1
|
Lu Y, Cao Y, Guo X, Gao Y, Chen X, Zhang Z, Ge Z, Chu D. Notch-Targeted Therapeutic in Colorectal Cancer by Notch1 Attenuation Via Tumor Microenvironment-Responsive Cascade DNA Delivery. Adv Healthc Mater 2024; 13:e2400797. [PMID: 38726796 DOI: 10.1002/adhm.202400797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Indexed: 06/04/2024]
Abstract
The Notch signaling is a key molecular pathway that regulates cell fate and development. Aberrant Notch signaling can lead to carcinogenesis and progression of malignant tumors. However, current therapies targeting Notch pathway lack specificity and induce high toxicity. In this report, a tumor microenvironment-responsive and injectable hydrogel is designed to load plasmid DNA complexes as a cascade gene delivery system to achieve precise Notch-targeted gene therapy of colorectal cancer (CRC). The hydrogels are prepared through cross-linking between phenylboric acid groups containing poly(oligo(ethylene glycol)methacrylate) (POEGMA) and epigallocatechin gallate (EGCG), used to load the complexes between plasmid DNA encoding short hairpin RNAs of Notch1 (shNotch1) and fluorinated polyamidoamine (PAMAM-F) (PAMAM-F/shNotch1). In response to low pH and H2O2 in tumor microenvironment, the hydrogel can be dissociated and release the complexes for precise delivery of shNotch1 into tumor cells and inhibit Notch1 activity to suppress malignant biological behaviors of CRC. In the subcutaneous tumor model of CRC, PAMAM-F/shNotch1-loaded hydrogels can accurately attenuate Notch1 activity and significantly inhibit tumor growth without affecting Notch signal in adjacent normal tissues. Therefore, this therapeutic system can precisely inhibit Notch1 signal in CRC with high responsiveness and low toxicity, providing a promising Notch-targeted gene therapeutic for human malignancy.
Collapse
Affiliation(s)
- Yan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yufei Cao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaowen Guo
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yijie Gao
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xue Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zixi Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhishen Ge
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
2
|
Malyutina S, Chervova O, Maximov V, Nikitenko T, Ryabikov A, Voevoda M. Blood-Based Epigenetic Age Acceleration and Incident Colorectal Cancer Risk: Findings from a Population-Based Case-Control Study. Int J Mol Sci 2024; 25:4850. [PMID: 38732069 PMCID: PMC11084311 DOI: 10.3390/ijms25094850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
This study investigates the association between epigenetic age acceleration (EAA) derived from DNA methylation and the risk of incident colorectal cancer (CRC). We utilized data from a random population sample of 9,360 individuals (men and women, aged 45-69) from the HAPIEE Study who had been followed up for 16 years. A nested case-control design yielded 35 incident CRC cases and 354 matched controls. Six baseline epigenetic age (EA) measures (Horvath, Hannum, PhenoAge, Skin and Blood (SB), BLUP, and Elastic Net (EN)) were calculated along with their respective EAAs. After adjustment, the odds ratios (ORs) for CRC risk per decile increase in EAA ranged from 1.20 (95% CI: 1.04-1.39) to 1.44 (95% CI: 1.21-1.76) for the Horvath, Hannum, PhenoAge, and BLUP measures. Conversely, the SB and EN EAA measures showed borderline inverse associations with ORs of 0.86-0.87 (95% CI: 0.76-0.99). Tertile analysis reinforced a positive association between CRC risk and four EAA measures (Horvath, Hannum, PhenoAge, and BLUP) and a modest inverse relationship with EN EAA. Our findings from a prospective population-based-case-control study indicate a direct association between incident CRC and four markers of accelerated baseline epigenetic age. In contrast, two markers showed a negative association or no association. These results warrant further exploration in larger cohorts and may have implications for CRC risk assessment and prevention.
Collapse
Affiliation(s)
- Sofia Malyutina
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia; (V.M.); (T.N.); (A.R.); (M.V.)
| | | | - Vladimir Maximov
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia; (V.M.); (T.N.); (A.R.); (M.V.)
| | - Tatiana Nikitenko
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia; (V.M.); (T.N.); (A.R.); (M.V.)
| | - Andrew Ryabikov
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia; (V.M.); (T.N.); (A.R.); (M.V.)
| | - Mikhail Voevoda
- Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics SB RAS, Novosibirsk 630089, Russia; (V.M.); (T.N.); (A.R.); (M.V.)
| |
Collapse
|
3
|
Jayathilake AG, Luwor RB, Nurgali K, Su XQ. Molecular Mechanisms Associated with the Inhibitory Role of Long Chain n-3 PUFA in Colorectal Cancer. Integr Cancer Ther 2024; 23:15347354241243024. [PMID: 38708673 PMCID: PMC11072084 DOI: 10.1177/15347354241243024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/14/2024] [Accepted: 03/11/2024] [Indexed: 05/07/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the world. Multiple evidence suggests that there is an association between excess fat consumption and the risk of CRC. The long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential for human health, and both in vitro and in vivo studies have shown that these fatty acids can prevent CRC development through various molecular mechanisms. These include the modulation of arachidonic acid (AA) derived prostaglandin synthesis, alteration of growth signaling pathways, arrest of the cell cycle, induction of cell apoptosis, suppression of angiogenesis and modulation of inflammatory response. Human clinical studies found that LC n-3 PUFA combined with chemotherapeutic agents can improve the efficacy of treatment and reduce the dosage of chemotherapy and associated side effects. In this review, we discuss comprehensively the anti-cancer effects of LC n-3 PUFA on CRC, with a main focus on the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Rodney Brain Luwor
- The University of Melbourne, Melbourne, VIC, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
- Australian Institute for Muscular Skeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Xiao Qun Su
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
de Oliveira C, Martins SFF, Gonçalves PG, Limone GA, Longatto-Filho A, Reis RM, Bidinotto LT. Low EGFL7 expression is associated with high lymph node spread and invasion of lymphatic vessels in colorectal cancer. Sci Rep 2023; 13:19783. [PMID: 37957249 PMCID: PMC10643678 DOI: 10.1038/s41598-023-47132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023] Open
Abstract
Studies indicate EGFL7 as an important gene in controlling angiogenesis and cancer growth, including in colorectal cancer (CRC). Anti-EGFL7 agents are being explored, yet without promising results. Therefore, the role of EGFL7 in CRC carcinogenesis should be investigated. This study aimed to evaluate the prognostic value of EGFL7 expression in CRC and the signaling pathways influenced by this gene. EGFL7 expression was evaluated through immunohistochemistry in 463 patients diagnosed with CRC and further associated with clinicopathological data, angiogenesis markers and survival. In silico analyzes were performed with colon adenocarcinoma data from The Cancer Genome Atlas. Analysis of enriched gene ontology and pathways were performed using the differentially expressed genes. 77.7% of patients presented low EGFL7 expression, which was associated with higher lymph node spread and invasion of lymphatic vessels, with no impact on survival. Additionally, low EGFL7 expression was associated with high VEGFR2 expression. Finally, we found in silico that EGFL7 expression was associated with cell growth, angiogenesis, and important pathways such as VEGF, Rap-1, MAPK and PI3K/Akt. Expression of EGFL7 in tumor cells may be associated with important pathways that can alter functions related to tumor invasive processes, preventing recurrence and metastatic process.
Collapse
Affiliation(s)
- Cristiane de Oliveira
- Botucatu Medical School, Department of Pathology, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784 400, Brazil
| | - Sandra Fátima Fernandes Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Colorectal Unit, Braga Hospital, Braga, Portugal
| | - Paola Gyuliane Gonçalves
- Botucatu Medical School, Department of Pathology, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784 400, Brazil
| | | | - Adhemar Longatto-Filho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784 400, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Medical Laboratory of Medical Investigation (LIM) 14, Department of Pathology, Medical School, University of São Paulo, São Paulo, Brazil
- School of Medicine, University of Minho, Braga, Portugal
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784 400, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Lucas Tadeu Bidinotto
- Botucatu Medical School, Department of Pathology, UNESP - Univ. Estadual Paulista, Botucatu, São Paulo, Brazil.
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784 400, Brazil.
- Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, São Paulo, Brazil.
| |
Collapse
|
5
|
Peng Y, Zhao J, Yin F, Sharen G, Wu Q, Chen Q, Sun X, Yang J, Wang H, Zhang D. A methylation-driven gene panel predicts survival in patients with colon cancer. FEBS Open Bio 2021; 11:2490-2506. [PMID: 34184409 PMCID: PMC8409306 DOI: 10.1002/2211-5463.13242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/14/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
The accumulation of various genetic and epigenetic changes in colonic epithelial cells has been identified as one of the fundamental processes that drive the initiation and progression of colorectal cancer (CRC). This study aimed to explore functional genes regulated by DNA methylation and their potential utilization as biomarkers for the prediction of CRC prognoses. Methylation‐driven genes (MDGs) were explored by applying the integrative analysis tool (methylmix) to The Cancer Genome Atlas CRC project. The prognostic MDG panel was identified by combining the Cox regression model with the least absolute shrinkage and selection operator regularization. Gene set enrichment analysis was used to determine the pathways associated with the six‐MDG panel. Cluster of differentiation 40 (CD40) expression and methylation in CRC samples were validated by using additional datasets from the Gene Expression Omnibus. Methylation‐specific PCR and bisulfite sequencing were used to confirm DNA methylation in CRC cell lines. A prognostic MDG panel consisting of six gene members was identified: TMEM88, HOXB2, FGD1, TOGARAM1, ARHGDIB and CD40. The high‐risk phenotype classified by the six‐MDG panel was associated with cancer‐related biological processes, including invasion and metastasis, angiogenesis and the tumor immune microenvironment. The prognostic value of the six‐MDG panel was found to be independent of tumor node metastasis stage and, in combination with tumor node metastasis stage and age, could help improve survival prediction. In addition, the expression of CD40 was confirmed to be regulated by promoter region methylation in CRC samples and cell lines. The proposed six‐MDG panel represents a promising signature for estimating the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Yaojun Peng
- Emergency Department, The First Medical Center, Chinese PLA General Hospital, Beijing, China.,College of Graduate, Chinese PLA General Hospital, Beijing, China
| | - Jing Zhao
- Department of Scientific Research Administration, Chinese PLA General Hospital, Beijing, China
| | - Fan Yin
- Department of Oncology, The Second Medical Center & National Clinical Research Center of Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Gaowa Sharen
- Department of Pathology, The First Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, China
| | - Qiyan Wu
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Chen
- Department of Traditional Chinese Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoxuan Sun
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, China.,Department of Oncology Surgery, Tianjin Cancer Hospital Airport Free Trade Zone Hospital, China
| | - Juan Yang
- Department of Cardiothoracic Surgery, Tianjin Fourth Center Hospital, China
| | - Huan Wang
- Department of Scientific Research Administration, Chinese PLA General Hospital, Beijing, China
| | - Dong Zhang
- Department of Oncology, The Second Medical Center & National Clinical Research Center of Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Circulating Biomarkers of Colorectal Cancer (CRC)-Their Utility in Diagnosis and Prognosis. J Clin Med 2021; 10:jcm10112391. [PMID: 34071492 PMCID: PMC8199026 DOI: 10.3390/jcm10112391] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The global burden of colorectal cancer (CRC) is expected to increase, with 2.2 million new cases and 1.1 million annual deaths by 2030. Therefore, the establishment of novel biomarkers useful in the early diagnosis of CRC is of utmost importance. A number of publications have documented the significance of the overexpression of several specific proteins, such as inflammatory mediators, in CRC progression. However, little is known about the potential utility of these proteins as circulating blood tumor biomarkers of CRC. Therefore, in the present review we report the results of our previous original studies as well as the findings of other authors who investigated whether inflammatory mediators might be used as novel biomarkers in the diagnosis and prognosis of CRC. Our study revealed that among all of the tested proteins, serum M-CSF, CXCL-8, IL-6 and TIMP-1 have the greatest value in the diagnosis and progression of CRC. Serum TIMP-1 is useful in differentiating between CRC and colorectal adenomas, whereas M-CSF and CRP are independent prognostic factors for the survival of patients with CRC. This review confirms the promising significance of these proteins as circulating biomarkers for CRC. However, due to their non-specific nature, further validation of their sensitivity and specificity is required.
