1
|
Sato Y, Ban S, Katayama Y, Mitsui T. Unique membranous gastrin receptor expression of parietal cells, and its distribution pattern in the gastric oxyntic mucosa and fundic gland polyps. Hum Pathol 2022; 125:23-34. [DOI: 10.1016/j.humpath.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
|
2
|
Vitale G, Dicitore A, Barrea L, Sbardella E, Razzore P, Campione S, Faggiano A, Colao A, Albertelli M, Altieri B, Bottiglieri F, De Cicco F, Di Molfetta S, Fanciulli G, Feola T, Ferone D, Ferraù F, Gallo M, Giannetta E, Grillo F, Grossrubatscher E, Guadagno E, Guarnotta V, Isidori AM, Lania A, Lenzi A, Calzo FL, Malandrino P, Messina E, Modica R, Muscogiuri G, Pes L, Pizza G, Pofi R, Puliani G, Rainone C, Rizza L, Rubino M, Ruggieri RM, Sesti F, Venneri MA, Zatelli MC. From microbiota toward gastro-enteropancreatic neuroendocrine neoplasms: Are we on the highway to hell? Rev Endocr Metab Disord 2021; 22:511-525. [PMID: 32935263 PMCID: PMC8346435 DOI: 10.1007/s11154-020-09589-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Gut microbiota is represented by different microorganisms that colonize the intestinal tract, mostly the large intestine, such as bacteria, fungi, archaea and viruses. The gut microbial balance has a key role in several functions. It modulates the host's metabolism, maintains the gut barrier integrity, participates in the xenobiotics and drug metabolism, and acts as protection against gastro-intestinal pathogens through the host's immune system modulation. The impaired gut microbiota, called dysbiosis, may be the result of an imbalance in this equilibrium and is linked with different diseases, including cancer. While most of the studies have focused on the association between microbiota and gastrointestinal adenocarcinomas, very little is known about gastroenteropancreatic (GEP) neuroendocrine neoplasms (NENs). In this review, we provide an overview concerning the complex interplay between gut microbiota and GEP NENs, focusing on the potential role in tumorigenesis and progression in these tumors.
Collapse
Affiliation(s)
- Giovanni Vitale
- Istituto Auxologico Italiano IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Cusano Milanino, MI, Italy.
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy.
| | - Alessandra Dicitore
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Luigi Barrea
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Emilia Sbardella
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Razzore
- Endocrinology Unit, A.O. Ordine Mauriziano, Turin, Italy
| | | | | | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Gastric acid secretion (i) facilitates digestion of protein as well as absorption of micronutrients and certain medications, (ii) kills ingested microorganisms, including Helicobacter pylori, and (iii) prevents bacterial overgrowth and enteric infection. The principal regulators of acid secretion are the gastric peptides gastrin and somatostatin. Gastrin, the major hormonal stimulant for acid secretion, is synthesized in pyloric mucosal G cells as a 101-amino acid precursor (preprogastrin) that is processed to yield biologically active amidated gastrin-17 and gastrin-34. The C-terminal active site of gastrin (Trp-Met-Asp-Phe-NH2 ) binds to gastrin/CCK2 receptors on parietal and, more importantly, histamine-containing enterochromaffin-like (ECL) cells, located in oxyntic mucosa, to induce acid secretion. Histamine diffuses to the neighboring parietal cells where it binds to histamine H2 -receptors coupled to hydrochloric acid secretion. Gastrin is also a trophic hormone that maintains the integrity of gastric mucosa, induces proliferation of parietal and ECL cells, and is thought to play a role in carcinogenesis. Somatostatin, present in D cells of the gastric pyloric and oxyntic mucosa, is the main inhibitor of acid secretion, particularly during the interdigestive period. Somatostatin exerts a tonic paracrine restraint on gastrin secretion from G cells, histamine secretion from ECL cells, and acid secretion from parietal cells. Removal of this restraint, for example by activation of cholinergic neurons during ingestion of food, initiates and maximizes acid secretion. Knowledge regarding the structure and function of gastrin, somatostatin, and their respective receptors is providing novel avenues to better diagnose and manage acid-peptic disorders and certain cancers. Published 2020. Compr Physiol 10:197-228, 2020.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Division of Gastroenterology, Department of Medicine, Virginia Commonwealth University Health System, Richmond, Virginia, USA.,Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Kidd M, Modlin IM, Bodei L, Drozdov I. Decoding the Molecular and Mutational Ambiguities of Gastroenteropancreatic Neuroendocrine Neoplasm Pathobiology. Cell Mol Gastroenterol Hepatol 2015; 1:131-153. [PMID: 28210673 PMCID: PMC5301133 DOI: 10.1016/j.jcmgh.2014.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/19/2014] [Indexed: 02/08/2023]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN), considered a heterogeneous neoplasia, exhibit ill-defined pathobiology and protean symptomatology and are ubiquitous in location. They are difficult to diagnose, challenging to manage, and outcome depends on cell type, secretory product, histopathologic grading, and organ of origin. A morphologic and molecular genomic review of these lesions highlights tumor characteristics that can be used clinically, such as somatostatin-receptor expression, and confirms features that set them outside the standard neoplasia paradigm. Their unique pathobiology is useful for developing diagnostics using somatostatin-receptor targeted imaging or uptake of radiolabeled amino acids specific to secretory products or metabolism. Therapy has evolved via targeting of protein kinase B signaling or somatostatin receptors with drugs or isotopes (peptide-receptor radiotherapy). With DNA sequencing, rarely identified activating mutations confirm that tumor suppressor genes are relevant. Genomic approaches focusing on cancer-associated genes and signaling pathways likely will remain uninformative. Their uniquely dissimilar molecular profiles mean individual tumors are unlikely to be easily or uniformly targeted by therapeutics currently linked to standard cancer genetic paradigms. The prevalence of menin mutations in pancreatic NEN and P27KIP1 mutations in small intestinal NEN represents initial steps to identifying a regulatory commonality in GEP-NEN. Transcriptional profiling and network-based analyses may define the cellular toolkit. Multianalyte diagnostic tools facilitate more accurate molecular pathologic delineations of NEN for assessing prognosis and identifying strategies for individualized patient treatment. GEP-NEN remain unique, poorly understood entities, and insight into their pathobiology and molecular mechanisms of growth and metastasis will help identify the diagnostic and therapeutic weaknesses of this neoplasia.
Collapse
Key Words
- 5-HT, serotonin, 5-hydroxytryptamine
- Akt, protein kinase B
- BRAF, gene encoding serine/threonine-protein kinase B-Raf
- Blood
- CGH, comparative genomic hybridization
- CREB, cAMP response element-binding protein
- Carcinoid
- CgA, chromogranin A
- D cell, somatostatin
- DAG, diacylglycerol
- EC, enterochromaffin
- ECL, enterochromaffin-like
- EGFR, epidermal growth factor receptor
- ERK, extracellular-signal-regulated kinase
- G cell, gastrin
- GABA, γ-aminobutyric acid
- GEP-NEN, gastroenteropancreatic neuroendocrine neoplasms
- GPCR, G-protein coupled receptor
- Gastroenteropancreatic Neuroendocrine Neoplasms
- IGF-I, insulin-like growth factor-I
- ISG, immature secretory vesicles
- Ki-67
- LOH, loss of heterozygosity
- MAPK, mitogen-activated protein kinase
- MEN-1/MEN1, multiple endocrine neoplasia type 1
- MSI, microsatellite instability
- MTA, metastasis associated-1
- NEN, neuroendocrine neoplasms
- NFκB, nuclear factor κB
- PET, positron emission tomography
- PI3, phosphoinositide-3
- PI3K, phosphoinositide-3 kinase
- PKA, protein kinase A
- PKC, protein kinase C
- PTEN, phosphatase and tensin homolog deleted on chromosome 10
- Proliferation
- SD-208, 2-(5-chloro-2-fluorophenyl)-4-[(4-pyridyl)amino]p-teridine
- SNV, single-nucleotide variant
- SSA, somatostatin analog
- SST, somatostatin
- Somatostatin
- TGF, transforming growth factor
- TGN, trans-Golgi network
- TSC2, tuberous sclerosis complex 2 (tuberin)
- Transcriptome
- VMAT, vesicular monoamine transporters
- X/A-like cells, ghrelin
- cAMP, adenosine 3′,5′-cyclic monophosphate
- mTOR, mammalian target of rapamycin
- miR/miRNA, micro-RNA
Collapse
Affiliation(s)
| | - Irvin M. Modlin
- Correspondence Address correspondence to: Irvin M. Modlin, MD, PhD, The Gnostic Consortium, Wren Laboratories, 35 NE Industrial Road, Branford, Connecticut, 06405.
