1
|
Pustahija F, Bašić N, Siljak-Yakovlev S. Karyotype Variability in Wild Narcissus poeticus L. Populations from Different Environmental Conditions in the Dinaric Alps. PLANTS (BASEL, SWITZERLAND) 2024; 13:208. [PMID: 38256761 PMCID: PMC10818684 DOI: 10.3390/plants13020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Narcissus poeticus L. (Amaryllidaceae), a facultative serpentinophyte, is a highly variable species and particularly important ancestor of cultivated daffodils, but is rarely studied in field populations. This study, based on natural populations in the Balkans, focused on karyotype variability, genome size, ploidy and the presence of B chromosomes. Thirteen native populations from different environmental and soil conditions were collected and analyzed using flow cytometry to estimate nuclear genome size, fluorescence in situ hybridization (FISH) for physical mapping of rDNA, fluorochrome labeling (chromomycin and Hoechst) for heterochromatin organization and silver nitrate staining of nucleoli for determining rRNA gene activity. The organization of rDNA and natural triploids is reported here for the first time. The presence of individuals with B chromosomes (in 9/13 populations) and chromosomal rearrangements was also detected. The observed B chromosome showed three different morphotypes. The most frequent submetacentric type showed four different patterns, mainly with active ribosomal genes. The results obtained show that N. poeticus has a dynamic genome with variable genome size due to the presence of polyploidy, B chromosomes and chromosomal rearrangements. It is hypothesized that the observed changes reflect the response of the genome to different environmental conditions, where individuals with B chromosomes appear to have certain adaptive advantages.
Collapse
Affiliation(s)
- Fatima Pustahija
- Faculty of Forestry, University of Sarajevo, Zagrebačka 20, 71000 Sarajevo, Bosnia and Herzegovina
- Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, bâtiment 680–12, route 128, 91190 Gif-sur-Yvette, France
| | - Neđad Bašić
- Faculty of Forestry, University of Sarajevo, Zagrebačka 20, 71000 Sarajevo, Bosnia and Herzegovina
| | - Sonja Siljak-Yakovlev
- Ecologie, Systématique et Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, bâtiment 680–12, route 128, 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Bhowmick BK, Sarkar S, Roychowdhury D, Patil SD, Lekhak MM, Ohri D, Rama Rao S, Yadav SR, Verma RC, Dhar MK, Raina SN, Jha S. Allium cytogenetics: a critical review on the Indian taxa. COMPARATIVE CYTOGENETICS 2023; 17:129-156. [PMID: 37304149 PMCID: PMC10252142 DOI: 10.3897/compcytogen.17.98903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/28/2023] [Indexed: 06/13/2023]
Abstract
The genus Allium Linnaeus, 1753 (tribe Allieae) contains about 800 species worldwide of which almost 38 species are reported in India, including the globally important crops (onion, garlic, leek, shallot) and many wild species. A satisfactory chromosomal catalogue of Allium species is missing which has been considered in the review for the species occurring in India. The most prominent base number is x=8, with few records of x=7, 10, 11. The genome size has sufficient clues for divergence, ranging from 7.8 pg/1C to 30.0 pg/1C in diploid and 15.16 pg/1C to 41.78 pg/1C in polyploid species. Although the karyotypes are seemingly dominated by metacentrics, substantial variation in nucleolus organizing regions (NORs) is noteworthy. The chromosomal rearrangement between A.cepa Linnaeus, 1753 and its allied species has paved way to appreciate genomic evolution within Allium. The presence of a unique telomere sequence and its conservation in Allium sets this genus apart from all other Amaryllids and supports monophyletic origin. Any cytogenetic investigation regarding NOR variability, telomere sequence and genome size in the Indian species becomes the most promising field to decipher chromosome evolution against the background of species diversity and evolution, especially in the Indian subcontinent.