Collapse
|
7
|
Maugeri A, Barchitta M, Magnano San Lio R, Li Destri G, Agodi A, Basile G. Epigenetic Aging and Colorectal Cancer: State of the Art and Perspectives for Future Research. Int J Mol Sci 2020; 22:ijms22010200. [PMID: 33379143 PMCID: PMC7795459 DOI: 10.3390/ijms22010200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Although translational research has identified a large number of potential biomarkers involved in colorectal cancer (CRC) carcinogenesis, a better understanding of the molecular pathways associated with biological aging in colorectal cells and tissues is needed. Here, we aim to summarize the state of the art about the role of age acceleration, defined as the difference between epigenetic age and chronological age, in the development and progression of CRC. Some studies have shown that accelerated biological aging is positively associated with the risk of cancer and death in general. In line with these findings, other studies have shown how the assessment of epigenetic age in people at risk for CRC could be helpful for monitoring the molecular response to preventive interventions. Moreover, it would be interesting to investigate whether aberrant epigenetic aging could help identify CRC patients with a high risk of recurrence and a worst prognosis, as well as those who respond poorly to treatment. Yet, the application of this novel concept is still in its infancy, and further research should be encouraged in anticipation of future applications in clinical practice.
Collapse
Affiliation(s)
- Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, via S. Sofia, 87, 95123 Catania, Italy; (A.M.); (R.M.S.L.); (G.L.D.); (A.A.)
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, via S. Sofia, 87, 95123 Catania, Italy; (A.M.); (R.M.S.L.); (G.L.D.); (A.A.)
- Correspondence:
| | - Roberta Magnano San Lio
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, via S. Sofia, 87, 95123 Catania, Italy; (A.M.); (R.M.S.L.); (G.L.D.); (A.A.)
| | - Giovanni Li Destri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, via S. Sofia, 87, 95123 Catania, Italy; (A.M.); (R.M.S.L.); (G.L.D.); (A.A.)
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, via S. Sofia, 87, 95123 Catania, Italy; (A.M.); (R.M.S.L.); (G.L.D.); (A.A.)
| | - Guido Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, via S. Sofia, 78, 95123 Catania, Italy;
| |
Collapse
|
8
|
Raeker MO, Carethers JM. Immunological Features with DNA Microsatellite Alterations in Patients with Colorectal Cancer. JOURNAL OF CANCER IMMUNOLOGY 2020; 2:116-127. [PMID: 33000102 DOI: 10.33696/cancerimmunol.2.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Competent human DNA mismatch repair (MMR) corrects DNA polymerase mistakes made during cell replication to maintain complete DNA fidelity in daughter cells; faulty DNA MMR occurs in the setting of inflammation and neoplasia, creating base substitutions (e.g. point mutations) and frameshift mutations at DNA microsatellite sequences in progeny cells. Frameshift mutations at DNA microsatellite sequences are a detected biomarker termed microsatellite instability (MSI) for human disease, as this marker can prognosticate and determine therapeutic approaches for patients with cancer. There are two types of MSI: MSI-High (MSI-H), defined by frameshifts at mono- and di-nucleotide microsatellite sequences, and elevated microsatellite alterations at selected tetranucleotide repeats or EMAST, defined by frameshifts in di- and tetranucleotide microsatellite sequences but not mononucleotide sequences. Patients with colorectal cancers (CRCs) manifesting MSI-H demonstrate improved survival over patients without an MSI-H tumor, driven by the generation of immunogenic neoantigens caused by novel truncated proteins from genes whose sequences contain coding microsatellites; these patients' tumors contain hundreds of somatic mutations, and show responsiveness to treatment with immune checkpoint inhibitors. Patients with CRCs manifesting EMAST demonstrate poor survival over patients without an EMAST tumor, and may be driven by a more dominant defect in double strand break repair attributed to the MMR protein MSH3 over its frameshift correcting function; these patients' tumors often have a component of inflammation (and are also termed inflammation-associated microsatellite alterations) and show less somatic mutations and lack coding mononucleotide frameshift mutations that seem to generate the neoantigens seen in the majority of MSI-H tumors. Overall, both types of MSI are biomarkers that can prognosticate patients with CRC, can be tested for simultaneously in marker panels, and informs the approach to specific therapy including immunotherapy for their cancers.
Collapse
Affiliation(s)
- Maide O Raeker
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - John M Carethers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.,Department of Human Genetics and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Lombardi A, Russo M, Luce A, Morgillo F, Tirino V, Misso G, Martinelli E, Troiani T, Desiderio V, Papaccio G, Iovino F, Argenziano G, Moscarella E, Sperlongano P, Galizia G, Addeo R, Necas A, Necasova A, Ciardiello F, Ronchi A, Caraglia M, Grimaldi A. Comparative Study of NGS Platform Ion Torrent Personal Genome Machine and Therascreen Rotor-Gene Q for the Detection of Somatic Variants in Cancer. High Throughput 2020; 9:ht9010004. [PMID: 32054005 PMCID: PMC7151067 DOI: 10.3390/ht9010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022] Open
Abstract
Molecular profiling of a tumor allows the opportunity to design specific therapies which are able to interact only with cancer cells characterized by the accumulation of several genomic aberrations. This study investigates the usefulness of next-generation sequencing (NGS) and mutation-specific analysis methods for the detection of target genes for current therapies in non-small-cell lung cancer (NSCLC), metastatic colorectal cancer (mCRC), and melanoma patients. We focused our attention on EGFR, BRAF, KRAS, and BRAF genes for NSCLC, melanoma, and mCRC samples, respectively. Our study demonstrated that in about 2% of analyzed cases, the two techniques did not show the same or overlapping results. Two patients affected by mCRC resulted in wild-type (WT) for BRAF and two cases with NSCLC were WT for EGFR according to PGM analysis. In contrast, these samples were mutated for the evaluated genes using the therascreen test on Rotor-Gene Q. In conclusion, our experience suggests that it would be appropriate to confirm the WT status of the genes of interest with a more sensitive analysis method to avoid the presence of a small neoplastic clone and drive the clinician to correct patient monitoring.
Collapse
Affiliation(s)
- Angela Lombardi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.R.); (A.L.); (F.M.); (G.M.); (E.M.); (T.T.); (F.C.); (M.C.); (A.G.)
- Correspondence: ; Tel.: +39-081-566-4081; Fax: +39-081-566-5863
| | - Margherita Russo
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.R.); (A.L.); (F.M.); (G.M.); (E.M.); (T.T.); (F.C.); (M.C.); (A.G.)
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.R.); (A.L.); (F.M.); (G.M.); (E.M.); (T.T.); (F.C.); (M.C.); (A.G.)
| | - Floriana Morgillo
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.R.); (A.L.); (F.M.); (G.M.); (E.M.); (T.T.); (F.C.); (M.C.); (A.G.)
| | - Virginia Tirino
- Section of Histology, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.T.); (V.D.); (G.P.)
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.R.); (A.L.); (F.M.); (G.M.); (E.M.); (T.T.); (F.C.); (M.C.); (A.G.)
| | - Erika Martinelli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.R.); (A.L.); (F.M.); (G.M.); (E.M.); (T.T.); (F.C.); (M.C.); (A.G.)
| | - Teresa Troiani
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.R.); (A.L.); (F.M.); (G.M.); (E.M.); (T.T.); (F.C.); (M.C.); (A.G.)
| | - Vincenzo Desiderio
- Section of Histology, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.T.); (V.D.); (G.P.)
| | - Gianpaolo Papaccio
- Section of Histology, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.T.); (V.D.); (G.P.)
| | - Francesco Iovino
- Department of Cardiothoracic Surgery, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Giuseppe Argenziano
- Dermatology Unit, Department of Mental Health and Physics and Preventive Medicine, University of Campania Luigi Vanvitelli Naples, 80100 Napoli, Italy; (G.A.); (E.M.)
| | - Elvira Moscarella
- Dermatology Unit, Department of Mental Health and Physics and Preventive Medicine, University of Campania Luigi Vanvitelli Naples, 80100 Napoli, Italy; (G.A.); (E.M.)
| | - Pasquale Sperlongano
- Division of Gastrointestinal Tract Surgical Oncology, Department of Translational Medical Sciences, University of Campania ‘L. Vanvitelli’, 80100 Naples, Italy; (P.S.); (G.G.)
| | - Gennaro Galizia
- Division of Gastrointestinal Tract Surgical Oncology, Department of Translational Medical Sciences, University of Campania ‘L. Vanvitelli’, 80100 Naples, Italy; (P.S.); (G.G.)
| | - Raffaele Addeo
- Division of Medical Oncology, ‘San Giovanni Di Dio Hospital’, ASL NA2NORD, 80100 Naples, Italy;
| | - Alois Necas
- CEITEC—Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, 602 00 Brno, Czech Republic; (A.N.); (A.N.)
| | - Andrea Necasova
- CEITEC—Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, 602 00 Brno, Czech Republic; (A.N.); (A.N.)
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.R.); (A.L.); (F.M.); (G.M.); (E.M.); (T.T.); (F.C.); (M.C.); (A.G.)
| | - Andrea Ronchi
- Division of Pathology, Department of Mental Health and Physics and Preventive Medicine, University of Campania Luigi Vanvitelli, 80100 Naples, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.R.); (A.L.); (F.M.); (G.M.); (E.M.); (T.T.); (F.C.); (M.C.); (A.G.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Contrada Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Anna Grimaldi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.R.); (A.L.); (F.M.); (G.M.); (E.M.); (T.T.); (F.C.); (M.C.); (A.G.)
| |
Collapse
|
10
|
Higuchi A, Aoyama T, Kazama K, Murakawa M, Atsumi Y, Katayama Y, Numata K, Sawazaki S, Numata M, Sato S, Sugano N, Tamagawa H, Mushiake H, Oshima T, Yukawa N, Morinaga S, Rino Y, Masuda M, Shiozawa M. Beppu's Nomogram Score Is an Independent Prognostic Factor for Colorectal Liver Metastasis Receiving Perioperative Chemotherapy and/or Targeted Therapy. In Vivo 2019; 33:1301-1306. [PMID: 31280222 PMCID: PMC6689347 DOI: 10.21873/invivo.11603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIM We investigated the impact of Beppu's nomogram on colorectal liver metastasis in patients receiving perioperative chemotherapy and/or targeted therapy. PATIENTS AND METHODS This study included 43 patients who underwent primary hepatic resection for colorectal liver metastasis at the Kanagawa Cancer Center from June 2006 to March 2011. The patients were classified as having a Beppu's nomogram score ≤9 (low-risk group) or ≥10 (high-risk group). The risk factors for the disease-free survival (DFS) were identified. RESULTS The respective DFS rates at 1, 2, and 3 years after surgery were 72.0%, 43.3%, and 17.3% in the low-risk group and 27.8%, 16.7%, and 8.3% in the high-risk group, the difference being significant (p=0.009). The multivariate analysis showed that Beppu's nomogram score ≥10 was a significant independent risk factor for the DFS. CONCLUSION Beppu's nomogram score was an independent prognostic factor for colorectal liver metastasis in patients receiving perioperative chemotherapy and/or targeted therapy. Thus, Beppu's nomogram might be a useful tool for predicting the risk of recurrence after hepatectomy, even in the era of newly-developed chemotherapy.