| | | | | |
Collapse
|
5
|
Selvik LKM, Rao S, Steigedal TS, Haltbakk I, Misund K, Bruland T, Prestvik WS, Lægreid A, Thommesen L. Salt-inducible kinase 1 (SIK1) is induced by gastrin and inhibits migration of gastric adenocarcinoma cells. PLoS One 2014; 9:e112485. [PMID: 25384047 PMCID: PMC4226541 DOI: 10.1371/journal.pone.0112485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
Salt-inducible kinase 1 (SIK1/Snf1lk) belongs to the AMP-activated protein kinase (AMPK) family of kinases, all of which play major roles in regulating metabolism and cell growth. Recent studies have shown that reduced levels of SIK1 are associated with poor outcome in cancers, and that this involves an invasive cellular phenotype with increased metastatic potential. However, the molecular mechanism(s) regulated by SIK1 in cancer cells is not well explored. The peptide hormone gastrin regulates cellular processes involved in oncogenesis, including proliferation, apoptosis, migration and invasion. The aim of this study was to examine the role of SIK1 in gastrin responsive adenocarcinoma cell lines AR42J, AGS-GR and MKN45. We show that gastrin, known to signal through the Gq/G11-coupled CCK2 receptor, induces SIK1 expression in adenocarcinoma cells, and that transcriptional activation of SIK1 is negatively regulated by the Inducible cAMP early repressor (ICER). We demonstrate that gastrin-mediated signalling induces phosphorylation of Liver Kinase 1B (LKB1) Ser-428 and SIK1 Thr-182. Ectopic expression of SIK1 increases gastrin-induced phosphorylation of histone deacetylase 4 (HDAC4) and enhances gastrin-induced transcription of c-fos and CRE-, SRE-, AP1- and NF-κB-driven luciferase reporter plasmids. We also show that gastrin induces phosphorylation and nuclear export of HDACs. Next we find that siRNA mediated knockdown of SIK1 increases migration of the gastric adenocarcinoma cell line AGS-GR. Evidence provided here demonstrates that SIK1 is regulated by gastrin and influences gastrin elicited signalling in gastric adenocarcinoma cells. The results from the present study are relevant for the understanding of molecular mechanisms involved in gastric adenocarcinomas.
Collapse
Affiliation(s)
- Linn-Karina M. Selvik
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Technology, Sør-Trøndelag University College, Trondheim, Norway
| | - Shalini Rao
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Technology, Sør-Trøndelag University College, Trondheim, Norway
| | - Tonje S. Steigedal
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ildri Haltbakk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kristine Misund
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Torunn Bruland
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Wenche S. Prestvik
- Department of Technology, Sør-Trøndelag University College, Trondheim, Norway
| | - Astrid Lægreid
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Liv Thommesen
- Department of Technology, Sør-Trøndelag University College, Trondheim, Norway
- * E-mail:
| |
Collapse
|
6
|
Copps J, Murphy RF, Lovas S. The production and role of gastrin-17 and gastrin-17-gly in gastrointestinal cancers. Protein Pept Lett 2010; 16:1504-18. [PMID: 20001914 DOI: 10.2174/092986609789839269] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal peptide hormone gastrin is responsible for initiating the release of gastric acid in the stomach in response to the presence of food and/or humoral factors such as gastrin releasing peptide. However, it has a role in the growth and maintenance of the gastric epithelium, and has been implicated in the formation and growth of gastric cancers. Hypergastrinemia resulting from atrophic gastritis and pernicious anemia leads to hyperplasia and carcinoid formation in rats, and contributes to tumor formation in humans. Additionally, gastrin has been suspected to play a role in the formation and growth of cancers of the colon, but recent studies have instead implicated gastrin processing intermediates, such as gastrin-17-Gly, acting upon a putative, non-cholecystokinin receptor. This review summarizes the production and chemical structures of gastrin and of the processing intermediate gastrin-17-Gly, as well as their activities in the gastrointestinal tract, particularly the promotion of colon cancers.
Collapse
Affiliation(s)
- Jeffrey Copps
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | |
Collapse
|
7
|
Harper EA, Roberts SP, Kalindjian SB. Thermodynamic analysis of ligands at cholecystokinin CCK2 receptors in rat cerebral cortex. Br J Pharmacol 2007; 151:1352-67. [PMID: 17592503 PMCID: PMC2189820 DOI: 10.1038/sj.bjp.0707355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 05/01/2007] [Accepted: 05/22/2007] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Several studies using radioligand binding assays, have shown that measurement of thermodynamic parameters can allow discrimination of agonists and antagonists (Weiland et al., 1979; Borea et al., 1996a). Here we investigate whether agonists and antagonists can be thermodynamically discriminated at CCK(2) receptors in rat cerebral cortex. EXPERIMENTAL APPROACH The pK(L) of [(3)H]-JB93182 in rat cerebral cortex membranes was determined at 4, 12, 21 and 37 degrees C in 50 mM Tris-HCl buffer (buffer B pH 6.96; containing 0.089 mM bacitracin). pK(I) values of ligands of diverse chemical structure and with differing intrinsic activity (alpha), as defined by the lumen-perfused rat and mouse stomach bioassays, were determined in buffer B at 4, 12, 21 and 37 degrees C. KEY RESULTS [(3)H]-JB93182 labelled a homogeneous population of receptors in rat cerebral cortex at 4, 12, 21 and 37 degrees C and the pK(L) and B(max) were not altered by incubation temperature. [(3)H]-JB93182 binding reached equilibrium after 10, 50, 90 and 220 min at 37, 21, 12 and 4 degrees C, respectively. pK(I) values for R-L-365,260, R-L-740,093, YM220, PD134,308 and JB95008 were higher at 4 degrees C than at 37 degrees C. There was no effect of temperature on pK(I) values for pentagastrin, CCK-8S, S-L-365,260, YM022, PD140,376 and JB93242. CONCLUSIONS AND IMPLICATIONS CCK(2) receptor agonists and antagonists at rat CCK(2) receptors cannot be discriminated by thermodynamic analysis using [(3)H]-JB93182 as the radioligand.
Collapse
Affiliation(s)
- E A Harper
- James Black Foundation, 68 Half Moon Lane, Dulwich, London, UK.
| | | | | |
Collapse
|
8
|
Abstract
The gastric epithelium is a complex structure formed into tubular branched gastric glands. The glands contain a wide variety of cell types concerned with the secretion of hydrochloric acid, proteases, mucus and a range of signalling molecules. All cell types originate from stem cells in the neck region of the gland, before migrating and differentiating to assume their characteristic positions and functions. Endocrine and local paracrine mediators are of crucial importance for maintaining structural and functional integrity of the epithelium, in the face of a hostile luminal environment. The first such mediator to be recognized, the hormone gastrin, was identified over a century ago and is now established as the major physiological stimulant of gastric acid secretion. Recent studies, including those using mice that overexpress or lack the gastrin gene, suggest a number of previously unrecognized roles for this hormone in the regulation of cellular proliferation, migration and differentiation. This review focuses on the identification of hitherto unsuspected gastrin-regulated genes and discusses the paracrine cascades that contribute to the maintenance of gastric epithelial architecture and secretory function. Helicobacter infection is also considered in cases where it shares targets and signalling mechanisms with gastrin.
Collapse
Affiliation(s)
- Rod Dimaline
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| | | |
Collapse
|
9
|
Kidd M, Modlin IM, Black JW, Boyce M, Culler M. A comparison of the effects of gastrin, somatostatin and dopamine receptor ligands on rat gastric enterochromaffin-like cell secretion and proliferation. ACTA ACUST UNITED AC 2007; 143:109-17. [PMID: 17531331 DOI: 10.1016/j.regpep.2007.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 04/17/2007] [Accepted: 04/17/2007] [Indexed: 12/13/2022]
Abstract
Gastrin regulates ECL cell histamine release and is a critical determinant of acid secretion. ECL cell secretion and proliferation is inhibited by gastrin antagonists and somatostatin but little is known about the role of dopamine agonists in this process. Since the ECL cell exhibits all three classes of receptor we evaluated and compared the effects of the gastrin receptor antagonist, (YF476), lanreotide (SST agonist) and novel dopaminergic agents (BIM53061 and BIM27A760) on ECL cell histamine secretion and proliferation. Highly enriched (>98%) ECL cell preparations prepared from rat gastric mucosa using a FACS approach were studied. Real-time PCR confirmed presence of the CCK2, SS2 and SS5 and D1 receptors on ECL cells. YF476 inhibited histamine secretion and proliferation with IC(50)s of 1.25 nM and 1.3 x 10(-11) M respectively, values 10-1000x more potent than L365,260. Lanreotide inhibited secretion and proliferation (2.2 nM, 1.9 x 10(-10) M) and increased YF476-inhibited proliferation a further 5-fold. The dopamine agonist, BIM53061, inhibited gastrin-mediated ECL cell secretion and proliferation (17 nM, 6 x 10(-10) M) as did the novel dopamine/somatostatin chimera BIM23A760 (22 nM, 4.9 x 10(-10) M). Our studies demonstrate that the gastrin receptor antagonist, YF476, is the most potent inhibitor of ECL cell histamine secretion and proliferation. Lanreotide, a dopamine agonist and a dopamine/somatostatin chimera inhibited ECL cell function but were 10-1000x less potent than YF476. Agents that selectively target the CCK2 receptor may provide alternative therapeutic strategies for gastrin-mediated gastrointestinal cell secretion and proliferation such as evident in the hypergastrinemic gastric carcinoids associated with low acid states.