Collapse
Affiliation(s)
- Biplab Kumar Bhowmick
- Department of Botany, Scottish Church College, 1&3, Urquhart Square, Kolkata- 700006, West Bengal, IndiaDepartment of Botany, Scottish Church CollegeKolkataIndia
| | - Sayantika Sarkar
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata- 700019, West Bengal, IndiaUniversity of CalcuttaKolkataIndia
| | - Dipasree Roychowdhury
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata- 700019, West Bengal, IndiaUniversity of CalcuttaKolkataIndia
| | - Sayali D. Patil
- Angiosperm Taxonomy Laboratory, Department of Botany, Shivaji University, Kolhapur, Maharashtra- 416004, IndiaShivaji UniversityKolhapurIndia
| | - Manoj M. Lekhak
- Angiosperm Taxonomy Laboratory, Department of Botany, Shivaji University, Kolhapur, Maharashtra- 416004, IndiaShivaji UniversityKolhapurIndia
| | - Deepak Ohri
- Amity Institute of Biotechnology, Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Lucknow- 226028, Uttar Pradesh, IndiaAmity University Uttar PradeshLucknowIndia
| | - Satyawada Rama Rao
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya- 793022, IndiaNorth-Eastern Hill UniversityShillongIndia
| | - S. R. Yadav
- Angiosperm Taxonomy Laboratory, Department of Botany, Shivaji University, Kolhapur, Maharashtra- 416004, IndiaShivaji UniversityKolhapurIndia
| | - R. C. Verma
- School of Studies in Botany, Vikram University, Ujjain, Madhya Pradesh 456010, IndiaVikram UniversityUjjainIndia
| | - Manoj K. Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir- 180006, IndiaUniversity of JammuJammuIndia
| | - S. N. Raina
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh- 201313, IndiaAmity UniversityNoidaIndia
| | - Sumita Jha
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata- 700019, West Bengal, IndiaUniversity of CalcuttaKolkataIndia
| |
Collapse
|
3
|
Samad NA, Hidalgo O, Saliba E, Siljak-Yakovlev S, Strange K, Leitch IJ, Dagher-Kharrat MB. Genome Size Evolution and Dynamics in Iris, with Special Focus on the Section Oncocyclus. PLANTS 2020; 9:plants9121687. [PMID: 33271865 PMCID: PMC7760388 DOI: 10.3390/plants9121687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022]
Abstract
Insights into genome size dynamics and its evolutionary impact remain limited by the lack of data for many plant groups. One of these is the genus Iris, of which only 53 out of c. 260 species have available genome sizes. In this study, we estimated the C-values for 41 species and subspecies of Iris mainly from the Eastern Mediterranean region. We constructed a phylogenetic framework to shed light on the distribution of genome sizes across subgenera and sections of Iris. Finally, we tested evolutionary models to explore the mode and tempo of genome size evolution during the radiation of section Oncocyclus. Iris as a whole displayed a great variety of C-values; however, they were unequally distributed across the subgenera and sections, suggesting that lineage-specific patterns of genome size diversification have taken place within the genus. The evolutionary model that best fitted our data was the speciational model, as changes in genome size appeared to be mainly associated with speciation events. These results suggest that genome size dynamics may have contributed to the radiation of Oncocyclus irises. In addition, our phylogenetic analysis provided evidence that supports the segregation of the Lebanese population currently attributed to Iris persica as a distinct species.
Collapse
Affiliation(s)
- Nour Abdel Samad
- Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Campus Sciences et Technologies, Université Saint-Joseph, Mar Roukos, Mkalles, BP: 1514 Riad el Solh, Beirut 1107 2050, Lebanon; (N.A.S.); (E.S.)
- Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91400 Orsay, France;
| | - Oriane Hidalgo
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK; (K.S.); (I.J.L.)
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., 08038 Barcelona, Spain
- Correspondence: (O.H.); (M.B.D.-K.)
| | - Elie Saliba
- Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Campus Sciences et Technologies, Université Saint-Joseph, Mar Roukos, Mkalles, BP: 1514 Riad el Solh, Beirut 1107 2050, Lebanon; (N.A.S.); (E.S.)
| | - Sonja Siljak-Yakovlev
- Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91400 Orsay, France;
| | - Kit Strange
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK; (K.S.); (I.J.L.)
| | - Ilia J. Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK; (K.S.); (I.J.L.)
| | - Magda Bou Dagher-Kharrat
- Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Campus Sciences et Technologies, Université Saint-Joseph, Mar Roukos, Mkalles, BP: 1514 Riad el Solh, Beirut 1107 2050, Lebanon; (N.A.S.); (E.S.)