Collapse
Affiliation(s)
- Akio Higuchi
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Toru Aoyama
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Keisuke Kazama
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Masaaki Murakawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yosuke Atsumi
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yusuke Katayama
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Koji Numata
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Sho Sawazaki
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Masakatsu Numata
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Sumito Sato
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Nobuhiro Sugano
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Hiroshi Tamagawa
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | | | - Takashi Oshima
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Norio Yukawa
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Soichiro Morinaga
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yasushi Rino
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Munetaka Masuda
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Manabu Shiozawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
11
|
Higher prevalence of KRAS mutations in colorectal cancer in Saudi Arabia: Propensity for lung metastasis. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2014.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
12
|
Pires AS, Marques CR, Encarnação JC, Abrantes AM, Marques IA, Laranjo M, Oliveira R, Casalta-Lopes JE, Gonçalves AC, Sarmento-Ribeiro AB, Botelho MF. Ascorbic Acid Chemosensitizes Colorectal Cancer Cells and Synergistically Inhibits Tumor Growth. Front Physiol 2018; 9:911. [PMID: 30083105 PMCID: PMC6064950 DOI: 10.3389/fphys.2018.00911] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is continuously classified as one of the most incidental and mortal types of cancer worldwide. The positive outcomes of the conventional chemotherapy are frequently associated with high toxicity, which often leads to the suspension of the treatment. Growing evidences consider the use of pharmacological concentrations of ascorbic acid (AA), better known as vitamin C, in the treatment of cancer. The use of AA in a clinical context is essentially related to the adoption of new therapeutic strategies based on combination regimens, where AA plays a chemosensitizing role. The reduced sensitivity of some tumors to chemotherapy and the highly associated adverse effects continue to be some of the major obstacles in the effective treatment of CRC. So, this paper aimed to study the potential of a new therapeutic approach against this neoplasia with diminished side effects for the patient. This approach was based on the study of the combination of high concentrations of AA with reduced concentrations of drugs conventionally used in CRC patients and eligible for first and second line chemotherapeutic regimens, namely 5-fluorouracilo (5-FU), oxaliplatin (Oxa) or irinotecan (Iri). The evaluation of the potential synergy between the compounds was first assessed in vitro in three CRC cell lines with different genetic background and later in vivo using one xenograft animal model of CRC. AA and 5-FU act synergistically in vitro just for longer incubation times, however, in vivo showed no benefit compared to 5-FU alone. In contrast to the lack of synergy seen in in vitro studies with the combination of AA with irinotecan, the animal model revealed the therapeutic potential of this combination. AA also potentiated the effect of Oxa, since a synergistic effect was demonstrated, in almost all conditions and in the three cell lines. Moreover, this combined therapy (CT) caused a stagnation of the tumor growth rate, being the most promising tested combination. Pharmacological concentrations of AA increased the efficacy of Iri and Oxa against CRC, with promising results in cell lines with more aggressive phenotypes, namely, tumors with mutant or null P53 expression and tumors resistant to chemotherapy.
Collapse
Affiliation(s)
- Ana S Pires
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cláudia R Marques
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - João C Encarnação
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana M Abrantes
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Inês A Marques
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Mafalda Laranjo
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rui Oliveira
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Department of Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - João E Casalta-Lopes
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana C Gonçalves
- Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Oncobiology and Hematology Laboratory, Applied Molecular Biology and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana B Sarmento-Ribeiro
- Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Oncobiology and Hematology Laboratory, Applied Molecular Biology and University Clinic of Hematology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Department of Hematology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria F Botelho
- Biophysics Institute, CNC.IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Institute for Clinical and Biomedical Research Area of Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Li S, Han Z, Zhao N, Zhu B, Zhang Q, Yang X, Sheng D, Hou J, Guo S, Wei L, Zhang L. Inhibition of DNMT suppresses the stemness of colorectal cancer cells through down-regulating Wnt signaling pathway. Cell Signal 2018; 47:79-87. [PMID: 29601907 DOI: 10.1016/j.cellsig.2018.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/19/2018] [Accepted: 03/25/2018] [Indexed: 12/19/2022]
Abstract
Cancer stem cell (CSC) theory reveals a new insight into the understanding of tumorigenesis and metastasis. Recently, DNA methylation is suggested to be a potential epigenetic mechanism for maintenance of CSCs. What's more, studies have shown that DNA methyltransferase (DNMT) is essential for CSCs and deletion of DNMT can reduce tumorigenesis by limiting CSC pool. Therefore, targeting the epigenetic modifiers especially DNA methylation offers an optional strategy for treating human cancers. In the present study we found that DNMT inhibitor 5-Aza-2'-deoxycytidine (5-AzaDC) markedly reduced colorectal CSC abundance in vitro and suppressed liver metastatic tumor growth in vivo. And 5-AzaDC inhibited the expression of active β-catenin and down-regulated the Wnt signaling pathway. The Wnt inhibitors were frequently inactivated by promoter methylation in colorectal cancer; however analysis of TCGA data base showed that only the expression of SFRP1 was significantly reduced in tumors compared to normal tissues. In addition, restoring of SFRP1 expression inhibited the stem cell-like potential of colorectal cancer cells. Our results indicated that inhibition of DNMT blocked the self-renewal of colorectal CSCs and SFRP1 was essential for the maintenance of colorectal CSCs.
Collapse
Affiliation(s)
- Shanxin Li
- Department of Pharmacy, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Naping Zhao
- Department of Pharmacy, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Bing Zhu
- Department of Pharmacy, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Qianwen Zhang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Xue Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Dandan Sheng
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Jing Hou
- Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiwei Guo
- Third Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.
| | - Li Zhang
- Department of Pharmacy, Changhai Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
14
|
Aoyama T, Oba K, Honda M, Sadahiro S, Hamada C, Mayanagi S, Kanda M, Maeda H, Kashiwabara K, Sakamoto J, Saji S, Yoshikawa T. Impact of postoperative complications on the colorectal cancer survival and recurrence: analyses of pooled individual patients' data from three large phase III randomized trials. Cancer Med 2017. [PMID: 28639738 PMCID: PMC5504309 DOI: 10.1002/cam4.1126] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study assessed the impact of postoperative complications on the colorectal cancer survival and recurrence after curative surgery using pooled individual patients’ data from three large phase III randomized trials. In total, 5530 patients were included in this study. The patients were classified as those with postoperative complications (C group) and those without postoperative complications (NC group). The risk factors for the overall survival (OS) and the disease‐free survival (DFS) were analyzed. Postoperative complications were found in 861 (15.6%) of the 5530 patients. The OS and DFS rates at 5 years after surgery were 68.9% and 74.8%, respectively, in the C group and 75.8% and 82.2%, respectively, in the NC group, values that were significantly different between the two groups (P < 0.001). The multivariate analysis demonstrated that postoperative complications were a significant independent risk factor for the OS and DFS. Postoperative complications can worsen the colorectal cancer survival and risk of recurrence. Surgical morbidity must be considered as a stratification factor in future phase III trials evaluating the effects of adjuvant chemotherapy on colorectal cancer.
Collapse
Affiliation(s)
- Toru Aoyama
- Department of Surgery, Yokohama City University, Yokohama, Japan
| | - Koji Oba
- Department of Biostatistics, The University of Tokyo, Tokyo, Japan
| | - Michitaka Honda
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | | | - Chikuma Hamada
- Faculty of Engineering, Tokyo University of Science, Tokyo, Japan
| | - Shuhei Mayanagi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiromichi Maeda
- Cancer Treatment Center, Kochi Medical School Hospital, Kochi, Japan
| | | | - Junichi Sakamoto
- Tokai Central Hospital, Kakamigahara, Japan.,Japanese Foundation for Multidisciplinary Treatment of Cancer, Tokyo, Japan
| | - Shigetoyo Saji
- Japanese Foundation for Multidisciplinary Treatment of Cancer, Tokyo, Japan
| | - Takaki Yoshikawa
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
15
|
Mastropasqua F, Marzano F, Valletti A, Aiello I, Di Tullio G, Morgano A, Liuni S, Ranieri E, Guerrini L, Gasparre G, Sbisà E, Pesole G, Moschetta A, Caratozzolo MF, Tullo A. TRIM8 restores p53 tumour suppressor function by blunting N-MYC activity in chemo-resistant tumours. Mol Cancer 2017; 16:67. [PMID: 28327152 PMCID: PMC5359838 DOI: 10.1186/s12943-017-0634-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
Background TRIM8 plays a key role in controlling the p53 molecular switch that sustains the transcriptional activation of cell cycle arrest genes and response to chemotherapeutic drugs. The mechanisms that regulate TRIM8, especially in cancers like clear cell Renal Cell Carcinoma (ccRCC) and colorectal cancer (CRC) where it is low expressed, are still unknown. However, recent studies suggest the potential involvement of some microRNAs belonging to miR-17-92 and its paralogous clusters, which could include TRIM8 in a more complex pathway. Methods We used RCC and CRC cell models for in-vitro experiments, and ccRCC patients and xenograft transplanted mice for in vivo assessments. To measure microRNAs levels we performed RT-qPCR, while steady-states of TRIM8, p53, p21 and N-MYC were quantified at protein level by Western Blotting as well as at transcript level by RT-qPCR. Luciferase reporter assays were performed to assess the interaction between TRIM8 and specific miRNAs, and the potential effects of this interaction on TRIM8 expression. Moreover, we treated our cell models with conventional chemotherapeutic drugs or tyrosine kinase inhibitors, and measured their response in terms of cell proliferation by MTT and colony suppression assays. Results We showed that TRIM8 is a target of miR-17-5p and miR-106b-5p, whose expression is promoted by N-MYC, and that alterations of their levels affect cell proliferation, acting on the TRIM8 transcripts stability, as confirmed in ccRCC patients and cell lines. In addition, reducing the levels of miR-17-5p/miR-106b-5p, we increased the chemo-sensitivity of RCC/CRC-derived cells to anti-tumour drugs used in the clinic. Intriguingly, this occurs, on one hand, by recovering the p53 tumour suppressor activity in a TRIM8-dependent fashion and, on the other hand, by promoting the transcription of miR-34a that turns off the oncogenic action of N-MYC. This ultimately leads to cell proliferation reduction or block, observed also in colon cancer xenografts overexpressing TRIM8. Conclusions In this paper we provided evidence that TRIM8 and its regulators miR-17-5p and miR-106b-5 participate to a feedback loop controlling cell proliferation through the reciprocal modulation of p53, miR-34a and N-MYC. Our experiments pointed out that this axis is pivotal in defining drug responsiveness of cancers such ccRCC and CRC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0634-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Italia Aiello
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | | | | | - Sabino Liuni
- Institute of Biomedical Technologies ITB, CNR, Bari, Italy
| | - Elena Ranieri
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Luisa Guerrini
- Department of Biosciences, University of Milano, Milano, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.,Institute of Biomembranes and Bioenergetics IBBE, CNR, Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | | | - Apollonia Tullo
- Institute of Biomembranes and Bioenergetics IBBE, CNR, Bari, Italy.
