) exchangers. In fluid transport studies, hIMCD(i) monolayers absorbed fluid in the basal state and forskolin reversed net fluid transport to secretion. In hIMCD(t) monolayers, basal current was not different from zero and cAMP had no effect on I(SC). We conclude that AVP and PGE2 stimulate cAMP-dependent Cl- secretion by hIMCD(i) cells, but not hIMCD(t) cells, in vitro. We suggest that salt secretion at specialized sites along human collecting ducts may be important in the formation of the final urine.
Collapse
Affiliation(s)
- Darren P Wallace
- Kidney Institute and Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Courtois-Coutry N, Le Moellic C, Boulkroun S, Fay M, Cluzeaud F, Escoubet B, Farman N, Blot-Chabaud M. Calcyclin is an early vasopressin-induced gene in the renal collecting duct. Role in the long term regulation of ion transport. J Biol Chem 2002; 277:25728-34. [PMID: 12000747 DOI: 10.1074/jbc.m112435200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Long-term effects of arginine vasopressin (AVP) in the kidney involve the transcription of unidentified genes. By subtractive hybridization experiments performed on the RCCD(1) cortical collecting duct cell line, we identified calcyclin as an early AVP-induced gene (1 h). Calcyclin is a calcium-binding protein involved in the transduction of intracellular signals. In the kidney, calcyclin was localized at the mRNA level in the glomerulus, all along the collecting duct, and in the epithelium lining the papilla. In RCCD(1) cells and in m-IMCD(3) inner medullary collecting duct cells, calcyclin was evidenced in the cytoplasm. Calcyclin mRNA levels were progressively increased by AVP treatment in RCCD(1) (1.7-fold at 4 h) and m-IMCD(3) (2-fold at 7.5 h) cells. In RCCD(1) cells, calcyclin protein levels were increased by 4 h of AVP treatment. In vivo, treatment of genetically vasopressin-deficient Brattleboro rats with AVP for 4 days induced an increase in both calcyclin and aquaporin-2 mRNA expression. Finally, introduction of anti-calcyclin antibodies into RCCD(1) cells by permeabilizing the plasma membrane prevented the long-term (but not short-term) increase in short-circuit current induced by AVP. Taken together, these results suggest that calcyclin is an early vasopressin-induced gene that participates in the late phase of the hormone response in transepithelial ion transport.
Collapse
Affiliation(s)
- Nathalie Courtois-Coutry
- INSERM U478, Institut Fédératif de Recherches 02, Faculté de Médecine Xavier Bichat, Université Paris 7, 16 rue Henri Huchard, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The evolution of the kidney has had a major role in the emigration of vertebrates from the sea onto dry land. The mammalian kidney has conserved to a remarkable extent many of the molecular and functional elements of primordial apocrine kidneys that regulate fluid balance and eliminate potentially toxic endogenous and xenobiotic molecules in the urine entirely by transepithelial secretion. However, these occult secretory processes in the proximal tubules and collecting ducts of mammalian kidneys have remained underappreciated in the last half of the twentieth century as investigators focused, to a large extent, on the mechanisms of glomerular filtration and tubule sodium chloride and fluid reabsorption. On the basis of evidence reviewed in this paper, we propose that transepithelial salt and fluid secretion mechanisms enable mammalian renal tubules to finely regulate extracellular fluid volume and composition day to day and maintain urine formation during the cessation of glomerular filtration.
Collapse
Affiliation(s)
- Jared J Grantham
- Kidney Institute, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | |
Collapse
|
9
|
Morales MM, Falkenstein D, Lopes AG. The cystic fibrosis transmembrane regulator (CFTR) in the kidney. AN ACAD BRAS CIENC 2000; 72:399-406. [PMID: 11028104 DOI: 10.1590/s0001-37652000000300013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cystic fibrosis transmembrane regulator (CFTR) is a Cl - channel. Mutations of this transporter lead to a defect of chloride secretion by epithelial cells causing the Cystic Fibrosis disease (CF). In spite of the high expression of CFTR in the kidney, patients with CF do not show major renal dysfunction, but it is known that both the urinary excretion of drugs and the renal capacity to concentrate and dilute urine is deficient. CFTR mRNA is expressed in all nephron segments and its protein is involved with chloride secretion in the distal tubule, and the principal cells of the cortical (CCD) and medullary (IMCD) collecting ducts. Several studies have demonstrated that CFTR does not only transport Cl - but also secretes ATP and, thus, controls other conductances such as Na+ (ENaC) and K+ (ROMK2) channels, especially in CCD. In the polycystic kidney the secretion of chloride through CFTR contributes to the cyst enlargement. This review is focused on the role of CFTR in the kidney and the implications of extracellular volume regulators, such as hormones, on its function and expression.
Collapse
Affiliation(s)
- M M Morales
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21949-900, Brazil
| | | | | |
Collapse
|