1
|
Minibayeva F, Beckett RP, Kranner I. Roles of apoplastic peroxidases in plant response to wounding. PHYTOCHEMISTRY 2015; 112:122-9. [PMID: 25027646 DOI: 10.1016/j.phytochem.2014.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/16/2014] [Accepted: 06/16/2014] [Indexed: 05/03/2023]
Abstract
Apoplastic class III peroxidases (EC 1.11.1.7) play key roles in the response of plants to pathogen infection and abiotic stresses, including wounding. Wounding is a common stress for plants that can be caused by insect or animal grazing or trampling, or result from agricultural practices. Typically, mechanical damage to a plant immediately induces a rapid release and activation of apoplastic peroxidases, and an oxidative burst of reactive oxygen species (ROS), followed by the upregulation of peroxidase genes. We discuss how plants control the expression of peroxidases genes upon wounding, and also the sparse information on peroxidase-mediated signal transduction pathways. Evidence reviewed here suggests that in many plants production of the ROS that comprise the initial oxidative burst results from a complex interplay of peroxidases with other apoplastic enzymes. Later responses following wounding include various forms of tissue healing, for example through peroxidase-dependent suberinization, or cell death. Limited data suggest that ROS-mediated death signalling during the wound response may involve the peroxidase network, together with other redox molecules. In conclusion, the ability of peroxidases to both generate and scavenge ROS plays a key role in the involvement of these enigmatic enzymes in plant stress tolerance.
Collapse
Affiliation(s)
- Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russian Federation.
| | - Richard Peter Beckett
- School of Life Sciences, PBag X01, Scottsville 3209, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| | - Ilse Kranner
- Institute of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Novo-Uzal E, Fernández-Pérez F, Herrero J, Gutiérrez J, Gómez-Ros LV, Bernal MÁ, Díaz J, Cuello J, Pomar F, Pedreño MÁ. From Zinnia to Arabidopsis: approaching the involvement of peroxidases in lignification. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3499-518. [PMID: 23956408 DOI: 10.1093/jxb/ert221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Zinnia elegans constitutes one of the most useful model systems for studying xylem differentiation, which simultaneously involves secondary cell wall synthesis, cell wall lignification, and programmed cell death. Likewise, the in vitro culture system of Z. elegans has been the best characterized as the differentiation of mesophyll cells into tracheary elements allows study of the biochemistry and physiology of xylogenesis free from the complexity that heterogeneous plant tissues impose. Moreover, Z. elegans has emerged as an excellent plant model to study the involvement of peroxidases in cell wall lignification. This is due to the simplicity and duality of the lignification pattern shown by the stems and hypocotyls, and to the basic nature of the peroxidase isoenzyme. This protein is expressed not only in hypocotyls and stems but also in mesophyll cells transdifferentiating into tracheary elements. Therefore, not only does this peroxidase fulfil all the catalytic requirements to be involved in lignification overcoming all restrictions imposed by the polymerization step, but also its expression is inherent in lignification. In fact, its basic nature is not exceptional since basic peroxidases are differentially expressed during lignification in other model systems, showing unusual and unique biochemical properties such as oxidation of syringyl moieties. This review focuses on the experiments which led to a better understanding of the lignification process in Zinnia, starting with the basic knowledge about the lignin pattern in this plant, how lignification takes place, and how a sole basic peroxidase with unusual catalytic properties is involved and regulated by hormones, H2O2, and nitric oxide.