Collapse
MESH Headings
- Animals
- Benzodiazepinones/pharmacology
- Cell Proliferation/drug effects
- Cells, Cultured
- Dopamine Agonists/pharmacology
- Dose-Response Relationship, Drug
- Enterochromaffin-like Cells/cytology
- Enterochromaffin-like Cells/drug effects
- Enterochromaffin-like Cells/metabolism
- Gastrins/pharmacology
- Gene Expression/drug effects
- Histamine Release/drug effects
- Immunohistochemistry
- Male
- Peptides, Cyclic/pharmacology
- Phenylurea Compounds/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cholecystokinin B/antagonists & inhibitors
- Receptor, Cholecystokinin B/genetics
- Receptor, Cholecystokinin B/metabolism
- Receptors, Dopamine/genetics
- Receptors, Dopamine/metabolism
- Receptors, Somatostatin/agonists
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
Collapse
Affiliation(s)
- M Kidd
- Department of Surgery, Yale University School of Medicine New Haven, Connecticut 06520-8062, United Sates
| | | | | | | | | |
Collapse
|
10
|
Yu HG, Schäfer H, Mergler S, Müerköster S, Cramer T, Höcker M, Herzig KH, Schmidt WE, Schmitz F. Valine-286 residue in the third intracellular loop of the cholecystokinin 2 receptor exerts a pivotal role in cholecystokinin 2 receptor mediated intracellular signal transduction in human colon cancer cells. Cell Signal 2006; 17:1505-15. [PMID: 15951156 DOI: 10.1016/j.cellsig.2005.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 03/04/2005] [Indexed: 12/26/2022]
Abstract
Although expression of the gastrin/cholecystokinin-2 receptor (CCK2R) is widely reported in human colorectal cancer, little is known on its role in mediating mature amidated gastrin (gastrin-17 amide, G-17) induced intracellular signal transduction in colon cancer cells. The purpose of this study was to explore the intracellular events of colorectal cancer cells after gastrin binding to CCK2R. Meanwhile, the influence of a natural point mutation 286V-->F in the third intracellular loop of CCK2R on gastrin-envoked intracellular signal transduction was also investigated. Firstly, Colo320 cells were stably transfected with wild type (Colo320 WT) and mutant CCK2R (Colo320 M), respectively. The intracellular signal transduction events in response to gastrin were investigated in both Colo320 WT and Colo320 M cells. In Colo320 WT cells, G-17 induced formation of intracellular cyclic AMP and inositol 1,4,5-trisphosphate, and stimulated intracellular calcium mobilization. G-17 also stimulated tyrosine phosphorylation of ERKl/2, p38, FAK, and paxillin, and up-regulated the mRNA expression of early response gene c-Jun and c-Fos. However, G-17 inhibited proliferation and induced apoptosis in Colo320 WT cells. Mutation 286V-->F in the third intracellular loop of CCK2R blocked G-17 induced biological without affecting binding affinity of CCK2R to G-17. Our results suggest that activation of CCK2R by gastrin stimulates heterotrimeric G-protein Gq and G(12/13) mediated intracellular signal transduction pathway in colon cancer cells. The valine-287 residue in third intracellular loop of CCK2R plays a pivotal role in CCK2R mediated intracellular signal transduction.
Collapse
Affiliation(s)
- Hong-Gang Yu
- Laboratory for Experimental Gastroenterology, Department of Medicine I, St. Josef-Hospital, Ruhr-University of Bochum, Gudrunstr. 56, D-44791 Bochum
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zanner R, Gratzl M, Prinz C. Expression of the endocytic proteins dynamin and amphiphysin in rat gastric enterochromaffin-like cells. J Cell Sci 2005; 117:2369-76. [PMID: 15126636 DOI: 10.1242/jcs.01091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamin and amphiphysin play crucial roles in a variety of endocytic processes. Previous investigations of expression and functions of these proteins were performed mostly on neurons. The aim of this study was to investigate the presence and interaction of dyn and amph in gastric enterochromaffin-like cells. These endocrine cells of the gastric mucosa play a pivotal role in the regulation of acid secretion. Exocytosis of histamine-containing secretory vesicles has been described in detail. However, the mechanisms of endocytosis are unknown in this neuroendocrine cell type. Using RT-PCR and western blotting, we detected dynamin-1, -2 and -3 in highly enriched isolated enterochromaffin-like cells. Dynamin-1 and -2 were expressed at similar high levels, whereas dynamin-3 was of low abundance. Immunofluorescence microscopy located dynamin-1 and -2 to the cytoplasm and cell surface, whereas dynamin-3 was distributed differently in the perinuclear area. The presence of amphiphysin-1 and -2 RNAs was revealed by RT-PCR and a new splice variant of amphiphysin-2 was detected. Amphiphysin-1 and -2 were also detected in enterochromaffin-like cells by immunohistochemistry in the same locations as dynamin-1 and -2. Amphiphysin-1 and dynamin-1 co-immunoprecipitated with amphiphysin-2. In addition, dynamin-1 and amphiphysin-2 partially colocalized at the plasma membrane. Our results confirm the interaction of dynamin and amphiphysin and imply a role in endocytosis in enterochromaffin-like cells. To our knowledge, this is the first demonstration of the co-expression of all three dynamin isoforms in a non-tumor cell.
Collapse
Affiliation(s)
- Robert Zanner
- II Medizinische Klinik und Poliklinik, Technische Universität München, 81675 München, Germany
| | | | | |
Collapse
|
12
|
Kidd M, Hinoue T, Eick G, Lye KD, Mane SM, Wen Y, Modlin IM. Global expression analysis of ECL cells in Mastomys natalensis gastric mucosa identifies alterations in the AP-1 pathway induced by gastrin-mediated transformation. Physiol Genomics 2004; 20:131-42. [DOI: 10.1152/physiolgenomics.00216.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Enterochromaffin-like (ECL) cell hyperplasia and then irreversible neoplasia can be generated in the African rodent Mastomys natalensis using the H2 receptor blocker, loxtidine, for 8–16 wk. We used a GeneChip approach complemented by standard technologies to identify gene expression alterations in the gastric mucosa during gastrin-mediated ECL cell transformation. Gastric mucosa (mucosal scrapping) and ECL cell-enriched fractions were obtained from untreated Mastomys (controls) and from animals treated with loxtidine for 8 wk (hyperplasia). Tumor ECL cells were obtained by hand-dissection of gastric ECL cell nodules from animals treated with loxtidine for >16 wk and from a spontaneously developed ECL cell tumor. RNA was isolated, examined on rat U34A GeneChips, and comparison analysis was performed to identify altered gene expression. Alterations in gene expressions were examined further by immunohistochemistry, quantitative RT-PCR (Q-RT-PCR), sequencing and Western blot. GeneSpring analysis demonstrated alterations in few genes (<20) in hyperplastic and tumor mucosa. The histamine H1 receptor was consistently increased in proliferating mucosa. This gene change was confirmed by Q-RT-PCR. Other genes showing alterations included neural-(chromogranin A and somatostatin), cell-cycle-, and AP-1-associated genes. Immunostaining confirmed alterations in neural markers. Cluster analysis of ECL cell-enriched samples demonstrated that c- fos and junD were differently regulated. Q-RT-PCR and Western blot in prospectively collected gastric mucosal samples confirmed the differential expression of Fos and Jun. The negative regulators of AP-1, JunD, and Menin were decreased in tumor mucosa. A missense of unknown function was noted in the menin gene. Hypergastrinemia in an animal model of gastric carcinoids differentially altered the histamine type 1 receptor and gene expression and protein composition of AP-1. These results suggest that expression of this receptor and an altered composition of AP-1 with a loss of inhibition play a role in ECL cell transformation.
Collapse
Affiliation(s)
- M. Kidd
- Gastrointestinal Surgical Pathobiology Research Group, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - T. Hinoue
- Gastrointestinal Surgical Pathobiology Research Group, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - G. Eick
- Gastrointestinal Surgical Pathobiology Research Group, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - K. D. Lye
- Gastrointestinal Surgical Pathobiology Research Group, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - S. M. Mane
- Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, Connecticut
| | - Y. Wen
- Membrane Biology Research Group, Wadsworth Veterans Affairs Medical Center, and Department of Medicine, University of California, Los Angeles, California
| | - I. M. Modlin
- Gastrointestinal Surgical Pathobiology Research Group, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
13
|
Dockray G, Dimaline R, Varro A. Gastrin: old hormone, new functions. Pflugers Arch 2004; 449:344-55. [PMID: 15480747 DOI: 10.1007/s00424-004-1347-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
It is exactly a century since the gastric hormone gastrin was first described as a blood-borne regulator of gastric acid secretion. The identities of the main active forms of the hormone (the "classical gastrins") and their cellular and molecular sites of action in regulating acid secretion have all attracted sustained attention. However, recent work on peptides derived from the gastrin precursor that do not stimulate acid secretion ("non-classical gastrins"), together with studies on mice over-expressing the gene, or in which the gastrin gene has been deleted, suggest hitherto unsuspected roles in regulating cell proliferation, migration, and differentiation. Moreover, microarray and proteomic studies have identified previously unsuspected target genes of the classical gastrins. Some of the newer actions have implications for our understanding of the progression to cancer in oesophagus, stomach, pancreas and colon, all of which have recently been linked in one way or another to dysfunctional signalling involving products of the gastrin gene. The present review focuses on recent progress in understanding the biology of both classical and non-classical gastrins.