| |
Collapse
|
16
|
Wangpu X, Yang X, Zhao J, Lu J, Guan S, Lu J, Kovacevic Z, Liu W, Mi L, Jin R, Sun J, Yue F, Ma J, Lu A, Richardson DR, Wang L, Zheng M. The metastasis suppressor, NDRG1, inhibits "stemness" of colorectal cancer via down-regulation of nuclear β-catenin and CD44. Oncotarget 2016; 6:33893-911. [PMID: 26418878 PMCID: PMC4741810 DOI: 10.18632/oncotarget.5294] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1), has been identified as an important metastasis suppressor for colorectal cancer (CRC). In this study, we investigated: (1) the effects of NDRG1 on CRC stemness and tumorigenesis; (2) the molecular mechanisms involved; and (3) the relationship between NDRG1 expression and colorectal cancer prognosis. Our investigation demonstrated that CRC cells with silenced NDRG1 showed more tumorigenic ability and stem cell-like properties, such as: colony and sphere formation, chemoresistance, cell invasion, high expression of CD44, and tumorigenicity in vivo. Moreover, NDRG1 silencing reduced β-catenin expression on the cell membrane, while increasing its nuclear expression. The anti-tumor activity of NDRG1 was demonstrated to be mediated by preventing β-catenin nuclear translocation, as silencing of this latter molecule could reverse the effects of silencing NDRG1 expression. NDRG1 expression was also demonstrated to be negatively correlated to CRC prognosis. In addition, there was a negative correlation between NDRG1 and nuclear β-catenin and also NDRG1 and CD44 expression in clinical CRC specimens. Taken together, our investigation demonstrates that the anti-metastatic activity of NDRG1 in CRC occurs through the down-regulation of nuclear β-catenin and suggests that NDRG1 is a significant therapeutic target.
Collapse
Affiliation(s)
- Xiongzhi Wangpu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China.,Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Jiaoyang Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Shaopei Guan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Wensheng Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Mi
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Runsen Jin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Fei Yue
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Junjun Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Lishun Wang
- The Division of Translational Medicine, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Shanghai, 200025, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
17
|
Predictive Biomarkers in Colorectal Cancer: From the Single Therapeutic Target to a Plethora of Options. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6896024. [PMID: 27563673 PMCID: PMC4983659 DOI: 10.1155/2016/6896024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/17/2016] [Accepted: 07/04/2016] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequent cancers and is a leading cause of cancer death worldwide. Treatments used for CRC may include some combination of surgery, radiation therapy, chemotherapy, and targeted therapy. The current standard drugs used in chemotherapy are 5-fluorouracil and leucovorin in combination with irinotecan and/or oxaliplatin. Most recently, biologic agents have been proven to have therapeutic benefits in metastatic CRC alone or in association with standard chemotherapy. However, patients present different treatment responses, in terms of efficacy and toxicity; therefore, it is important to identify biological markers that can predict the response to therapy and help select patients that would benefit from specific regimens. In this paper, authors review CRC genetic markers that could be useful in predicting the sensitivity/resistance to chemotherapy.
Collapse
|
18
|
Suzuki S, Iwaizumi M, Tseng-Rogenski S, Hamaya Y, Miyajima H, Kanaoka S, Sugimoto K, Carethers JM. Production of truncated MBD4 protein by frameshift mutation in DNA mismatch repair-deficient cells enhances 5-fluorouracil sensitivity that is independent of hMLH1 status. Cancer Biol Ther 2016; 17:760-8. [PMID: 27115207 DOI: 10.1080/15384047.2016.1178430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Methyl-CpG binding domain protein 4 (MBD4) is a DNA glycosylase that can remove 5-fluorodeoxyuracil from DNA as well as repair T:G or U:G mismatches. MBD4 is a target for frameshift mutation with DNA mismatch repair (MMR) deficiency, creating a truncated MBD4 protein (TruMBD4) that lacks its glycosylase domain. Here we show that TruMBD4 plays an important role for enhancing 5-fluorouracil (5FU) sensitivity in MMR-deficient colorectal cancer cells. We found biochemically that TruMBD4 binds to 5FU incorporated into DNA with higher affinity than MBD4. TruMBD4 reduced the 5FU affinity of the MMR recognition complexes that determined 5FU sensitivity by previous reports, suggesting other mechanisms might be operative to trigger cytotoxicity. To analyze overall 5FU sensitivity with TruMBD4, we established TruMBD4 overexpression in hMLH1-proficient or -deficient colorectal cancer cells followed by treatment with 5FU. 5FU-treated TruMBD4 cells demonstrated diminished growth characteristics compared to controls, independently of hMLH1 status. Flow cytometry revealed more 5FU-treated TruMBD4 cells in S phase than controls. We conclude that patients with MMR-deficient cancers, which show characteristic resistance to 5FU therapy, may be increased for 5FU sensitivity via secondary frameshift mutation of the base excision repair gene MBD4.
Collapse
Affiliation(s)
- Satoshi Suzuki
- a First Department of Medicine , Hamamatsu University School of Medicine , Hamamatsu , Shizuoka , Japan
| | - Moriya Iwaizumi
- a First Department of Medicine , Hamamatsu University School of Medicine , Hamamatsu , Shizuoka , Japan.,b Division of Gastroenterology, Department of Internal Medicine and Department of Human Genetics, University of Michigan , Ann Arbor , MA , USA
| | - Stephanie Tseng-Rogenski
- b Division of Gastroenterology, Department of Internal Medicine and Department of Human Genetics, University of Michigan , Ann Arbor , MA , USA
| | - Yasushi Hamaya
- a First Department of Medicine , Hamamatsu University School of Medicine , Hamamatsu , Shizuoka , Japan.,b Division of Gastroenterology, Department of Internal Medicine and Department of Human Genetics, University of Michigan , Ann Arbor , MA , USA
| | - Hiroaki Miyajima
- a First Department of Medicine , Hamamatsu University School of Medicine , Hamamatsu , Shizuoka , Japan
| | - Shigeru Kanaoka
- c Department of Gastroenterology , Hamamatsu Medical Center , Shizuoka , Japan
| | - Ken Sugimoto
- a First Department of Medicine , Hamamatsu University School of Medicine , Hamamatsu , Shizuoka , Japan
| | - John M Carethers
- b Division of Gastroenterology, Department of Internal Medicine and Department of Human Genetics, University of Michigan , Ann Arbor , MA , USA
| |
Collapse
|
19
|
Abstract
Sporadic colorectal cancer (CRC) is a somatic genetic disease in which pathogenesis is influenced by the local colonic environment and the patient's genetic background. Consolidating the knowledge of genetic and epigenetic events that occur with initiation, progression, and metastasis of sporadic CRC has identified some biomarkers that might be utilized to predict behavior and prognosis beyond staging, and inform treatment approaches. Modern next-generation sequencing of sporadic CRCs has confirmed prior identified genetic alterations and has classified new alterations. Each patient's CRC is genetically unique, propelled by 2-8 driver gene alterations that have accumulated within the CRC since initiation. Commonly observed alterations across sporadic CRCs have allowed classification into a (1) hypermutated group that includes defective DNA mismatch repair with microsatellite instability and POLE mutations in ∼15%, containing multiple frameshifted genes and BRAF(V600E); (2) nonhypermutated group with multiple somatic copy number alterations and aneuploidy in ∼85%, containing oncogenic activation of KRAS and PIK3CA and mutation and loss of heterozygosity of tumor suppressor genes, such as APC and TP53; (3) CpG island methylator phenotype CRCs in ∼20% that overlap greatly with microsatellite instability CRCs and some nonhypermutated CRCs; and (4) elevated microsatellite alterations at selected tetranucleotide repeats in ∼60% that associates with metastatic behavior in both hypermutated and nonhypermutated groups. Components from these classifications are now used as diagnostic, prognostic, and treatment biomarkers. Additional common biomarkers may come from genome-wide association studies and microRNAs among other sources, as well as from the unique alteration profile of an individual CRC to apply a precision medicine approach to care.
Collapse
Affiliation(s)
- John M Carethers
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Barbara H Jung
- Division of Gastroenterology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Hamaya Y, Guarinos C, Tseng-Rogenski SS, Iwaizumi M, Das R, Jover R, Castells A, Llor X, Andreu M, Carethers JM. Efficacy of Adjuvant 5-Fluorouracil Therapy for Patients with EMAST-Positive Stage II/III Colorectal Cancer. PLoS One 2015; 10:e0127591. [PMID: 25996601 PMCID: PMC4440728 DOI: 10.1371/journal.pone.0127591] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/16/2015] [Indexed: 01/05/2023] Open
Abstract
Elevated Microsatellite Alterations at Selected Tetranucleotide repeats (EMAST) is a genetic signature found in up to 60% of colorectal cancers (CRCs) that is caused by somatic dysfunction of the DNA mismatch repair (MMR) protein hMSH3. We have previously shown in vitro that recognition of 5-fluorouracil (5-FU) within DNA and subsequent cytotoxicity was most effective when both hMutSα (hMSH2-hMSH6 heterodimer) and hMutSβ (hMSH2-hMSH3 heterodimer) MMR complexes were present, compared to hMutSα > hMutSβ alone. We tested if patients with EMAST CRCs (hMutSβ defective) had diminished response to adjuvant 5-FU chemotherapy, paralleling in vitro findings. We analyzed 230 patients with stage II/III sporadic colorectal cancers for which we had 5-FU treatment and survival data. Archival DNA was analyzed for EMAST (>2 of 5 markers mutated among UT5037, D8S321, D9S242, D20S82, D20S85 tetranucleotide loci). Kaplan-Meier survival curves were generated and multivariate analysis was used to determine contribution to risk. We identified 102 (44%) EMAST cancers. Ninety-four patients (41%) received adjuvant 5-FU chemotherapy, and median follow-up for all patients was 51 months. Patients with EMAST CRCs demonstrated improved survival with adjuvant 5FU to the same extent as patients with non-EMAST CRCs (P<0.05). We observed no difference in survival between patients with stage II/III EMAST and non-EMAST cancers (P = 0.36). There is improved survival for stage II/III CRC patients after adjuvant 5-FU-based chemotherapy regardless of EMAST status. The loss of contribution of hMSH3 for 5-FU cytotoxicity may not adversely affect patient outcome, contrasting patients whose tumors completely lack DNA MMR function (MSI-H).