Collapse
Affiliation(s)
- Esther Novo-Uzal
- Department of Plant Biology, University of Murcia, Murcia 30100, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Achary VMM, Parinandi NL, Panda BB. Aluminum induces oxidative burst, cell wall NADH peroxidase activity, and DNA damage in root cells of Allium cepa L. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:550-60. [PMID: 22865669 DOI: 10.1002/em.21719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/28/2012] [Accepted: 06/28/2012] [Indexed: 05/11/2023]
Abstract
Plants under stress incur an oxidative burst that involves a rapid and transient overproduction of reactive oxygen species (ROS: O(2) (•-) , H(2) O(2) , (•) OH). We hypothesized that aluminum (Al), an established soil pollutant that causes plant stress, would induce an oxidative burst through the activation of cell wall-NADH peroxidase (NADH-PX) and/or plasma membrane-associated NADPH oxidase (NADPH-OX), leading to DNA damage in the root cells of Allium cepa L. Growing roots of A. cepa were treated with Al(3+) (800 μM of AlCl(3) ) for 3 or 6 hr without or with the pretreatment of inhibitors specific to NADH-PX and NADPH-OX for 2 hr. At the end of the treatment, the extent of ROS generation, cell death, and DNA damage were determined. The cell wall-bound protein (CWP) fractions extracted from the untreated control and the Al-treated roots under the aforementioned experimental conditions were also subjected to in vitro studies, which measured the extent of activation of peroxidase/oxidase, generation of (•) OH, and DNA damage. Overall, the present study demonstrates that the cell wall-bound NADH-PX contributes to the Al-induced oxidative burst through the generation of ROS that lead to cell death and DNA damage in the root cells of A. cepa. Furthermore, the in vitro studies revealed that the CWP fraction by itself caused DNA damage in the presence of NADH, supporting a role for NADH-PX in the stress response. Altogether, this study underscores the crucial function of the cell wall-bound NADH-PX in the oxidative burst-mediated cell death and DNA damage in plants under Al stress.
Collapse
Affiliation(s)
- V Mohan M Achary
- Department of Botany, Molecular Biology and Genomics Laboratory, Berhampur University, Berhampur, India
| | | | | |
Collapse
|
4
|
Roach T, Beckett RP, Minibayeva FV, Colville L, Whitaker C, Chen H, Bailly C, Kranner I. Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds. PLANT, CELL & ENVIRONMENT 2010; 33:59-75. [PMID: 19843255 DOI: 10.1111/j.1365-3040.2009.02053.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reactive oxygen species (ROS) are implicated in seed death following dehydration in desiccation-intolerant 'recalcitrant' seeds. However, it is unknown if and how ROS are produced in the apoplast and if they play a role in stress signalling during desiccation. We studied intracellular damage and extracellular superoxide (O(2)(.-)) production upon desiccation in Castanea sativa seeds, mechanisms of O(2)(.-) production and the effect of exogenously supplied ROS. A transient increase in extracellular O(2)(.-) production by the embryonic axes preceded significant desiccation-induced viability loss. Thereafter, progressively more oxidizing intracellular conditions, as indicated by a significant shift in glutathione half-cell reduction potential, accompanied cell and axis death, coinciding with the disruption of nuclear membranes. Most hydrogen peroxide (H(2)O(2))-dependent O(2)(.-) production was found in a cell wall fraction that contained extracellular peroxidases (ECPOX) with molecular masses of approximately 50 kDa. Cinnamic acid was identified as a potential reductant required for ECPOX-mediated O(2)(.-) production. H(2)O(2), applied exogenously to mimic the transient ROS burst at the onset of desiccation, counteracted viability loss of sub-lethally desiccation-stressed seeds and of excised embryonic axes grown in tissue culture. Hence, extracellular ROS produced by embryonic axes appear to be important signalling components involved in wound response, regeneration and growth.
Collapse
Affiliation(s)
- Thomas Roach
- Seed Conservation Department, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex, UK
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Barceló AR, Laura VGR. Reactive Oxygen Species in Plant Cell Walls. REACTIVE OXYGEN SPECIES IN PLANT SIGNALING 2009. [DOI: 10.1007/978-3-642-00390-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA. Class III peroxidases in plant defence reactions. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:377-90. [PMID: 19073963 DOI: 10.1093/jxb/ern277] [Citation(s) in RCA: 435] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
When plants are attacked by pathogens, they defend themselves with an arsenal of defence mechanisms, both passive and active. The active defence responses, which require de novo protein synthesis, are regulated through a complex and interconnected network of signalling pathways that mainly involve three molecules, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET), and which results in the synthesis of pathogenesis-related (PR) proteins. Microbe or elicitor-induced signal transduction pathways lead to (i) the reinforcement of cell walls and lignification, (ii) the production of antimicrobial metabolites (phytoalexins), and (iii) the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Among the proteins induced during the host plant defence, class III plant peroxidases (EC 1.11.1.7; hydrogen donor: H(2)O(2) oxidoreductase, Prxs) are well known. They belong to a large multigene family, and participate in a broad range of physiological processes, such as lignin and suberin formation, cross-linking of cell wall components, and synthesis of phytoalexins, or participate in the metabolism of ROS and RNS, both switching on the hypersensitive response (HR), a form of programmed host cell death at the infection site associated with limited pathogen development. The present review focuses on these plant defence reactions in which Prxs are directly or indirectly involved, and ends with the signalling pathways, which regulate Prx gene expression during plant defence. How they are integrated within the complex network of defence responses of any host plant cell will be the cornerstone of future research.