Collapse
Affiliation(s)
- Graham Dockray
- Physiological Laboratory, University of Liverpool, Liverpool, UK.
| | | | | |
Collapse
|
14
|
Kazumori H, Ishihara S, Rumi MAK, Ortega-Cava CF, Kadowaki Y, Kinoshita Y. Transforming growth factor-alpha directly augments histidine decarboxylase and vesicular monoamine transporter 2 production in rat enterochromaffin-like cells. Am J Physiol Gastrointest Liver Physiol 2004; 286:G508-14. [PMID: 14563668 DOI: 10.1152/ajpgi.00269.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
For the production and vesicle storage of histamine, Enterochromaffin-like (ECL) cells express histidine decarboxylase (HDC) and vesicular monoamine transporter 2 (VMAT2). Although HDC and VMAT2 show dynamic changes during gastric ulcer healing, the control system of their expression has not been fully investigated. In the present study, we investigated the effect of transforming growth factor-alpha (TGF-alpha) and proinflammatory cytokines on HDC and VMAT2 expression in rat ECL cells. Time course changes in the expression of TGF-alpha during the healing of acetic acid-induced ulcers were studied. EGF receptor (EGFR) expression was also examined in ECL cells, whereas the direct effects of TGF-alpha and proinflammatory cytokines on HDC and VMAT2 expression in ECL cells were investigated using in vivo and in vitro models. During the process of ulcer healing, expression of TGF-alpha mRNA was markedly augmented. Furthermore, EGFR was identified in isolated ECL cells. TGF-alpha stimulated HDC and VMAT2 mRNA expression and protein production and also increased histamine release from ECL cells. Selective EGFR tyrosine kinase inhibitor tyrphostin AG1478 almost completely inhibited HDC and VMAT2 gene expression induced by TGF-alpha in vivo and in vitro. During gastric mucosal injury, TGF-alpha was found to stimulate ECL cell functions by increasing HDC and VMAT2 expression.
Collapse
Affiliation(s)
- Hideaki Kazumori
- Second Department of Internal Medicine, Shimane Medical University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Ono M, Sato H, Kazumori H, Yuki M, Rumi MAK, Ortega-Cava CF, Ishihara Y, Ishihara S, Adachi K, Kinoshita Y. Effect of a gastrin/cholecystokinin B receptor antagonist, S-0509, on the omeprazole-induced proliferation of gastric mucosa in rats. ACTA ACUST UNITED AC 2003; 142:364-71. [PMID: 14713888 DOI: 10.1016/s0022-2143(03)00151-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hypergastrinemia is known to cause hyperplasia of the gastric mucosa, especially in gastric enterochromaffinlike (ECL) cells. In some clinical conditions causing hypergastrinemia, such as long-term gastric-acid inhibition and gastric-mucosa atrophy, hyperplastic ECL cells may develop into gastric carcinoid tumors. A newly developed gastrin-receptor antagonist, S-0509, has been reported to block gastrin-induced stimulation of gastric-acid secretion. We therefore investigated whether S-0509 inhibits the omeprazole- and gastrin-stimulated hyperproliferation of gastric mucosa, especially of ECL cells. Daily administration of omeprazole and gastrin in male Sprague-Dawley rats induced marked hypergastrinemia and increased proliferation of gastric-mucosa cells. The numbers of ECL cells and of ECL cells producing messenger RNA for regenerating gene, a potent growth factor for gastric-mucosa cells, were also augmented by long-term administration of omeprazole and gastrin. Coadministration of S-0509 with omeprazole or gastrin almost completely inhibited the omeprazole- and gastrin-induced changes in gastric mucosa, including mucosal thickening and ECL hyperplasia. S-0509 did not induce gastric-mucosa atrophy, even when administered for as long as 4 weeks. In summary, we have found that a newly developed gastrin receptor antagonist, S-0509, inhibits omeprazole- and gastrin-induced mucosal hyperplasia, especially ECL-cell hyperplasia, in rats.
Collapse
Affiliation(s)
- Masahiro Ono
- The Department of Medicine II, Shimane Medical University School of Medicine, Izumo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fukui H, Franceschi F, Penland RL, Sakai T, Sepulveda AR, Fujimori T, Terano A, Chiba T, Genta RM. Effects of Helicobacter pylori infection on the link between regenerating gene expression and serum gastrin levels in Mongolian gerbils. J Transl Med 2003; 83:1777-86. [PMID: 14691296 DOI: 10.1097/01.lab.0000106501.56339.ce] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Although regenerating gene (Reg) protein is reported to have a trophic effect on gastric epithelial cells, its involvement in human gastric diseases is not clear. We have recently shown that both gastrin and gastric mucosal inflammation enhance Reg gene expression in the fundic mucosa in rats. This study was designed to clarify whether Reg protein is involved in Helicobacter pylori-induced gastritis and whether Reg gene expression is linked to serum gastrin levels in this condition. Mongolian gerbils were inoculated with an H. pylori strain isolated from a gastric cancer patient. Four weeks later, some of the gerbils with H. pylori infection were eradicated by lansoprazole, amoxicillin, and clarithromycin. The time courses of changes in Reg gene expression, serum gastrin levels, gastric acidity, and histopathologic factors were examined. Four weeks after H. pylori infection, gastritis started spreading to the fundic mucosa, and gastric acidity started reducing. Serum gastrin levels and Reg mRNA expression in the fundus were significantly increased 6 weeks after infection. Reg mRNA expression in the fundus correlated significantly with both serum gastrin levels and the severity of fundic mucosal inflammation. After H. pylori eradication, serum gastrin levels and fundic mucosal inflammation were normalized, and the increase in Reg mRNA expression was abolished. The Reg gene is associated with hypergastrinemia and fundic mucosal inflammation and may be involved in H. pylori-induced gastritis.
Collapse
Affiliation(s)
- Hirokazu Fukui
- Department of Pathology, Medicine, Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Slice LW, Hodikian R, Zhukova E. Gastrin and EGF synergistically induce cyclooxygenase-2 expression in Swiss 3T3 fibroblasts that express the CCK2 receptor. J Cell Physiol 2003; 196:454-63. [PMID: 12891702 DOI: 10.1002/jcp.10304] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over-expression of cyclooxygenase-2 (COX-2) has been demonstrated to be tumorigenic in transgenic mice. Chronic treatment with NSAIDs is chemoprotective for colorectal cancer. Gastrin is a growth factor for gastric mucosa and has been shown to promote proliferation of colorectal cells. Recent studies suggest that COX-2 expression levels could mediate the growth effects of gastrin. Here, we report that gastrin increased PGE2 secretion in Swiss 3T3 cells expressing the CCK2 receptor. Gastrin dose dependently induced COX-2 protein levels in a time dependent manner. COX-2 mRNA levels were rapidly induced by a dose dependent increase in gastrin. Prior treatment of the cells with the CCK2 receptor specific antagonist, L365,260, inhibited gastrin-induced COX-2 protein and mRNA expression. Pretreatment with L364,714, the CCK1 receptor specific antagonist did not block COX-2 induction by gastrin. Inhibition of de novo protein synthesis by cycloheximide did not block COX-2 mRNA induction by gastrin. Also, gastrin-dependent COX-2 expression did not require PKC activity, activation of ERK, or transactivation of EGFR. However, co-stimulation with EGF and gastrin synergistically induced COX-2 protein and mRNA expression and PGE2 secretion. Measurements of COX-2 mRNA stability and COX-2 gene transcription reveal that EGF significantly increased the half-life of COX-2 mRNA with only a slight increase in the COX-2 transcription rate. Conversely, gastrin significantly increased COX-2 gene transcription rates but did not enhance COX-2 mRNA stability.
Collapse
Affiliation(s)
- Lee W Slice
- Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, Greater Los Angeles VA Medical Center, University of California, Los Angeles, California, USA.
| | | | | |
Collapse
|
18
|
Abstract
Enterochromaffin-like (ECL) cells are neuroendocrine cells in the gastric mucosa that control acid secretion by releasing histamine as a paracrine stimulant. The antral hormone gastrin and the neural messenger pituitary adenylyl cyclase-activating peptide (PACAP) potently stimulate histamine synthesis, storage, and secretion by ECL cells. Histamine is stored in secretory vesicles via V-type ATPases and vesicular monoamine transporters of subtype 2 (VMAT-2). Plasmalemmal calcium entry occurs via L-type calcium channels upon stimulation with secretagogues. K(+) and Cl(-) channels maintain the membrane potential. Calcium-triggered exocytosis of histamine is mediated by interacting SNARE proteins, especially by synaptobrevin and SNAP-25. Dynamins and amphiphysins appear to play a key role in endocytosis. ECL cells are under transcriptional control of various hormones. Gastrin stimulates transcriptional activity of the histidine decarboxylase (HDC), VMAT-2, and chromogranin A promoter by activation of Sp1 elements and CREB. During chronic Helicobacter pylori infection, pro-inflammatory cytokines are released that can also affect ECL cells, thus impairing their secretory function and viability, which can predispose to hypochlorhydria and gastric carcinogenesis.