Collapse
Affiliation(s)
- Yasushi Hamaya
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Carla Guarinos
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Unidad de Gastroenterologia, Hospital General Universitario de Alicante, Alicante, Spain
| | - Stephanie S. Tseng-Rogenski
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Moriya Iwaizumi
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ritabrata Das
- Biostatistics Department, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rodrigo Jover
- Unidad de Gastroenterologia, Hospital General Universitario de Alicante, Alicante, Spain
| | - Antoni Castells
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Xavier Llor
- Division of Gastroenterology, Department of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Montserrat Andreu
- Department of Gastroenterology, Hospital del Mar, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Pompeu Fabra University, Barcelona, Catalonia, Spain
| | - John M. Carethers
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
21
|
Xu S, Oshima T, Imada T, Masuda M, Debnath B, Grande F, Garofalo A, Neamati N. Stabilization of MDA-7/IL-24 for colon cancer therapy. Cancer Lett 2013; 335:421-30. [DOI: 10.1016/j.canlet.2013.02.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
|
22
|
Iwaizumi M, Tseng-Rogenski S, Carethers JM. Acidic tumor microenvironment downregulates hMLH1 but does not diminish 5-fluorouracil chemosensitivity. Mutat Res 2013; 747-748:19-27. [PMID: 23643670 DOI: 10.1016/j.mrfmmm.2013.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 03/31/2013] [Accepted: 04/17/2013] [Indexed: 12/12/2022]
Abstract
Human DNA mismatch repair (MMR) recognizes and binds 5-fluorouracil (5FU) incorporated into DNA and triggers a MMR-dependent cell death. Absence of MMR in a patient's colorectal tumor abrogates 5FU's beneficial effects on survival. Changes in the tumor microenvironment like low extracellular pH (pHe) may diminish DNA repair, increasing genomic instability. Here, we explored if low pHe modifies MMR recognition of 5FU, as 5FU can exist in ionized and non-ionized forms depending on pH. We demonstrate that MMR-proficient cells at low pHe show downregulation of hMLH1, whereas expression of TDG and MBD4, known DNA glycosylases for base excision repair (BER) that can remove 5FU from DNA, were unchanged. We show in vitro that 5FU within DNA pairs with adenine (A) at high and low pH (in absence of MMR and BER). Surprisingly, 5FdU:G was repaired to C:G in hMLH1-deficient cells cultured at both low and normal pHe, similar to MMR-proficient cells. Moreover, both hMSH6 and hMSH3, components of hMutSα and hMutSβ, respectively, bound 5FU within DNA (hMSH6>hMSH3) but is influenced by hMLH1. We conclude that an acidic tumor microenvironment triggers downregulation of hMLH1, potentially removing the execution component of MMR for 5FU cytotoxicity, whereas other mechanisms remain stable to implement overall 5FU sensitivity.
Collapse
Affiliation(s)
- Moriya Iwaizumi
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | | | | |
Collapse
|
23
|
Carethers JM. Proteomics, genomics, and molecular biology in the personalized treatment of colorectal cancer. J Gastrointest Surg 2012; 16:1648-50. [PMID: 22760966 PMCID: PMC3424282 DOI: 10.1007/s11605-012-1942-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/15/2012] [Indexed: 01/31/2023]
Abstract
Colorectal cancer develops and progresses from genetic and genomic changes that occur within and transforms the growth behavior of a normal colonic cell. Molecular tools have advanced enough to allow the scientific community to probe deeper into risk alleles within a population as well as into individual patient genetic data that can ascribe such a risk. Detected genetic and genomic changes from colorectal cancer can help determine a patient's prognosis, predict response to chemotherapy, and determine the approach to care with biological therapies. Utilizing stool, blood/plasma, and tumor tissue to obtain genetic, genomic, and pharmacokinetic information contribute to a person's profile to direct specific cancer care.
Collapse
Affiliation(s)
- John M. Carethers
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, 3901 Taubman Center, SPC 5368, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-5368, USA
| |
Collapse
|
24
|
Tajima A, Iwaizumi M, Tseng-Rogenski S, Cabrera BL, Carethers JM. Both hMutSα and hMutSß DNA mismatch repair complexes participate in 5-fluorouracil cytotoxicity. PLoS One 2011; 6:e28117. [PMID: 22164234 PMCID: PMC3229514 DOI: 10.1371/journal.pone.0028117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/01/2011] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Patients with advanced microsatellite unstable colorectal cancers do not show a survival benefit from 5-fluorouracil (5-FU)-based chemotherapy. We and others have shown that the DNA mismatch repair (MMR) complex hMutSα binds 5-FU incorporated into DNA. Although hMutSß is known to interact with interstrand crosslinks (ICLs) induced by drugs such as cisplatin and psoralen, it has not been demonstrated to interact with 5-FU incorporated into DNA. Our aim was to examine if hMutSß plays a role in 5-FU recognition. METHODS We compared the normalized growth of 5-FU treated cells containing either or both mismatch repair complexes using MTT and clonogenic assays. We utilized oligonucleotides containing 5-FU and purified baculovirus-synthesized hMutSα and hMutSß in electromobility shift assays (EMSA) and further analyzed binding using surface plasmon resonance. RESULTS MTT and clonogenic assays after 5-FU treatment demonstrated the most cytotoxicity in cells with both hMutSα and hMutSß, intermediate cytotoxicity in cells with hMutSα alone, and the least cytotoxicity in cells with hMutSß alone, hMutSß binds 5-FU-modified DNA, but its relative binding is less than the binding of 5-FU-modified DNA by hMutSα. CONCLUSION Cytotoxicity induced by 5-FU is dependent on intact DNA MMR, with relative cell death correlating directly with hMutSα and/or hMutSß 5-FU binding ability (hMutSα>hMutSß). The MMR complexes provide a hierarchical chemosensitivity for 5-FU cell death, and may have implications for treatment of patients with certain MMR-deficient tumors.
Collapse
Affiliation(s)
- Akihiro Tajima
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Moriya Iwaizumi
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Stephanie Tseng-Rogenski
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Betty L. Cabrera
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - John M. Carethers
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
25
|
Iwaizumi M, Tseng-Rogenski S, Carethers JM. DNA mismatch repair proficiency executing 5-fluorouracil cytotoxicity in colorectal cancer cells. Cancer Biol Ther 2011; 12:756-64. [PMID: 21814034 DOI: 10.4161/cbt.12.8.17169] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND 5-fluorouracil (5FU)-based chemotherapy is the standard treatment for advanced stage colorectal cancer (CRC) patients. Several groups including ours have reported that stage II-III colorectal cancer patients whose tumors retain DNA Mismatch repair (MMR) function derive a benefit from 5FU, but patients with tumors that lost MMR function do not. Although MMR recognition of 5FU incorporated in DNA has been demonstrated biochemically, it has not been demonstrated within cells to execute 5FU cytotoxicity. AIM To establish an efficient construction model for 5FU within DNA and demonstrate that 5FU incorporated into DNA can trigger cellular cytotoxicity executed by the DNA MMR system. METHODS We constructed a 5FdU-containing heteroduplex plasmid (5FdU plasmid) and 5FdU-containing linear dsDNA (5FdU linear DNA), and transfected these into MMR-proficient, hMLH1-/- and hMSH6-/- cells. We observed cell growth characteristics of both transfectants for 5FU-induced cytotoxicity. RESULTS MMR- proficient cells transfected with the 5FdU plasmid but not the 5FdU linear DNA showed reduced cell proliferation by MTS and clonogenic assays, and demonstrated cell morphological change consistent with apoptosis. In MMR-deficient cells, neither the 5FdU plasmid nor 5FdU linear DNA induced cell growth or morphological changes different from controls. CONCLUSION 5FdU as heteroduplex DNA in plasmid but not linear form triggered cytotoxicity in a MMR-dependent manner. Thus 5FU incorporated into DNA, separated from its effects on RNA, can be recognized by DNA MMR to trigger cell death.
Collapse
Affiliation(s)
- Moriya Iwaizumi
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
26
|
Chung H, Chaudhry J, Lopez CG, Carethers JM. Cyclin E and histone H3 levels are regulated by 5-fluorouracil in a DNA mismatch repair-dependent manner. Cancer Biol Ther 2010; 10:1147-56. [PMID: 20930505 DOI: 10.4161/cbt.10.11.13447] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Several studies indicate that the DNA mismatch repair (MMR) system may trigger cytotoxicity upon 5-fluorouracil (5-FU) recognition, but signaling pathways regulated by MMR in response to 5-FU are unknown. We hypothesize that recognition of 5-FU in DNA by MMR proteins trigger specific signaling cascades that results in slowing of the cell cycle and cell death. Whole human genome cDNA microarrays were used to examine relative signaling responses induced in MMR-proficient cells after 5-FU (5 μM) treatment for 24 hours. Analysis revealed 43 pathways differentially affected by 5-FU compared to control (P 1.4-fold) and downregulated cdc25C, cyclins B1 and B2, histone H2A, H2B, and H3 (< -1.4-fold) over control. Cell cycle analysis revealed a G1/S arrest by 5-FU that was congruent with increased cyclin E and decreased cdc25C protein expression. Importantly, with knockdown of hMLH1 and hMSH2, we observed that decreased histone H3 expression by 5-FU was dependent on hMLH1. Additionally, 5-FU treatment dramatically decreased levels of several histone H3 modifications. Our data suggest that 5-FU induces a G1/S arrest by regulating cyclin E and cdc25C expression, and MMR recognition of 5-FU in DNA may modulate cyclin E to affect the cell cycle. Furthermore, MMR recognition of 5-FU reduces histone H3 levels that could be related to DNA access by proteins and/or cell death during the G1/S phase of the cell cycle.
Collapse
Affiliation(s)
- Heekyung Chung
- Department of Medicine, University of California, San Diego, CA, USA
| | | | | | | |
Collapse
|
27
|
Sellers RP, Alexander LD, Johnson VA, Lin CC, Savage J, Corral R, Moss J, Slugocki TS, Singh EK, Davis MR, Ravula S, Spicer JE, Oelrich JL, Thornquist A, Pan CM, McAlpine SR. Design and synthesis of Hsp90 inhibitors: exploring the SAR of Sansalvamide A derivatives. Bioorg Med Chem 2010; 18:6822-56. [PMID: 20708938 PMCID: PMC2933939 DOI: 10.1016/j.bmc.2010.07.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/13/2010] [Accepted: 07/19/2010] [Indexed: 01/10/2023]
Abstract
Utilizing the structure-activity relationship we have developed during the synthesis of the first two generations and mechanism of action studies that point to the interaction of these molecules with the key oncogenic protein Hsp90, we report here the design of 32 new Sansalvamide A derivatives and their synthesis. Our new structures, designed from previously reported potent compounds, were tested for cytotoxicity on the HCT116 colon cancer cell line, and their binding to the biological target was analyzed using computational studies involving blind docking of derivatives using Autodock. Further, we show new evidence that our molecules bind directly to Hsp90 and modulate Hsp90's binding with client proteins. Finally, we demonstrate that we have integrated good ADME properties into a new derivative.
Collapse
Affiliation(s)
- Robert P. Sellers
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Leslie D. Alexander
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Victoria A. Johnson
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Chun-Chieh Lin
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Jeremiah Savage
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Ricardo Corral
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Jason Moss
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Tim S. Slugocki
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Erinprit K. Singh
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Melinda R. Davis
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Suchitra Ravula
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Jamie E. Spicer
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Jenna L. Oelrich
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Andrea Thornquist
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Chung-Mao Pan
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Shelli R. McAlpine
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| |
Collapse
|
28
|
Kotze PG, Freitas CD, Froehner Junior I, Steckert JS, Ishie E, Steckert Filho Á, Martins JF, Miranda EF. Análise do número de linfonodos em espécimes de ressecções colorretais por neoplasia entre a cirurgia aberta e videolaparoscópica. ACTA ACUST UNITED AC 2010. [DOI: 10.1590/s0101-98802010000200001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introdução: o estadiamento patológico com a análise do número de linfonodos dissecados é fator importante na determinação da segurança oncológica das ressecções por câncer colorretal, independentemente da via de acesso. Em fase inicial de curva de aprendizado em laparoscopia colorretal, a equivalência entre a cirurgia convencional e laparoscópica pode ser comprometida. O objetivo do presente estudo foi analisar o número de linfonodos dissecados em espécimes de ressecções por câncer colorretal pela via convencional e laparoscópica, e verificar a equivalência oncológica entre ambas. Método: estudo retrospectivo de uma série de casos de pacientes submetidos a ressecções por câncer colorretal por via convencional e laparoscópica. Variáveis analisadas: idade, sexo, via de acesso, tipo de procedimento, estadiamento de Dukes e número de linfonodos dissecados nas peças. Análise estatística pelo método de Mann-Whitney. Resultados: 50 pacientes foram analisados (33 operados por via convencional, 17 por via laparoscópica). Houve maior número de colectomias direitas e retossigmoidectomias altas nos dois grupos. O número médio de linfonodos dissecados foi de 10,35 no grupo laparoscópico e de 10,15 no grupo de acesso convencional (p=0,859). Conclusões: não houve diferença estatística entre o número médio de linfonodos dissecados entre os espécimes ressecados por via convencional e laparoscópica, numa fase inicial de curva de aprendizado.