Collapse
Affiliation(s)
- L Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Achary VMM, Jena S, Panda KK, Panda BB. Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 70:300-10. [PMID: 18068230 DOI: 10.1016/j.ecoenv.2007.10.022] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 10/19/2007] [Accepted: 10/27/2007] [Indexed: 05/18/2023]
Abstract
Aluminium (Al) was evaluated for induction of oxidative stress and DNA damage employing the growing roots of Allium cepa L. as the assay system. Intact roots of A. cepa were treated with different concentrations, 0, 1, 10, 50, 100, or 200 microM of aluminium chloride, at pH 4.5 for 4 h (or 2 h for comet assay) at room temperature, 25+/-1 degrees C. Following treatment the parameters investigated in root tissue were Al-uptake, cell death, extra cellular generation of reactive oxygen intermediates (ROI), viz. O(2)(*-), H(2)O(2) and (*)OH, lipid peroxidation, protein oxidation, activities of antioxidant enzymes namely catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX); and DNA damage, assessed by comet assay. The findings indicated that Al triggered generation of extra-cellular ROI following a dose-response. Through application of specific enzyme inhibitors it was demonstrated that extra-cellular generation of ROI was primarily due to the activity of cell wall bound NADH-PX. Generation of ROI in root tissue as well as cell death was better correlated to the levels of root Al-uptake rather than to the concentrations of Al in ambient experimental solutions. Induction of lipid peroxidation and protein oxidation by Al were statistically significant. Whereas Al inhibited CAT activity, enhanced SOD, GPX and APX activities significantly; that followed dose-response. Comet assay provided evidence that Al induced DNA damage in a range of concentrations 50-200 microM, which was comparable to that induced by ethylmethane sulfonate (EMS), an alkylating mutagen served as the positive control. The findings provided evidence that Al comparable to biotic stress induced oxidative burst at the cell surface through up- or down-regulation of some of the key enzymes of oxidative metabolism ultimately resulting in oxidative stress leading to DNA damage and cell death in root cells of A. cepa.
Collapse
Affiliation(s)
- V Mohan Murali Achary
- Molecular Biology and Tissue Culture Laboratory, Department of Botany, Berhampur University, Berhampur 760007, India
| | | | | | | |
Collapse
|
8
|
Qin WM, Lan WZ, Yang X. Involvement of NADPH oxidase in hydrogen peroxide accumulation by Aspergillus niger elicitor-induced Taxus chinensis cell cultures. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:355-361. [PMID: 15128022 DOI: 10.1078/0176-1617-01254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
After determining that hydrogen peroxide (H2O2) accumulation induced by a fungal elicitor from Aspergillus niger was from the superoxide dismutase-catalyzed dismutation of superoxide radical, the site of H2O2 generation in cell suspension cultures of Taxus chinensis was studied. The results showed that 90% and 10% of the elicitor-induced H2O2 accumulation respectively appeared in intracellular and extracellular fractions of cells, and that the elicitor-induced H2O2 accumulation in protoplasts and plasma membranes was similar to that in intact cells, indicating that the site of H2O2 accumulation was plasma membranes but not in extracellular fraction of Taxus cells. The H2O2 forming enzyme was also investigated. The elicitor-induced H2O2 accumulation in intact cells was not changed by loss of apoplastic peroxidase (POD) by the washing, and the H2O2 accumulation in plasma membranes was inhibited by the mammalian neutrophil NAD(P)H oxidase inhibitor diphenylene iodonium (DPI), but was slightly affected by exogenous POD and its inhibitor. Furthermore, in plasma membranes, the H2O2 accumulation was more significantly enhanced by NADPH than by NADH, and the former was more obviously decreased by DPI than the latter. The present results show that NADPH oxidase in plasma membranes is involved in H2O2 accumulation in fungal elicitor-induced Taxus chinensis cell cultures.