Collapse
Affiliation(s)
- Christian Prinz
- II. Medizinische Klinik, Technische Universität München, D-81675 München, Germany.
| | | | | |
Collapse
|
19
|
Noble PJM, Wilde G, White MRH, Pennington SR, Dockray GJ, Varro A. Stimulation of gastrin-CCKB receptor promotes migration of gastric AGS cells via multiple paracrine pathways. Am J Physiol Gastrointest Liver Physiol 2003; 284:G75-84. [PMID: 12488236 DOI: 10.1152/ajpgi.00300.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Responses to G protein-coupled receptor stimulation may be mediated by paracrine factors. We have developed a coculture system to study paracrine regulation of migration of gastric epithelial (AGS) cells after stimulation of gastrin-CCK(B) receptors. In cells expressing this receptor, G-17 stimulated migration by activation of protein kinase C. However, G-17 also stimulated the migration of cells expressing green fluorescent protein, but not the receptor, when they were cocultured with receptor-expressing cells consistent with activation of paracrine signals. The use of various pharmacological inhibitors indicated that gastrin stimulated migration via activation of the EGF receptor (EGR-R), the erbB-2 receptor tyrosine kinase, and the MAP kinase pathway. However, gastrin also released fibroblast growth factor (FGF)-1, and migration was inhibited by the FGF receptor tyrosine kinase inhibitor SU-5402. Flow cytometry indicated that in both cell types, gastrin increased MAP kinase via activation of EGF-R but not FGF-R1 or erbB-2. We conclude that gastrin-CCK(B) receptors stimulate epithelial cell migration partly via paracrine mechanisms; transactivation of EGF-R is only one component of the paracrine pathway.
Collapse
Affiliation(s)
- Peter J M Noble
- Physiological Laboratory, University of Liverpool, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
Waldum HL, Kleveland PM, Sandvik AK, Brenna E, Syversen U, Bakke I, Tømmerås K. The cellular localization of the cholecystokinin 2 (gastrin) receptor in the stomach. PHARMACOLOGY & TOXICOLOGY 2002; 91:359-62. [PMID: 12688379 DOI: 10.1034/j.1600-0773.2002.910613.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The role of the gastric acid secretagogues acetylcholine, gastrin and histamine has been debated for decades. Initially, the mast cell was considered the source of acid stimulatory histamine. Later, Håkanson & Owman (1969) showed that the entero-chromaffinlike (ECL) cell produces and stores histamine in several species, including rat and man. Kahlson et al. (1964) showed that food and gastrin stimulated oxyntic mucosal histamine synthesis and release, Berglindh et at. (1976) that histamine and cholinergics but not gastrin induced acid secretion in isolated oxyntic glands and parietal cells, and Rangachari (1995) that acetylcholine or gastrin released histamine in isolated mucosa. These findings suggested that gastrin stimulates acid secretion through release of ECL cell histamine. Studying simultaneous histamine release and acid secretion in isolated oxyntic mucosal cells, we found that gastrin stimulated acid secretion only in preparations releasing histamine. Moreover, in the isolated rat stomach, gastrin stimulated both histamine release and acid secretion. Maximal acid output was higher with histamine than with gastrin, and augmented by acetylcholine but not by gastrin. These findings strongly suggested that gastrin acts by releasing histamine. Finally, a fluorescein-labelled gastrin analogue bound to the ECL cell, not to the parietal or stem cell regions. This is interesting, recalling that gastrin has a potent and specific trophic effect on the ECL cell and only a general effect on all other oxyntic cell types. In conclusion, physiological observations are best explained by localising the CCK2 receptor only to the ECL cell, the other effects of gastrin on the gastric mucosa being secondary to the release of mediators from the ECL cell.
Collapse
Affiliation(s)
- Helge L Waldum
- Norwegian University of Science and Technology, Faculty of Medicine, Department of Intra-abdominal Diseases, Trondheim University Hospital, Trondheim, Norway.
| | | | | | | | | | | | | |
Collapse
|
21
|
Kazumori H, Ishihara S, Fukuda R, Kinoshita Y. Time-course changes of ECL cell markers in acetic acid-induced gastric ulcers in rats. Aliment Pharmacol Ther 2002; 16 Suppl 2:10-9. [PMID: 11966519 DOI: 10.1046/j.1365-2036.16.s2.10.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIM Enterochromaffin-like (ECL) cells are the major source of histamine for the regulation of gastric acid secretion, and also contain histidine decarboxylase (HDC), vesicular monoamine transporter 2 (VMAT2), and chromogranin A (CgA). Although gastric acid secretion is suppressed during ulcer healing, the role of ECL cells in that process is not yet fully understood. In the present study, we investigated the changes in ECL cell number during healing of experimental ulcers in rats. MATERIALS AND METHODS Seven-week-old male Wistar rats were used. Acetic acid-induced ulcers were caused by an application of 100% acetic acid to the serosal surface of the rat stomachs. At different time points following the induction (12 h-15 days), time-course changes of HDC, VMAT2, and CgA mRNA expression were investigated by Northern blot analysis. The expressions of HDC, VMAT2, and CgA were immunostained on gastric mucosal sections with ulcers. RESULTS HDC, VMAT2, and CgA mRNA in gastric mucosa each showed an initial marked transient decrease, followed by an increase on day 10 back to the initial value. HDC, VMAT2, and CgA-immunoreactive cells at the ulcer margin were reduced in number on day 3, compared with those in distant areas. On day 10, however, they returned to levels similar to those in distant areas. CONCLUSION The present study revealed a local down-regulation of HDC, VMAT2, and CgA in ECL cells at the ulcer margin. As a result, we concluded that a suppression of ECL cell activity during ulcer healing may be involved in suppressed gastric acid secretion.
Collapse
Affiliation(s)
- H Kazumori
- Second Department of Internal Medicine, Shimane Medical University, Izumo, Japan
| | | | | | | |
Collapse
|
22
|
Kazumori H, Ishihara S, Fukuda R, Kinoshita Y. Localization of Reg receptor in rat fundic mucosa. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2002; 139:101-8. [PMID: 11919548 DOI: 10.1067/mlc.2002.120796] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reg protein has a trophic effect on gastric mucosal cells and pancreatic islets. Recently, the Reg receptor (Reg-R) has been cloned, and Reg-Reg-R interaction has been reported in the pancreas. The aim of this study was to investigate the localization of Reg-R in rat fundic mucosa. Gene expression of Reg-R was investigated with Northern blot analysis, laser capture microdissection coupled with reverse transcription-polymerase chain reaction, and in situ hybridization in the fundic mucosa, and the types of cells expressing this gene were determined. Reg-R mRNA expression was detected mainly in chief cells and parietal cells of the deep layers and faintly in surface epithelial cells and mucous neck cells of the proliferating zone. Our results suggest that regenerating protein may act not only as a regulator of gastric epithelial cell proliferation but also as a modifier of other multiple physiologic functions.
Collapse
Affiliation(s)
- Hideaki Kazumori
- Second Department of Internal Medicine, Shimane Medical UniversityIzumo, Japan
| | | | | | | |
Collapse
|
23
|
Zanner R, Hapfelmeier G, Gratzl M, Prinz C. Intracellular signal transduction during gastrin-induced histamine secretion in rat gastric ECL cells. Am J Physiol Cell Physiol 2002; 282:C374-82. [PMID: 11788349 DOI: 10.1152/ajpcell.00366.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of G(q) protein-coupled receptors usually causes a biphasic increase in intracellular calcium concentration ([Ca(2+)](i)) that is crucial for secretion in nonexcitable cells. In gastric enterochromaffin-like (ECL) cells, stimulation with gastrin leads to a prompt biphasic calcium response followed by histamine secretion. This study investigates the underlying signaling events in this neuroendocrine cell type. In ECL cells, RT-PCR suggested the presence of inositol 1,4,5-trisphosphate receptor (IP(3)R) subtypes 1-3. The IP(3)R antagonist 2-aminoethoxydiphenyl borate abolished both gastrin-induced elevation of [Ca(2+)](i) and histamine release. Thapsigargin increased [Ca(2+)](i), however, without inducing histamine secretion. In thapsigargin-pretreated cells, gastrin increased [Ca(2+)](i) through calcium influx across the plasma membrane. Both nimodipine and SKF-96365 inhibited gastrin-induced histamine release. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate induced histamine secretion, an effect that was prevented by nimodipine. In summary, gastrin-stimulated histamine release depends on IP(3)R activation and plasmalemmal calcium entry. Gastrin-induced calcium influx was mediated by dihydropyridine-sensitive calcium channels that appear to be L-type channels activated through a pathway involving activation of PKC.