- Correspondence: (O.H.); (M.B.D.-K.)
| |
Collapse
|
4
|
Dhar MK, Sharma M, Bhat A, Chrungoo NK, Kaul S. Functional genomics of apocarotenoids in saffron: insights from chemistry, molecular biology and therapeutic applications. Brief Funct Genomics 2017; 16:336-347. [DOI: 10.1093/bfgp/elx003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
5
|
Wang N, McAllister HA, Bartlett PR, Buggs RJA. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae). ANNALS OF BOTANY 2016; 117:1023-35. [PMID: 27072644 PMCID: PMC4866320 DOI: 10.1093/aob/mcw048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/09/2015] [Accepted: 01/19/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Betula L. (birch) is a genus of approx. 60 species, subspecies or varieties with a wide distribution in the northern hemisphere, of ecological and economic importance. A new classification of Betula has recently been proposed based on morphological characters. This classification differs somewhat from previously published molecular phylogenies, which may be due to factors such as convergent evolution, hybridization, incomplete taxon sampling or misidentification of samples. While chromosome counts have been made for many species, few have had their genome size measured. The aim of this study is to produce a new phylogenetic and genome size analysis of the genus. METHODS Internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were sequenced for 76 Betula samples verified by taxonomic experts, representing approx. 60 taxa, of which approx. 24 taxa have not been included in previous phylogenetic analyses. A further 49 samples from other collections were also sequenced, and 108 ITS sequences were downloaded from GenBank. Phylogenetic trees were built for these sequences. The genome sizes of 103 accessions representing nearly all described species were estimated using flow cytometry. KEY RESULTS As expected for a gene tree of a genus where hybridization and allopolyploidy occur, the ITS tree shows clustering, but not resolved monophyly, for the morphological subgenera recently proposed. Most sections show some clustering, but species of the dwarf section Apterocaryon are unusually scattered. Betula corylifolia (subgenus Nipponobetula) unexpectedly clusters with species of subgenus Aspera Unexpected placements are also found for B. maximowicziana, B. bomiensis, B. nigra and B. grossa Biogeographical disjunctions were found within Betula between Europe and North America, and also disjunctions between North-east and South-west Asia. The 2C-values for Betula ranged from 0·88 to 5·33 pg, and polyploids are scattered widely throughout the ITS phylogeny. Species with large genomes tend to have narrow ranges. CONCLUSIONS Betula grossa may have formed via allopolyploidization between parents in subgenus Betula and subgenus Aspera. Betula bomiensis may also be a wide allopolyploid. Betula corylifolia may be a parental species of allopolyploids in the subsection Chinenses Placements of B. maximowicziana, B. michauxii and B. nigra need further investigation. This analysis, in line with previous studies, suggests that section Apterocaryon is not monophyletic and thus dwarfism has evolved repeatedly in different lineages of Betula Polyploidization has occurred many times independently in the evolution of Betula.
Collapse
Affiliation(s)
- Nian Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Hugh A McAllister
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK and
| | - Paul R Bartlett
- Stone Lane Gardens, Stone Farm, Chagford, Devon TQ13 8JU, UK
| | - Richard J A Buggs
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK,
| |
Collapse
|
6
|
Kopecký D, Lukaszewski AJ, Dolezel J. Cytogenetics of Festulolium (Festuca x Lolium hybrids). Cytogenet Genome Res 2008; 120:370-83. [PMID: 18504366 DOI: 10.1159/000121086] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2007] [Indexed: 11/19/2022] Open
Abstract
Grasses are the most important and widely cultivated crops. Among them, ryegrasses (Lolium spp.) and fescues (Festuca spp.) provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Species from the two genera display complementary agronomic characteristics and are often grown in mixtures. Breeding efforts to combine desired features in single entities culminated with the production of Festuca x Lolium hybrids. The so called Festuloliums enjoy a considerable commercial success with numerous cultivars registered all over the world. They are also very intriguing from a strictly cytogenetic point of view as the parental chromosomes recombine freely in hybrids. Until a decade ago this phenomenon was only known in general quantitative terms. The introduction of molecular cytogenetic tools such as FISH and GISH permitted detailed studies of intergeneric chromosome recombination and karyotyping of Festulolium cultivars. These tools were also invaluable in revealing the origin of polyploid fescues, and facilitated the development of chromosome substitution and introgression lines and physical mapping of traits of interest. Further progress in this area will require the development of a larger set of cytogenetic markers and high-resolution cytogenetic maps. It is expected that the Lolium-Festuca complex will continue providing opportunities for breeding superior grass cultivars and the complex will remain an attractive platform for fundamental research of the early steps of hybrid speciation and interaction of parental genomes, as well as the processes of chromosome pairing, elimination and recombination.