Collapse
Affiliation(s)
- Wen-Min Qin
- Department of Biology, University of Waterloo, ON N2L 3G1, Canada.
| | | | | |
Collapse
|
9
|
Pomar F, Caballero N, Pedreño M, Ros Barceló A. H(2)O(2) generation during the auto-oxidation of coniferyl alcohol drives the oxidase activity of a highly conserved class III peroxidase involved in lignin biosynthesis. FEBS Lett 2002; 529:198-202. [PMID: 12372600 DOI: 10.1016/s0014-5793(02)03339-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Characterization of lignified Zinnia elegans hypocotyls by both alkaline nitrobenzene oxidation and thioacidolysis reveals that coniferyl alcohol units are mainly found as part of 4-O-linked end groups and aryl-glycerol-beta-aryl ether (beta-O-4) structures. Z. elegans hypocotyls also contain a basic peroxidase (EC 1.11.1.7) capable of oxidizing coniferyl alcohol in the absence of H(2)O(2). Results showed that the oxidase activity of the Z. elegans basic peroxidase is stimulated by superoxide dismutase, and inhibited by catalase and anaerobic conditions. Results also showed that the oxidase activity of this peroxidase is due to an evolutionarily gained optimal adaptation of the enzyme to the microM H(2)O(2) concentrations generated during the auto-oxidation of coniferyl alcohol, the stoichiometry of the chemical reaction (mol coniferyl alcohol auto-oxidized/mol H(2)O(2) formed) being 0.496. These results therefore suggest that the H(2)O(2) generated during the auto-oxidation of coniferyl alcohol is the main factor that drives the unusual oxidase activity of this highly conserved lignin-synthesizing class III peroxidase.
Collapse
Affiliation(s)
- Federico Pomar
- Department of Plant Biology (Plant Physiology), University of Murcia, E-30100 Murcia, Spain
| | | | | | | |
Collapse
|
10
|
Kawano T, Pinontoan R, Uozumi N, Morimitsu Y, Miyake C, Asada K, Muto S. Phenylethylamine-induced generation of reactive oxygen species and ascorbate free radicals in tobacco suspension culture: mechanism for oxidative burst mediating Ca2+ influx. PLANT & CELL PHYSIOLOGY 2000; 41:1259-66. [PMID: 11092911 DOI: 10.1093/pcp/pcd053] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the previous paper [Kawano et al. (2000a) Plant Cell Physiol. 41: 1251], we demonstrated that addition of phenylethylamine (PEA) and benzylamine can induce an immediate and transient burst of active oxygen species (AOS) in tobacco suspension culture. Detected AOS include H2O2, superoxide anion and hydroxyl radicals. Use of several inhibitors suggested the presence of monoamine oxidase-like H2O2-generating activity in the cellular soluble fraction. It was also suggested that peroxidase(s) or copper amine oxidase(s) are involved in the extracellular superoxide production as a consequence of H2O2 production. Since more than 85% of the PEA-dependent AOS generating activity was localized in the extracellular space (extracellular fluid + cell wall), extracellularly secreted enzymes, probably peroxidases, may largely contribute to the oxidative burst induced by PEA. The PEA-induced AOS generation was also observed in the horseradish peroxidase (HRP) reaction mixture, supporting the hypothesis that peroxidases catalyze the oxidation of PEA leading to AOS generation. In addition to AOS production, we observed that PEA induced an increase in monodehydroascorbate radicals (MDA) in the cell suspension culture and in HRP reaction mixture using electron spin resonance spectroscopy and the newly invented MDA reductase-coupled method. Here we report that MDA production is an indicator of peroxidase-mediated generation of PEA radical species in tobacco suspension culture.
Collapse
Affiliation(s)
- T Kawano
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | | | | | |
Collapse
|