Collapse
|
24
|
Lindström E, Eliasson L, Björkqvist M, Håkanson R. Gastrin and the neuropeptide PACAP evoke secretion from rat stomach histamine-containing (ECL) cells by stimulating influx of Ca2+ through different Ca2+ channels. J Physiol 2001; 535:663-77. [PMID: 11559765 PMCID: PMC2278808 DOI: 10.1111/j.1469-7793.2001.00663.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Gastrin and PACAP stimulate secretion of histamine and pancreastatin from isolated rat stomach ECL cells. We have examined whether or not secretion depends on the free cytosolic Ca2+ concentration ([Ca2+]i) and the pathways by which gastrin and PACAP elevate [Ca2+]i. Secretion was monitored by radioimmunoassay of pancreastatin and changes in [Ca2+]i by video imaging. The patch clamp technique was used to record whole-cell currents and membrane capacitance (reflecting exocytosis). 2. In the presence of 2 mM extracellular Ca2+, gastrin and PACAP induced secretion and raised [Ca2+]i. Without extracellular Ca2+ (or in the presence of La3+) no secretion occurred. The extracellular Ca2+ concentration required to stimulate secretion was 10 times higher for gastrin than for PACAP. Depletion of intracellular Ca2+ pools by thapsigargin had no effect on the capacity of gastrin and PACAP to stimulate secretion. 3. Gastrin-evoked secretion was inhibited 60-80 % by L-type channel blockers and 40 % by the N-type channel blocker omega-conotoxin GVIA. Combining L-type and N-type channel blockers did not result in greater inhibition than L-type channel blockers alone. Whole-cell patch clamp measurements confirmed that the ECL cells are equipped with voltage-dependent inward Ca2+ currents. A 500 ms depolarising pulse from -60 mV to +10 mV which maximally opened these channels resulted in an increase in membrane capacitance of 100 fF reflecting exocytosis of secretory vesicles. 4. PACAP-evoked secretion was reduced 40 % by L-type channel blockers but was not influenced by inhibition of N-type channels. SKF 96365, a blocker of both L-type and receptor-operated Ca2+ channels, inhibited PACAP-evoked secretion by 85 %. Combining L-type channel blockade with SKF 96365 abolished PACAP-evoked secretion. 5. The results indicate that gastrin- and PACAP-evoked secretion depends on Ca2+ entry and not on mobilisation of intracellular Ca2+. While gastrin stimulates secretion via voltage-dependent L-type and N-type Ca2+ channels, PACAP acts via L-type and receptor-operated Ca2+ channels.
Collapse
Affiliation(s)
- E Lindström
- Institute of Physiological Sciences, Department of Pharmacology, University of Lund, Lund, Sweden.
| | | | | | | |
Collapse
|
25
|
Abstract
Gastrin, produced by G cells in the gastric antrum, has been identified as the circulating hormone responsible for stimulation of acid secretion from the parietal cell. Gastrin also acts as a potent cell-growth factor that has been implicated in a variety of normal and abnormal biological processes including maintenance of the gastric mucosa, proliferation of enterochromaffin-like cells, and neoplastic transformation. Here, we review the models used to study the effects of gastrin on cell proliferation in vivo and in vitro with respect to mechanisms by which this hormone might influence normal and cancerous cell growth. Specifically, human and animal models of hypergastrinemia and hypogastrinemia have been described in vivo, and several cells that express cholecystokinin (CCK)B/gastrin receptors have been used for analysis of intracellular signaling pathways initiated by biologically active amidated gastrins. The binding of gastrin or CCK to their common cognate receptor triggers the activation of multiple signal transduction pathways that relay the mitogenic signal to the nucleus and promote cell proliferation. A rapid increase in the synthesis of lipid-derived second messengers with subsequent activation of protein phosphorylation cascades, including mitogen-activated protein kinase, is an important early response to these signaling peptides. Gastrin and CCK also induce rapid Rho-dependent actin remodeling and coordinate tyrosine phosphorylation of cellular proteins including the non-receptor tyrosine kinases p125fak and Src and the adaptor proteins p130cas and paxillin. This article reviews recent advances in defining the role of gastrin and CCK in the control of cell proliferation in normal and cancer cells and in dissecting the signal transduction pathways that mediate the proliferative responses induced by these hormonal GI peptides in a variety of normal and cancer cell model systems.
Collapse
Affiliation(s)
- E Rozengurt
- Department of Medicine, School of Medicine, CURE: Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
26
|
Abstract
Gastric epithelial organization and function are controlled and maintained by a variety of endocrine and paracrine mediators. Peptides encoded by the gastrin gene are an important part of this system because targeted deletion of the gene, or of the gastrin-CCKB receptor gene, leads to decreased numbers of parietal cells and decreased gastric acid secretion. Recent studies indicate that the gastrin precursor, preprogastrin, gives rise to a variety of products, each with a distinctive spectrum of biological activity. The conversion of progastrin to smaller peptides is regulated by multiple mechanisms including prohormone phosphorylation and secretory vesicle pH. Progastrin itself stimulates colonic epithelial proliferation; biosynthetic intermediates (Gly-gastrins) stimulate colonic epithelial proliferation and gastric epithelial differentiation; and C-terminally amidated gastrins stimulate colonic proliferation, gastric epithelial proliferation and differentiation, and acid secretion. The effects of progastrin-derived peptides on gastric epithelial function are mediated in part by release of paracrine factors that include histamine, epidermal growth factor (EGF)-receptor ligands, and Reg. The importance of the appropriate regulation of this system is shown by the observation that prolonged moderate hypergastrinemia in transgenic mice leads to remodelling of the gastric epithelium, and in the presence of Helicobacter, to gastric cancer.
Collapse
Affiliation(s)
- G J Dockray
- Physiological Laboratory, University of Liverpool, Liverpool, L69 3BX, United Kingdom.
| | | | | | | |
Collapse
|
27
|
Kazumori H, Ishihara S, Kawashima K, Fukuda R, Chiba T, Kinoshita Y. Analysis of gastrin receptor gene expression in proliferating cells in the neck zone of gastric fundic glands using laser capture microdissection. FEBS Lett 2001; 489:208-14. [PMID: 11165251 DOI: 10.1016/s0014-5793(01)02084-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gastrin stimulates proliferation of progenitor cells in the neck zone of gastric fundic mucosa. However, whether it directly enhances this proliferation through its receptors remains unclear. We investigated the expression of gastrin receptors in neck zone proliferating cells in rat gastric fundic glands using a reverse transcription polymerase chain reaction (RT-PCR) coupled with laser capture microdissection and in situ RT-PCR. Gastrin receptor expression was identified in c-fos-expressing cells located in the neck zone, and results of the RT-PCR analysis argued against contamination by other cells, such as enterochromaffin-like, parietal or D cells. Supporting this finding, gastrin receptor gene expression was identified in the neck zone as well as base glands by in situ RT-PCR. Therefore, it is suggested that proliferating cells in the neck zone are stimulated directly by gastrin via their gastrin receptors.
Collapse
Affiliation(s)
- H Kazumori
- Second Department of Internal Medicine, Shimane Medical University, Izumo, Shimane, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Kazumori H, Ishihara S, Hoshino E, Kawashima K, Moriyama N, Suetsugu H, Sato H, Adachi K, Fukuda R, Watanabe M, Takasawa S, Okamoto H, Fukui H, Chiba T, Kinoshita Y. Neutrophil chemoattractant 2 beta regulates expression of the Reg gene in injured gastric mucosa in rats. Gastroenterology 2000; 119:1610-22. [PMID: 11113082 DOI: 10.1053/gast.2000.20262] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Regenerating (Reg) protein has a trophic effect on gastric mucosal cells. We have shown that Reg gene expression is increased in enterochromaffin-like (ECL) cells during the healing of damaged gastric mucosa around mucosal erosion. This study was designed to explore the stimulants of Reg expression during the healing of gastric mucosal damage. METHODS Time course changes of the expression of genes for various proinflammatory cytokines and Reg were investigated after induction of gastric mucosal lesions in rats. The direct effect of proinflammatory cytokines on Reg gene expression and Reg protein production were investigated in vitro using counterflow elutriation-enriched rat ECL cells. CXC receptor 2 (CXCR-2) expression was investigated in ECL cells by reverse-transcription polymerase chain reaction. Reg gene expression was also investigated in rats treated by the neutralizing antibody of cytokine-induced neutrophil chemoattractant (CINC-2 beta). RESULTS During healing, the gene expression of several proinflammatory cytokines and Reg was markedly augmented. Among the proinflammatory cytokines, CINC-2 beta is the only cytokine in which augmented expression preceded the increase of Reg gene expression. In rats treated with CINC-2 beta neutralizing antibody, the augmentation of Reg gene expression was significantly inhibited. When ECL cells were incubated with these proinflammatory cytokines, CINC-2 beta dose-dependently increased Reg messenger RNA and Reg protein in ECL cells. CXCR-2 was identified in isolated ECL cells. CONCLUSIONS CINC-2 beta, expressed in damaged gastric mucosa, stimulates the production of Reg protein in ECL cells via CXCR-2 and may be involved in the accelerated healing of injured gastric mucosa.