Collapse
|
29
|
Carethers JM. Secondary Prevention of Colorectal Cancer: Is There an Optimal Follow-up for Patients with Colorectal Cancer? CURRENT COLORECTAL CANCER REPORTS 2010; 6:24-29. [PMID: 20157368 PMCID: PMC2817804 DOI: 10.1007/s11888-009-0038-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Secondary prevention of colorectal cancer, as opposed to primary prevention, indicates that a person has already had the disease and there are steps being taken to prevent cancer recurrence, usually as metachronous tumors. This generally involves annual surveillance with colonoscopy after surgical removal of the initial cancer if some aspect of the colon remains. However, some familial cases may involve other modalities, such as cyclooxygenase inhibitors, as an adjunct after the initial operation. Genetic testing in suspected familial cases may identify candidates for secondary prevention. The timing for secondary prevention is critical to prevent recurrent advanced disease, which is detrimental to patient survival. Recommendations are often empiric, but some cases are based on the biological behavior of the tumor. Close follow-up with a competent health care provider, such as a gastroenterologist, is necessary to help prevent recurrence.
Collapse
Affiliation(s)
- John M Carethers
- Department of Internal Medicine, University of Michigan, 3101 Taubman Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109 USA
| |
Collapse
|
30
|
Fusco M, Pezzi A, Benatti P, Roncucci L, Chiodini P, Di Maio G, Di Napoli R, de Leon MP. Clinical features and colorectal cancer survival: An attempt to explain differences between two different Italian regions. Eur J Cancer 2010; 46:142-9. [PMID: 19695865 DOI: 10.1016/j.ejca.2009.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 07/09/2009] [Accepted: 07/17/2009] [Indexed: 11/29/2022]
Affiliation(s)
- Mario Fusco
- Registro Tumori Regione Campania c/o ASL Napoli 4, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Colonic carcinogenesis is characterized by progressive accumulations of genetic and epigenetic derangements. These molecular events are accompanied by histological changes that progress from mild cryptal architectural abnormalities in small adenomas to eventual invasive cancers. The transition steps from normal colonic epithelium to small adenomas are little understood. In experimental models of colonic carcinogenesis aberrant crypt foci (ACF), collections of abnormal appearing colonic crypts, are the earliest detectable abnormality and precede adenomas. Whether in fact ACF are precursors of colon cancer, however, remains controversial. Recent advances in magnification chromoendoscopy now allow these lesions to be identified in vivo and their natural history ascertained. While increasing lines of evidence suggest that dysplastic ACF harbor a malignant potential, there are few prospective studies to confirm causal relationships and supporting epidemiological studies are scarce. It would be very useful, for example, to clarify the relationship of ACF incidence to established risks for colon cancer, including age, smoking, sedentary lifestyle, and Western diets. In experimental animal models, carcinogens dose-dependently increase ACF, whereas most chemopreventive agents reduce ACF incidence or growth. In humans, however, few agents have been validated to be chemopreventive of colon cancer. It remains unproven, therefore, whether human ACF could be used as reliable surrogate markers of efficacy of chemopreventive agents. If these lesions could be used as reliable biomarkers of colon cancer risk and their reductions as predictors of effective chemopreventive agents, metrics to quantify ACF could greatly facilitate the study of colonic carcinogenesis and chemoprevention.
Collapse
|
32
|
Abstract
Colorectal cancer is a prevalent disease in Western countries. While prevention through screening is the best approach to combat the development of colorectal cancer through the removal of precursor adenomas, many patients present with advanced disease that will require surgery and systemic therapy to improve survival. With reference to systemic therapy, the median survival of patients with metastatic colorectal cancer (those with tumor spread to lymph nodes or distant sites) has improved over the past three decades due to the introduction of 5-fluorouracil (5-FU), its subsequent biomodulation, and the addition other chemotherapeutic agents. There is now evidence that the biology of the colorectal tumor, in addition to the stage of colorectal cancer, may predict response to 5-FU-based therapy. More recently, systemic biological therapies that target signaling processes for tumor growth, such as epidermal growth factor receptor, and vascular endothelial growth factor, are also effective in improving patient survival with metastatic colorectal cancer. The use of a combination of systemic therapies that include chemotherapy and biologic therapy should continue to increase patient survival with metastatic colorectal cancer through appropriately designed clinical trials. Treatments based on the biology of the colorectal tumor also need to be examined through clinical trials.
Collapse
Affiliation(s)
- John M Carethers
- Division of Gastroenterology UC303, MC 0063 University of California San Diego 9500 Gilman Drive, La Jolla CA 92093-0063, USA
| |
Collapse
|
33
|
Hurlstone DP, Baraza W, Brown S, Thomson M, Tiffin N, Cross SS. In vivo real-time confocal laser scanning endomicroscopic colonoscopy for the detection and characterization of colorectal neoplasia. Br J Surg 2008; 95:636-45. [PMID: 18324640 DOI: 10.1002/bjs.5988] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Conventional colonoscopy has a significant false-negative rate for intraepithelial neoplasia. Chromoendoscopy increases sensitivity but lacks specificity. The aim was to assess prospectively the clinical applicability and predictive power of the EC3870CIFK confocal laser endomicroscope (CLE) for the in vivo diagnosis of intraepithelial neoplasia during colonoscopy. METHODS Lesions were identified using chromoscopy followed by CLE imaging and graded according to vascular and cellular changes. CLE imaging of circumscribed lesions and four segmental 'normal' colorectal quadrants was performed. Targeted biopsy specimens were then compared with histopathological results. RESULTS Forty patients completed the protocol (22 men and 18 women; median age 62 (range 39-82) years). The median duration of ileal intubation and total procedure time were 12 (range 5-26) and 55 (range 28-92) min respectively. Chromoscopic colonoscopy revealed 162 lesions in 39 patients. CLE imaging was obtained on all 162 lesions. Some 5422 confocal images were compared with 802 targeted biopsy specimens. Intraepithelial neoplasia was predicted with an accuracy of 99.1 per cent (sensitivity 97.4 per cent and specificity 99.3 per cent) (P = 0.711). CONCLUSION Confocal laser endomicroscopy permits high-quality cellular, subsurface vascular and stromal imaging, enabling prediction of intraepithelial neoplasia with a high level of accuracy.
Collapse
Affiliation(s)
- D P Hurlstone
- Gastroenterology and Liver Unit, Royal Hallamshire Hospital, University of Sheffield Medical School, Sheffield, UK.
| | | | | | | | | | | |
Collapse
|
34
|
Meng WJ, Sun XF, Tian C, Wang L, Yu YY, Zhou B, Gu J, Xia QJ, Li Y, Wang R, Zheng XL, Zhou ZG. Microsatellite instability did not predict individual survival in sporadic stage II and III rectal cancer patients. Oncology 2007; 72:82-8. [PMID: 18004081 DOI: 10.1159/000111107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 06/21/2007] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Tumors with high-frequency microsatellite instability (MSI-H) have unique biological behavior and the predictive role of microsatellite instability (MSI) status on survival of colorectal cancer is still debated. The prognostic significance of MSI status in sporadic stage II and III rectal cancer patients needs to be more precisely defined. So we investigated the relationship between MSI status and clinicopathological features and prognosis in these patients. METHODS DNAs from fresh-frozen paired samples of tumors and corresponding normal tissue from 128 stage II and III rectal cancer patients were analyzed for MSI by PCR amplification using markers recommended by a National Cancer Institute workshop on MSI. To assess prognostic significance, Cox proportional hazards modeling was used. RESULTS Twelve (9.3%) tumors in our study were MSI-H, 28 (21.9%) were low-frequency MSI (MSI-L) and 88 (68.8%) were microsatellite stable (MSS). Most of the MSI-H tumors compared with MSI-L and MSS tumors were found in female patients (p = 0.031), had mucinous histology (p = 0.023), high grade of differentiation (p = 0.002) and high level of preoperative serum carcinoembryonic antigen (p = 0.005). Rectal cancer patients with MSI-H did not show a better clinical outcome than those with MSI-L/MSS, neither in all cases (p = 0.986) nor in stage II and stage III disease analyzed separately (p = 0.705 and p = 0.664, respectively). CONCLUSIONS Data provided here demonstrated there was high incidence of MSI-H and MSI was not a prognostic factor in sporadic stage II and III rectal cancers from the Chinese Han population included in this study. Tumor stage is more suitable than MSI status for prediction of individual survival in sporadic stage II and III rectal cancer patients.
Collapse
Affiliation(s)
- Wen-Jian Meng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Otrubova K, McGuire KL, McAlpine SR. Scaffold targeting drug-resistant colon cancers. J Med Chem 2007; 50:1999-2002. [PMID: 17411027 DOI: 10.1021/jm070088s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have identified five derivatives of the natural product sansalvamide A that are potent against multiple drug-resistant colon cancer cell lines. These analogs share no structural homology to current colon cancer drugs, are cytotoxic at levels on par with existing drugs treating other cancers, and demonstrate selectivity for drug-resistant colon cancer cell lines over noncancerous cell lines. Thus, we have established sansalvamide A as a privileged structure for treating multiple drug-resistant colon cancers.
Collapse
Affiliation(s)
- Katerina Otrubova
- Department of Chemistry and Biochemistry, 5500 Campanile Road, San Diego State University, San Diego, California 92182-1030, USA
| | | | | |
Collapse
|
36
|
Lamberti C, Lundin S, Bogdanow M, Pagenstecher C, Friedrichs N, Büttner R, Sauerbruch T. Microsatellite instability did not predict individual survival of unselected patients with colorectal cancer. Int J Colorectal Dis 2007; 22:145-52. [PMID: 16724208 DOI: 10.1007/s00384-006-0131-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2006] [Indexed: 02/04/2023]
Abstract
INTRODUCTION High microsatellite instability (MSI-H) occurs in about 15% of colorectal cancers (CRC) and clinical as well as pathological features differ from tumours exhibiting low microsatellite instability (MSI-L) or microsatellite stability (MSS). Conflicting data exists about the relevance of MSI in predicting the prognosis and benefit of 5-fluorouracil (5-FU) based chemotherapy in patients with CRC. We investigated the usefulness of MSI as a predictor of distinct clinical attributes influencing recurrence rate and disease-free survival (DFS) subject to the use of adjuvant or palliative chemotherapy with 5-FU in stage II- stage IV CRC. METHODS We collected data and tumours of 416 consecutive stage I to IV CRC patients from 2000 to 2002, and followed them for a median time of 33 months. Microsatellite loci recommended by the National Cancer Institute were analysed. Cox proportional hazard modelling was used to compare clinical data and survival as well as associations for MSI and 5-FU treatment status of patients with MSI-H, MSI-L or MSS CRC. RESULTS We identified 52 MSI-H (13%), 21 MSI-L (5%) and 343 MSS (82%) tumours. CRC with MSI-H tended to have a decreased likelihood of metastasising to regional lymph nodes (p=0.055), whilst age of diagnosis and tumour location did not differ. In an analysis that did not take into account the use of chemotherapy, univariate and multivariate analyses failed to show a difference between MSI-H and MSS groups with respect to disease-free and overall survival. Furthermore, survival under application of 5-FU did not correlate with MSI status. CONCLUSION No clear influence of MSI status on overall survival and response to 5-FU chemotherapy was found.