Collapse
Affiliation(s)
- D Kopecký
- Laboratory of Molecular Cytogenetics and Cytometry, Institute of Experimental Botany, Olomouc, Czech Republic.
| | | | | |
Collapse
|
7
|
Abstract
Two main attempts have been suggested for the biological significance of endopolyploidy: (i) provision of high DNA amounts to support high synthetic demands in certain cells and (ii) compensation for a lack of nuclear DNA in species with small genomes. However, in seed plants, the positive correlation between DNA content and cell volume of endopolyploid cells suggests other possibilities. Cell size paralleled by the endopolyploidy level has an impact on growth and development. Endopolyploidy levels in turn are characteristic for a given species and even families, reflecting the adaptation to certain habitats during phylogeny. Furthermore, endopolyploidy levels vary to some degree between individuals of one species in response to different environmental conditions. In addition, endopolyploidy differs between different tissues suggests that a certain cell size is advantageous for a given cell function. This article reviews these findings and discusses more conclusive possible functions of endopolyploidy.
Collapse
Affiliation(s)
- Martin Barow
- Institute of Plants Genetics and Crop Plant Research Gatersleben, Germany.
| |
Collapse
|
8
|
Correlation between nuclear DNA values and differing optimal ploidy levels inNarcissus, Hyacinthus andTulipa cultivars. Genetica 1993. [DOI: 10.1007/bf01435172] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Cortés F, Mateos S, Escalza P. Acetaldehyde induces mature endoreduplicatedAllium cepa root cells to divide. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf01942854] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Marciniak K, Bilecka A. Changes in nuclear and nucleolar protein content during the growth and differentiation of root parenchyma cells in plant species with different DNA-endoreplication dynamics. HISTOCHEMISTRY 1986; 85:51-6. [PMID: 3733472 DOI: 10.1007/bf00508653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Using cytophotometric procedures, we measured the nuclear and nucleolar protein content of successive zones of growth and differentiation in consecutive (1-7 mm) root segments obtained from eight species of the Angiospermae after staining the preparations with Feulgen-Naphthol Yellow S (F-NYS). In meristematic cells the nuclear and nucleolar protein content was found to double during the cell cycle. In species in which differentiation occurs at the same time as nuclear DNA endoreplication, i.e. Vicia faba subsp. minor, V. faba subsp. major, Pisum sativum, Hordeum vulgare and Amaryllis belladonna, the pool of nuclear proteins observed during the G2 phase of the cell cycle was seen in the differentiated zone in nuclei containing 8C DNA. Species in which differentiation is not accompanied by the process of nuclear DNA endoreplication, i.e. Levisticum officinale, Tulipa kaufmanniana and Haemanthus katharinae, exhibited the highest nuclear proteins content during the G2 phase of the cell cycle; comparably high values were not found in the differentiated zone. A decrease in nucleolar protein content was observed during the process of differentiation, this tendency being more evident in the studied species that do not exhibit endoreplication.
Collapse
|
11
|
Patankar S, Ranjekar PK. Condensed chromatin and its underreplication during root differentiation in leguminosae. PLANT CELL REPORTS 1984; 3:250-253. [PMID: 24253579 DOI: 10.1007/bf00269305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/1984] [Revised: 10/22/1984] [Indexed: 06/02/2023]
Abstract
Interphase nuclear structure was studied in 15 leguminous species. Eleven species showed chromocentric interphase nuclei while the remaining 4 had reticulate nuclei. The number of chromocenters appeared to be dependent on the number of chromosomes (2n). The total proportion of condensed chromatin as determined by planimetry was found to vary from 11-24% in chromocentric nuclei and 29-62% in reticulate nuclei. The condensed chromatin amount showed a direct correlation with the nuclear DNA content (2C). Though the interphase nuclear structure remained same in differentiated cells, the amount of condensed chromatin was considerably less than that in the meristematic cells, indicating underreplication of heterochromatin during differentiation. HCl-Giemsa method seems to be the simplest method for detection of underreplication in plants.
Collapse
Affiliation(s)
- S Patankar
- Biochemistry Division, National Chemical Laboratory, 411 008, Poona, India
| | | |
Collapse
|
12
|
Olszewska MJ, Osiecka R. The Relationship between 2 C DNA Content, Systematic Position, and the Level of Nuclear DNA Endoreplication During Differentiation of Root Parenchyma in Some Dicotyledonous Shrubs and Trees. Comparison with Herbaceous Species. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/s0015-3796(84)80021-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Olszewska MJ, Osiecka R. The Relationship between 2 C DNA Content, Life Cycle Type, Systematic Position and the Dynamics of DNA Endoreplication in Parenchyma Nuclei during Growth and Differentiation of Roots in some Dicotyledonous Herbaceous Species. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/s0015-3796(83)80073-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|