Collapse
Affiliation(s)
- H Kazumori
- Second Department of Internal Medicine, Shimane Medical University, Izumo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schmassmann A, Reubi JC. Cholecystokinin-B/gastrin receptors enhance wound healing in the rat gastric mucosa. J Clin Invest 2000; 106:1021-9. [PMID: 11032862 PMCID: PMC381431 DOI: 10.1172/jci8115] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although physiological functions of the CCK-B/gastrin receptor are well explored, little is known about its role during healing. Here, we evaluated the role of this receptor in the rat oxyntic mucosa following the introduction of a cryoulcer. In this model, we located and quantified CCK-B/gastrin receptors by reverse transcriptase PCR and receptor autoradiography. Rats with cryoulcers were treated with placebo, omeprazole, the CCK-B/gastrin receptor antagonist YF-476, omeprazole plus YF-476, gastrin-17, and gastrin 17 plus YF-476. During wound healing, CCK-B/gastrin receptors were specifically expressed and localized to the regenerative mucosal ulcer margin. This high expression was limited in time, and the pattern of expression of CCK-B/gastrin receptors correlated closely with the proliferative activity of the regenerative mucosa. Functionally, omeprazole and gastrin-17 caused profound hypergastrinemia, increased cell proliferation in the mucosal ulcer margin and accelerated the late ulcer healing phase. These effects were completely reversed by cotherapy with YF-476. These in vivo and vitro data suggest that CCK-B/gastrin receptors in regenerative rat gastric oxyntic mucosa enhance trophic effects during wound healing.
Collapse
Affiliation(s)
- A Schmassmann
- Gastrointestinal Unit, Inselspital, University Hospital, University of Berne, Berne, Switzerland.
| | | |
Collapse
|
30
|
Abstract
The peptide hormone gastrin, released from antral G cells, is known to stimulate the synthesis and release of histamine from ECL cells in the oxyntic mucosa via CCK-2 receptors. The mobilized histamine induces acid secretion by binding to the H(2) receptors located on parietal cells. Recent studies suggest that gastrin, in both its fully amidated and less processed forms (progastrin and glycine-extended gastrin), is also a growth factor for the gastrointestinal tract. In this article, we review the recent evidence (including those from the transgenic and knockout mice) for the trophic targets of both the amidated and less processed forms of gastrin in the gastrointestinal tract, pancreas and liver. It has been established that the major trophic effect of amidated gastrin is for the oxyntic mucosa of stomach, where it causes increased proliferation of gastric stem cells and ECL cells, resulting in increased parietal and ECL cell mass. There is insufficient evidence to support that amidated gastrin is a trophic factor for the rest of gastrointestinal tract, exocrine pancreas and liver. On the other hand, the major trophic target of the less processed gastrin (e.g. glycine-extended gastrin) appears to be the colonic mucosa. There is no evidence to suggest that it is trophic for the stomach. It remains to be examined whether the rest of gastrointestinal tract, pancreas and liver are the trophic targets by glycine-extended gastrin and progastrin.
Collapse
Affiliation(s)
- T J Koh
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
31
|
Bakke I, Qvigstad G, Brenna E, Sandvik AK, Waldum HL. Gastrin has a specific proliferative effect on the rat enterochromaffin-like cell, but not on the parietal cell: a study by elutriation centrifugation. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 169:29-37. [PMID: 10759608 DOI: 10.1046/j.1365-201x.2000.00688.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gastrin has a general growth-promoting effect on gastric oxyntic mucosa, and a more pronounced one on the enterochromaffin-like (ECL) cell. Whether gastrin has a proliferative effect on the parietal cell lineage beyond the general effect is uncertain. Hypergastrinaemia was evoked in rats using pantoprazole (group II: 100 micromol kg-1, group III: 400 micromol kg-1) for 45 days. Plasma gastrin was 43 +/- 8 pmol L-1 (control), 283 +/- 54 pmol L-1 (group II) and 577 +/- 63 pmol L-1 (group III). Gastric mucosal cells were isolated and fractionated by elutriation centrifugation. Total cell number, percentage and number of ECL and parietal cells, and histamine were determined in each fraction. The number of mucosal cells increased 1.5-fold in both hypergastrinaemic groups. Enterochromaffin-like cell content was 2.6 +/- 0.5% (control), 6.0 +/- 0.6% (group II) and 9.0 +/- 0.8% (group III). Histamine concentration in oxyntic mucosal cells rose similarly. The size of the ECL cells was 8.5 +/- 0.1 microm (control), 10.8 +/- 0.2 microm (group II) and 12.1 +/- 0.2 microm (group III), and the increased size was confirmed by shifted distribution in elutriation fractions. Histamine per ECL cell increased with cell size. The number of parietal cells increased parallel to the total number of mucosal cells (1.5-fold). Parietal cell size and percentage, assessed by image analysis and distribution in elutriation fractions, were unchanged after pantoprazole dosing. Gastrin has a pronounced, concentration-dependent specific trophic effect on ECL cells and a general proliferative effect on gastric mucosa, including parietal cells.
Collapse
Affiliation(s)
- I Bakke
- Department of Medicine, University Hospital of Trondheim, Trondheim, Norway
| | | | | | | | | |
Collapse
|
32
|
Abstract
Gastrin has a potent trophic effect on gastric fundic mucosa. When serum concentrations of gastrin are elevated, proliferation of both the progenitor cells in the glandular neck zone and enterochromaffin-like (ECL) cells in the bottom of the glands is stimulated. Because ECL cells have gastrin receptors, their proliferation is directly stimulated by gastrin. However, because the proliferation of progenitor cells cannot be directly stimulated (so far there has been no gastrin receptor demonstrated on these proliferating cells), some indirect mechanisms must be involved. Enterochromaffin-like and parietal cells are only two types of cells that have demonstrated a strong gene expression of the gastrin receptor. Furthermore, they secrete several growth factors, such as Reg protein, heparin-binding epidermal growth factor-like growth factor (HB-EGF) and amphiregulin (AR). Reg protein production by ECL cells, as well as HB-EGF and AR production by parietal cells, is stimulated by gastrin and these growth factors are potent trophic agents of progenitor cells in the neck zone of the gastric fundic mucosa. Accordingly, gastrin may stimulate the proliferation of gastric mucosal cells indirectly via these growth factors in addition to its direct trophic effect on ECL cells.
Collapse
Affiliation(s)
- Y Kinoshita
- Department of Medicine II, Shimane Medical University, Izumo, Japan.
| | | |
Collapse
|
33
|
Abstract
This paper summarizes important developments, published over the past year, that improve our understanding of the regulation of gastric acid secretion at the central, peripheral, and intracellular levels and mechanisms by which various neurotransmitters, paracrine agents, and hormones regulate gastric secretion and are themselves regulated. The main stimulants of acid secretion from the parietal cell are histamine, gastrin, and acetylcholine. Histamine, released from fundic enterochromaffin-like cells, interacts with H(2) receptors on parietal cells that are coupled via separate G proteins to activation of adenylate cyclase and phospholipase C. The antral hormone gastrin, released by activation of cholinergic and bombesin/gastrin-releasing peptide neurons, acts mainly by release of histamine from enterochromaffin-like cells. Acetylcholine, released from gastric intramural neurons, interacts with muscarinic M(3) receptors on parietal cells and has little, if any, effect on histamine secretion. The main inhibitor of acid secretion is somatostatin, which, acting via sst(2) receptors, exerts a tonic restraint on parietal, enterochromaffin-like, and gastrin cells. In patients with duodenal ulcer, infection with Helicobacter pylori is associated with increased basal and stimulated plasma gastrin concentrations and acid outputs. The precise mechanisms mediating the effects are not known, but evidence suggests that both products of the bacteria and the inflammatory infiltrate are capable of stimulating gastrin and acid secretion.
Collapse
Affiliation(s)
- M L Schubert
- Department of Medicine, Division of Gastroenterology, Medical College of Virginia and McGuire VAMC, Richmond, Virginia 23249, USA.
| |
Collapse
|
34
|
Dockray GJ. Topical review. Gastrin and gastric epithelial physiology. J Physiol 1999; 518 ( Pt 2):315-24. [PMID: 10381581 PMCID: PMC2269421 DOI: 10.1111/j.1469-7793.1999.0315p.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/1999] [Accepted: 05/19/1999] [Indexed: 11/29/2022] Open
Abstract
Transepithelial transducing cells, particularly the gastrin (G) cell, co-ordinate gastric acid secretion with the arrival of food in the stomach. Recent work suggests that multiple active products are generated from the gastrin precursor, and that there are multiple control points in gastrin biosynthesis. Biosynthetic precursors and intermediates (progastrin and Gly-gastrins) are putative growth factors; their products, the amidated gastrins, regulate epithelial cell proliferation, the differentiation of acid-producing parietal cells and histamine-secreting enterochromaffin-like (ECL) cells, and the expression of genes associated with histamine synthesis and storage in ECL cells, as well as acutely stimulating acid secretion. Gastrin also stimulates the production of members of the epidermal growth factor (EGF) family, which in turn inhibit parietal cell function but stimulate the growth of surface epithelial cells. Plasma gastrin concentrations are elevated in subjects with Helicobacter pylori, who are known to have increased risk of duodenal ulcer disease and gastric cancer. Studies of the physiology of gastrin may therefore contribute to an understanding of the mechanisms relevant to major upper gastrointestinal tract disease.