Collapse
Affiliation(s)
- C Lamberti
- Department of Internal Medicine I, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Styers TJ, Kekec A, Rodriguez R, Brown JD, Cajica J, Pan PS, Parry E, Carroll CL, Medina I, Corral R, Lapera S, Otrubova K, Pan CM, McGuire KL, McAlpine SR. Synthesis of Sansalvamide A derivatives and their cytotoxicity in the MSS colon cancer cell line HT-29. Bioorg Med Chem 2006; 14:5625-31. [PMID: 16697205 DOI: 10.1016/j.bmc.2006.04.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 04/01/2006] [Accepted: 04/13/2006] [Indexed: 11/28/2022]
Abstract
We report the synthesis of thirty-six Sansalvamide A derivatives, and their biological activity against colon cancer HT-29 cell line, a microsatellite stable (MSS) colon cancer cell-line. The thirty-six compounds can be divided into three subsets, where the first subset of compounds contains L-amino acids, the second subset contains D-amino acids, and the third subset contains both D- and L-amino acids. Five compounds exhibited excellent inhibitory activity (>75% inhibition). The structure-activity relationship (SAR) of the compounds established that a single D-amino acid in position 2 or 3 gave up to a 10-fold improved cytotoxicity over Sansalvamide A peptide. This work highlights the importance of residues 2 and 3 and the role of D-amino acids in the extraordinary SAR for this compound class.
Collapse
Affiliation(s)
- Thomas J Styers
- Department of Chemistry and Biochemistry, San Diego State University, CA 92182-1030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Benatti P, Gafà R, Barana D, Marino M, Scarselli A, Pedroni M, Maestri I, Guerzoni L, Roncucci L, Menigatti M, Roncari B, Maffei S, Rossi G, Ponti G, Santini A, Losi L, Di Gregorio C, Oliani C, Ponz de Leon M, Lanza G. Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res 2006; 11:8332-40. [PMID: 16322293 DOI: 10.1158/1078-0432.ccr-05-1030] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Many studies have evaluated the role of high levels of microsatellite instability (MSI) as a prognostic marker and predictor of the response to chemotherapy in colorectal cancer (CRC); however, the results are not conclusive. The aim of this study was to analyze the prognostic significance of high levels of MSI (MSI-H) in CRC patients in relation to fluorouracil-based chemotherapy. EXPERIMENTAL DESIGN In three different institutions, 1,263 patients with CRC were tested for the presence of MSI, and CRC-specific survival was then analyzed in relation to MSI status, chemotherapy, and other clinical and pathologic variables. RESULTS Two hundred and fifty-six tumors were MSI-H (20.3%): these were more frequently at a less advanced stage, right-sided, poorly differentiated, with mucinous phenotype, and expansive growth pattern than microsatellite stable carcinomas. Univariate and multivariate analyses of 5-year-specific survival revealed stage, tumor location, grade of differentiation, MSI, gender, and age as significant prognostic factors. The prognostic advantage of MSI tumors was particularly evident in stages II and III in which chemotherapy did not significantly affect the survival of MSI-H patients. Finally, we analyzed survival in MSI-H patients in relation to the presence of mismatch repair gene mutations. MSI-H patients with hereditary non-polyposis colorectal cancer showed a better prognosis as compared with sporadic MSI-H; however, in multivariate analysis, this difference disappeared. CONCLUSIONS The type of genomic instability could influence the prognosis of CRC, in particular in stages II and III. Fluorouracil-based chemotherapy does not seem to improve survival among MSI-H patients. The survival benefit for patients with hereditary non-polyposis colorectal cancer is mainly determined by younger age and less advanced stage as compared with sporadic MSI-H counterpart.
Collapse
Affiliation(s)
- Piero Benatti
- Department of Medicine and Medical Specialties, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Krajewska M, Kim H, Kim C, Kang H, Welsh K, Matsuzawa SI, Tsukamoto M, Thomas RG, Assa-Munt N, Piao Z, Suzuki K, Perucho M, Krajewski S, Reed JC. Analysis of apoptosis protein expression in early-stage colorectal cancer suggests opportunities for new prognostic biomarkers. Clin Cancer Res 2006; 11:5451-61. [PMID: 16061861 DOI: 10.1158/1078-0432.ccr-05-0094] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Although most stage II colon cancers are potentially curable by surgery alone, approximately 20% of patients relapse, suggesting a need for establishing prognostic markers that can identify patients who may benefit from adjuvant chemotherapy. We tested the hypothesis that differences in expression of apoptosis-regulating proteins account for differences in clinical outcome among patients with early-stage colorectal cancer. EXPERIMENTAL DESIGN Tissue microarray technology was employed to assay the expression of apoptosis-regulating proteins by immunohistochemistry in 106 archival stage II colorectal cancers, making correlations with disease-specific survival. The influence of microsatellite instability (MSI), tumor location (left versus right side), patient age, and gender was also examined. RESULTS Elevated expression of several apoptosis regulators significantly correlated with either shorter (cIAP2; TUCAN) or longer (Apaf1; Bcl-2) overall survival in univariate and multivariate analyses. These biomarkers retained prognostic significance when adjusting for MSI, tumor location, patient age, and gender. Moreover, certain combinations of apoptosis biomarkers were highly predictive of death risk from cancer. For example, 97% of patients with favorable tumor phenotype of cIAP2(low) plus TUCAN(low) were alive at 5 years compared with 60% of other patients (P = 0.00003). In contrast, only 37% of patients with adverse biomarkers (Apaf1(low) plus TUCAN(high)) survived compared with 83% of others at 5 years after diagnosis (P< 0.0001). CONCLUSIONS Immunohistochemical assays directed at detection of certain combinations of apoptosis proteins may provide prognostic information for patients with early-stage colorectal cancer, and therefore could help to identify patients who might benefit from adjuvant chemotherapy or who should be spared it.
Collapse
Affiliation(s)
- Maryla Krajewska
- The Burnham Institute, Department of Family Preventive Medicine, University of California-San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Chemotherapy for colorectal cancer is currently offered to patients based on the stage of their cancer, and there is evidence to show an overall survival benefit with 5-fluorouracil-based (5-FU) therapy for patients with lymph node metastasis who receive it. The pathogenesis of colorectal cancer involves genomic instability, with about 15% of tumors demonstrating a form of genomic instability called high-frequency microsatellite instability (MSI-H) and due to loss of DNA mismatch repair function, and the remainder of colorectal tumors lacking MSI-H with retained DNA mismatch repair function and called microsatellite stable (MSS), with a large proportion of these tumors demonstrating another form of genomic instability called chromosomal instability. There is now evidence to show that the form of genomic instability that is present in a patient's colorectal cancer may predict a survival benefit from 5-FU. In particular, patients whose colorectal tumors have MSI-H do not gain a survival benefit with 5-FU as compared to patients with MSS tumors. In vitro evidence supports these findings, as MSI-H colon cancer cell lines are more resistant to 5-FU compared to MSS cell lines. More specifically, components of the DNA mismatch repair system have been shown to recognize and bind to 5-FU that becomes incorporated into DNA and which could be a trigger to induce cell death. The binding and subsequent cell death events would be absent in colorectal tumors with MSI-H, which have lost intact DNA mismatch repair function. These findings suggest that: (a) tumor cytotoxicity of 5-FU is mediated by DNA mechanisms in addition to well-known RNA mechanisms, and (b) patients whose tumors demonstrate MSI-H may not benefit from 5-FU therapy. Future studies should include a better understanding of the cellular mechanisms of the DNA recognition of 5-FU, multi-centered prospective trials investigating the survival benefit of 5-FU based on genomic instability, and the investigation of alternative chemotherapeutic regimens for patients with MSI-H tumors to improve survival.
Collapse
Affiliation(s)
- Won-Seok Jo
- Department of Medicine, University of California, San Diego, CA, USA
| | - John M. Carethers
- Department of Medicine, University of California, San Diego, CA, USA
- Rebecca and John Moores Comprehensive Cancer Center, University of California, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
41
|
Lamberti C, Sauerbruch T, Glasmacher A. Adjuvant capecitabine is at least as effective as fluorouracil plus leucovorin for survival in people with resected stage III colon cancer. Cancer Treat Rev 2005; 31:648-52. [PMID: 16289340 DOI: 10.1016/j.ctrv.2005.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- C Lamberti
- Department of Internal Medicine I, University of Bonn, Germany
| | | | | |
Collapse
|
42
|
Ricciardiello L, Ceccarelli C, Angiolini G, Pariali M, Chieco P, Paterini P, Biasco G, Martinelli GN, Roda E, Bazzoli F. High thymidylate synthase expression in colorectal cancer with microsatellite instability: implications for chemotherapeutic strategies. Clin Cancer Res 2005; 11:4234-40. [PMID: 15930362 DOI: 10.1158/1078-0432.ccr-05-0141] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Colon cancers displaying microsatellite instability (MSI) are clinically less aggressive. Based on in vitro studies and recent clinical data, cancers displaying MSI do not respond to 5-fluorouracil (5-FU). The reasons why MSI tumors are clinically less aggressive and do not respond to 5-FU-based therapies have not been fully elucidated. PURPOSE We investigated biomolecular markers in an attempt to explain the different clinical behavior and chemotherapeutic responses of MSI and non-MSI colon cancers. EXPERIMENTAL DESIGN One hundred ninety-two sporadic colon cancers were tested for MSI with five mononucleotide markers and methylation of the hMLH1 promoter. Slides were stained for thymidylate synthase (TS), p53, MDM2, p21(WAF1/CIP1), beta-catenin, vascular endothelial growth factor, hMLH1, hMSH2, and hMSH6. Tumors were regarded as having wild-type, functional p53 (Fp53) if reduced expression of p53 and positive MDM2 and p21(WAF1/CIP1) expressions were found. RESULTS Of the cases, 12.5% were MSI-H (at least two markers mutated). Of MSI-H cases, 83.3% were characterized by a complete loss of at least one of the mismatch repair proteins, in particular loss of hMLH1 by promoter hypermethylation. MSI-H colon cancers showed higher expression of TS compared with MSS (no mutated markers)/MSI-L (one mutated marker) colon cancers (66.6% for MSI-H versus 14.8% MSS/MSI-L; P < 0.0001); 20.8% of MSI-H cases showed high expression of the vascular endothelial growth factor, compared with 45.8% MSS/MSI-L colon cancers (P = 0.0005); 45.8% MSI-H cases had Fp53 compared 11.9% MSS/MSI-L cases (P < 0.0001). CONCLUSIONS About 12% of colon cancers display MSI mostly due to lack of hMLH1 resulting from promoter hypermethylation. These tumors have high expression of TS and retain fully functional p53 system. Thus, these data suggest why sporadic hMLH1-defective colon cancers often do not respond to 5-FU.
Collapse
Affiliation(s)
- Luigi Ricciardiello
- Department of Internal Medicine and Gastroenterology, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Baton O, Lasser P, Sabourin JC, Boige V, Duvillard P, Elias D, Malka D, Ducreux M, Pocard M. Ex Vivo Sentinel Lymph Node Study For Rectal Adenocarcinoma: Preliminary Study. World J Surg 2005; 29:1166-70, discussion 1171. [PMID: 16086211 DOI: 10.1007/s00268-005-7867-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intraoperative sentinel lymph node (SLN) detection has been reported for colon cancer, but no study has focused on rectal cancer. Only an ex vivo technique can be performed easily in this location. We evaluated SLN detection using blue dye injection in patients with rectal adenocarcinoma. This prospective study included 31 patients. Preoperative radiotherapy (45 Gy) was done in 15 cases. After proctectomy the surgical specimen was examined in the operating room. Submucosal peritumoral injections were done. One to three SLNs were retrieved. The SLNs were sectioned at three levels and examined histologically and then, if negative by hematoxylin-eosin (H&E) staining and immunohistochemistry (IHC). There were 7 abdominoperineal resections, 12 colorectal anastomoses, 11 coloanal anastomoses, and 1 Hartmann procedure. The median number of lymph nodes harvested was 21 (7-38). A SLN was identified in 30 cases (feasibility 97%). The mean number of SLNs was 2 (0-3). A micrometastasis was discovered in 3 of 23 pNO cases when H&E was used on multisection levels, thus changing the stage to pN1. Each time the only positive lymph node was the SLN. IHC evaluation did not change the result, as only isolated tumor cells were discovered in one case. Only four of seven N+ patients had a positive SLN, resulting in a false-negative rate of 43%. Ex vivo detection of SLNs is possible for rectal cancer and is a simple technique. Classic analysis using H&E remains the gold standard. However, SLNs detection can change the tumor stage by upstaging nearly 15% of the tumors from T2-3N0 to T2-3 N+.
Collapse
Affiliation(s)
- Olivier Baton
- Department of Surgical Oncology, Institut Gustave Roussy, Comprehensive Cancer Center, 39 rue Camille Desmoulins, 94805 Villejuif cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Di Gregorio C, Benatti P, Losi L, Roncucci L, Rossi G, Ponti G, Marino M, Pedroni M, Scarselli A, Roncari B, Ponz de Leon M. Incidence and survival of patients with Dukes' A (stages T1 and T2) colorectal carcinoma: a 15-year population-based study. Int J Colorectal Dis 2005; 20:147-54. [PMID: 15592853 DOI: 10.1007/s00384-004-0665-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2004] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Patients with stage I (Dukes' A) colorectal carcinoma tend to show a good prognosis; however, recurrences can be observed in some patients. Through a specialized colorectal cancer Registry, we attempted to investigate the epidemiological and clinical features of individuals with Dukes' A neoplasms. PATIENTS AND METHODS From 1984 to 1998, 295 individuals were diagnosed with Stage I /Dukes' A tumors; 150 of these had lesions infiltrating the muscular wall (T2), while 145 had neoplasms limited to the submucosa (T1). RESULTS Dukes' A tumors represented 13.8% of all registered neoplasms; the percentage doubled over the study period (8.1% in the first year vs. 16.8% in the final year). In each year of observation, the preferential locations were the rectum and sigmoid colon (75% of all lesions). Most patients required surgery, but only 21.3% could be managed by endoscopic polypectomy. Overall 5-year survival was 81.0% (82.1% in T1, 80.0% in T2). Recurrences were seen in 6.8% (2.8% in T1, 10.7% in T2), while 36 patients (12.2%) died of causes unrelated to colorectal cancer. In 17 out of 20 patients who died of cancer, the lesions were localized in the rectosigmoid region. Survival analysis showed a significantly better prognosis (P<0.007) for patients with T1 tumors. CONCLUSIONS The proportion of stage I colorectal tumors tended to increase over time. Although the overall prognosis is good in four-fifths of the cases, approximately one-fifth of these patients die of recurrent disease or of other causes. As expected, the prognosis was significantly more favorable for patients with T1 lesions. For patients with T2 tumors, radical surgery is the most appropriate approach.
Collapse
|
45
|
Tajima A, Hess MT, Cabrera BL, Kolodner RD, Carethers JM. The mismatch repair complex hMutS alpha recognizes 5-fluorouracil-modified DNA: implications for chemosensitivity and resistance. Gastroenterology 2004; 127:1678-84. [PMID: 15578504 DOI: 10.1053/j.gastro.2004.10.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Recent evidence suggests that patients with advanced microsatellite unstable (MSI) colorectal cancers lack a survival benefit with 5-fluorouracil (5-FU)-based chemotherapy. Additionally, tumor cells with MSI (caused by defective DNA mismatch repair) are more resistant to 5-FU in culture compared with microsatellite stable cells, despite similar amounts of 5-FU incorporation into the cell's DNA. We examined whether the component of the DNA mismatch repair (MMR) system that normally recognizes single base pair mismatches could specifically recognize 5-FU incorporated into DNA as a potential mechanism for chemosensitivity. METHODS We synthesized oligonucleotides with and without incorporated 5-FU and created oligonucleotides with a single base pair mismatch (as a positive control) to perform electromobility gel shift assays (EMSA) with a purified, baculovirus-synthesized hMutS alpha MMR complex. We also utilized surface plasmon resonance to measure relative binding differences between the oligonucleotides and hMutS alpha in real time. RESULTS Using EMSA, we demonstrate that hMutS alpha recognizes and binds 5-FU-modified DNA. The reaction is specific as added ATP dissociates the hMutS alpha complex from the 5-FU-modified strand. Using surface plasmon resonance, we demonstrate greater binding between hMutS alpha and 5-FU-modified DNA compared with complementary DNA or DNA containing a C/T mismatch. CONCLUSIONS The MMR complex hMutS alpha specifically recognizes and binds to 5-FU-modified DNA. Because MMR components are required for the induction of apoptosis by many DNA-damaging agents, the chemosensitivity of 5-FU for patients with advanced colorectal cancer may be in part due to recognition of 5-FU incorporated into tumor DNA by the MMR proteins.
Collapse
Affiliation(s)
- Akihiro Tajima
- Department of Medicine, University of California, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
46
|
Boland CR. Clement Richard Boland, Jr., MD: A Conversation with the Editor. Proc (Bayl Univ Med Cent) 2004; 17:444-61. [PMID: 16200134 PMCID: PMC1200686 DOI: 10.1080/08998280.2004.11928011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
47
|
Seley KL, O'Daniel PI, Salim S. Design and synthesis of a series of chlorinated 3-deazaadenine analogues. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2004; 22:2133-44. [PMID: 14714762 DOI: 10.1081/ncn-120026635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A series of chlorinated adenine analogues were designed with sights set on the development of potential antitumor agents. During the synthetic efforts, two unexpected compounds were identified. Their synthesis, along with synthesis of the chlorinated targets is presented herein.
Collapse
Affiliation(s)
- Katherine L Seley
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.
| | | | | |
Collapse
|
48
|
Kim HY, Yu R, Kim JS, Kim YK, Sung MK. Antiproliferative crude soy saponin extract modulates the expression of IkappaBalpha, protein kinase C, and cyclooxygenase-2 in human colon cancer cells. Cancer Lett 2004; 210:1-6. [PMID: 15172114 DOI: 10.1016/j.canlet.2004.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 10/21/2003] [Accepted: 01/12/2004] [Indexed: 02/07/2023]
Abstract
Frequent consumption of soy and soy-based products is associated with reduced cancer incidence particularly for breast, colon, and prostate cancer. In this study, we examined the effect of crude soy saponin extract on PMA (phorbol 12-myristate 13-acetate)-induced inflammatory responses. Human adenocarcinoma cells (HT-29) were treated with various concentrations of saponin extract for 72 h. Cell growth was measured at 24, 48 and 72 h of incubation, and the PMA-induced expressions of cyclooxygenase-2 (COX-2), protein kinase C (PKC), and IkappaBalpha were determined. The results indicate that crude saponin extract decreased cell growth in a dose- and time-dependent manner. Crude soy saponin extract suppressed the degradation of IkappaBalpha in PMA-stimulated cells, while COX-2 and PKC expressions were significantly down-regulated. These findings support the hypothesis that the soy saponins reduce the risk of colon tumorigenesis possibly by suppressing inflammatory responses.
Collapse
Affiliation(s)
- Hwa-Young Kim
- Department of Food and Nutrition, Sookmyung Women's University, 53-12 Chungpa-Dong, 2-ka, Yongsan-ku, Seoul 140-742, South Korea
| | | | | | | | | |
Collapse
|
49
|
Carethers JM, Smith EJ, Behling CA, Nguyen L, Tajima A, Doctolero RT, Cabrera BL, Goel A, Arnold CA, Miyai K, Boland CR. Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology 2004; 126:394-401. [PMID: 14762775 DOI: 10.1053/j.gastro.2003.12.023] [Citation(s) in RCA: 366] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS 5-Fluorouracil improves mortality in stage III colorectal cancer patients. In vitro studies suggest that microsatellite instability influences cell survival after 5-fluorouracil treatment. We investigated the survival influence of 5-fluorouracil in patients with microsatellite instability-high tumors. METHODS We collected data and tumors on 204 consecutive stage II and III colorectal cancer patients from registries at the University of California and Veterans Administration hospitals in San Diego, California, from 1982 to 1999. Archival DNA was extracted, and microsatellite instability was assessed by National Cancer Institute-recommended markers. Cox proportional hazard modeling was used to determine survival associations for microsatellite instability and 5-fluorouracil treatment status. RESULTS We identified 36 microsatellite instability-high (17.6%) and 168 non-microsatellite instability-high tumors (82.4%). Microsatellite instability-high tumors were significantly associated with proximal colon location, presence of mucin, and surrounding lymphoid reaction. Univariate and multivariate analyses showed no survival difference between microsatellite instability-high and non-microsatellite instability-high groups (hazard ratio, 1.04; P = 0.88). Dichotomized by use of 5-fluorouracil, there was increased risk of death in patients who received no adjuvant chemotherapy (hazard ratio, 2.02; P = 0.02). However, the benefit of 5-fluorouracil was different between microsatellite instability-high and non-microsatellite instability-high groups. Patients with non-microsatellite instability-high tumors who received 5-fluorouracil had better survival compared with patients who were not treated (P < 0.05). Conversely, patients with microsatellite instability-high tumors who were treated with 5-fluorouracil had no survival difference compared with patients without treatment (P = 0.52). CONCLUSIONS There is improved survival in patients with non-microsatellite instability-high tumors after 5-fluorouracil-based chemotherapy that does not extend to patients with microsatellite instability-high tumors. The microsatellite instability status of a patient's colorectal cancer may indicate differences in 5-fluorouracil-based chemosensitivity; this is consistent with in vitro studies.
Collapse
Affiliation(s)
- John M Carethers
- Department of Gastroenterology and Cancer Center, University of California, and Veterans Administration Research Service, San Diego, 92161, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Colon cancer and the Western diet. Integr Cancer Ther 2003; 1:420-1. [PMID: 14696633 DOI: 10.1177/153473540200100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|