Collapse
Affiliation(s)
- G J Dockray
- Physiological Laboratory, University of Liverpool, Liverpool, UK.
| |
Collapse
|
35
|
Stepan VM, Dickinson CJ, del Valle J, Matsushima M, Todisco A. Cell type-specific requirement of the MAPK pathway for the growth factor action of gastrin. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:G1363-72. [PMID: 10362639 DOI: 10.1152/ajpgi.1999.276.6.g1363] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Gastrin (G17) has a CCKB receptor-mediated growth-promoting effect on the AR42J rat acinar cell line that is linked to induction of both mitogen-activated protein kinase (MAPK) and c-fos gene expression. We investigated the mechanisms that regulate the growth factor action of G17 on the rat pituitary adenoma cell line GH3. Both AR42J and GH3 cells displayed equal levels of CCKB receptor expression and similar binding kinetics of 125I-labeled G17. G17 stimulation of cell proliferation was identical in both cell lines. G17 stimulation of GH3 cell proliferation was completely blocked by the CCKB receptor antagonist D2 but not by the MEK inhibitor PD-98059 or the protein kinase C inhibitor GF-109203X, which completely inhibited G17 induction of AR42J cell proliferation. G17 induced a c-fos SRE-luciferase reporter gene plasmid more than fourfold in the AR42J cells, whereas it had no effect in the GH3 cells. In contrast to what we observed in the AR42J cells, G17 failed to stimulate MAPK activation and Shc tyrosyl phosphorylation and association with the adapter protein Grb2. Epidermal growth factor induced the MAPK pathway in the GH3 cells, demonstrating the integrity of this signaling system. G17 induced Ca2+ mobilization in both the GH3 and AR42J cells. The calmodulin inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide inhibited AR42J cell proliferation by 20%, whereas it completely blocked G17 induction of GH3 cell growth. The Ca2+ ionophore ionomycin stimulated GH3 cell proliferation to a level similar to that observed in response to G17, but it had no effect on AR42J cell proliferation. Thus there are cell type specific differences in the requirement of the MAPK pathway for the growth factor action of G17. Whereas in the AR42J cells G17 stimulates cell growth through activation of MAPK and c-fos gene expression, in the GH3 cells, G17 fails to activate MAPK, and it induces cell proliferation through Ca2+-dependent signaling pathways. Furthermore, induction of Ca2+ mobilization in the AR42J cells appears not to be sufficient to sustain cell proliferation.
Collapse
Affiliation(s)
- V M Stepan
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
36
|
Lindström E, Björkqvist M, Håkanson R. Pharmacological analysis of CCK2 receptor antagonists using isolated rat stomach ECL cells. Br J Pharmacol 1999; 127:530-6. [PMID: 10385255 PMCID: PMC1566020 DOI: 10.1038/sj.bjp.0702538] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Gastrin stimulates rat stomach ECL cells to secrete histamine and pacreastatin, a chromogranin A (CGA)-derived peptide. The present report describes the effect of nine cholecystokinin2 (CCK2) receptor antagonists and one CCK1 receptor antagonist on the gastrin-evoked secretion of pancreastatin from isolated ECL cells. 2. The CCK2 receptor antagonists comprised three benzodiazepine derivatives L-740,093, YM022 and YF476, one ureidoacetamide compound RP73870, one benzimidazole compound JB 93182, one ureidoindoline compound AG041R and three tryptophan dipeptoids PD 134308 (CI988), PD135158 and PD 136450. The CCK1 receptor antagonist was devazepide. 3. A preparation of well-functioning ECL cells (approximately 80% purity) was prepared from rat oxyntic mucosa using counter-flow elutriation. The cells were cultured for 48 h in the presence of 0.1 nM gastrin; they were then washed and incubated with antagonist alone or with various concentrations of antagonist plus 10 nM gastrin (a maximally effective concentration) for 30 min. Gastrin dose-response curves were constructed in the absence or presence of increasing concentrations of antagonist. The amount of pancreastatin secreted was determined by radioimmunoassay. 4. The gastrin-evoked secretion of pancreastatin was inhibited in a dose-dependent manner. YM022, AG041R and YF476 had IC50 values of 0.5, 2.2 and 2.7 nM respectively. L-740,093, JB93182 and RP73870 had IC50 values of 7.8, 9.3 and 9.8 nM, while PD135158, PD136450 and PD134308 had IC50 values of 76, 135 and 145 nM. The CCK1 receptor antagonist devazepide was a poor CCK2 receptor antagonist with an IC50 of about 800 nM. 5. YM022, YF476 and AG041R were chosen for further analysis. YM022 and YF476 shifted the gastrin dose-response curve to the right in a manner suggesting competitive antagonism, while the effects of AG041R could not be explained by simple competitive antagonism. pK(B) values were 11.3 for YM022, 10.8 for YF476 and the apparent pK(B) for AG041R was 10.4.
Collapse
Affiliation(s)
- E Lindström
- Department of Pharmacology, University of Lund, Sweden
| | | | | |
Collapse
|
37
|
Logsdon CD. The influence of the cellular context on receptor function: a necessary consideration for physiologic interpretations of receptor expression studies. Life Sci 1999; 64:369-74. [PMID: 10069498 DOI: 10.1016/s0024-3205(98)00576-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The cell model studied has a fundamental influence on the function and regulation of G protein linked receptors. These cell-dependent effects are illustrated in the current communication focusing on M3 muscarinic, CCK and GRP receptors. Receptors interact with multiple cellular mechanisms. The most obvious are those involved in coupling to signaling mechanisms such as G proteins. Receptors are themselves phosphorylated and dephosphorylated by cellular kinases and phosphatases. Receptors may sequester, internalize, down-regulate and recycle via interactions with a number of separate cellular mechanisms. When the number and complexity of interactions between the cell and the receptor are taken into account it is not surprising that the cell model has a primary influence on receptor function and regulation. The implications of the importance of the cell model in receptor function for studies aimed at answering physiologic questions are discussed.
Collapse
Affiliation(s)
- C D Logsdon
- Department of Physiology, University of Michigan, Ann Arbor 48109, USA
| |
Collapse
|
38
|
Läuffer JM, Modlin IM, Hinoue T, Kidd M, Zhang T, Schmid SW, Tang LH. Pituitary adenylate cyclase-activating polypeptide modulates gastric enterochromaffin-like cell proliferation in rats. Gastroenterology 1999; 116:623-35. [PMID: 10029621 DOI: 10.1016/s0016-5085(99)70184-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Gastric carcinoids (types I and II) involve the transformation of naive enterochromaffin-like (ECL) cells to the neoplastic state and are associated primarily with hypergastrinemia. In this study, we evaluated the effects of two related neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP), on ECL cell proliferation and characterized the receptor subtype(s) and signal transduction pathways that mediate this effect. METHODS Purified rat ECL cells were analyzed in culture for DNA synthesis as measured by 24-hour 5-bromo-2-deoxyuridine (BrdU) uptake. Reverse-transcription polymerase chain reaction (RT-PCR) with gene-specific oligonucleotide primers was performed to characterize the PACAP/VIP receptor subtype(s). RESULTS PACAP/VIP neuropeptide-stimulated BrdU uptake was significantly greater (3.4-3.8-fold greater than control) than that at the maximal dose of gastrin (2.2-fold greater than control). PACAP-stimulated ECL cell proliferation (EC50, approximately 3 x 10(-)14 mol/L) was approximately 100-fold more potent than VIP (EC50, approximately 3x 10(-)12 mol/L). The stimulated BrdU uptake by both PACAP and VIP was competitively inhibited by PACAP-receptor antagonist (IC50, 10(-)9 mol/L, 3 x 10(-)9 mol/L, respectively) and VIP-receptor antagonist (IC50, 3 x 10(-)7 mol/L, 5 x 10(-)7 mol/L, respectively). RT-PCR identified the presence of the PACAP-specific but not PACAP/VIP receptor subtypes. The PACAP-stimulated BrdU uptake was inhibited (70%-80%) by inhibitors of adenosine 3',5'-cyclic monophosphate, phosphatidylinositol 3 kinase, and protein tyrosine kinase as well as mitogen-activated protein kinase. CONCLUSIONS PACAP/VIP-related peptides are more potent modulators of ECL cell proliferation than gastrin, and their effect is mediated by a PACAP-specific receptor whose activation is transduced by multiple intracellular messenger systems.
Collapse
Affiliation(s)
- J M Läuffer
- Gastric Pathobiology Research Group, Department of Surgery, Yale University School of Medicine and West Haven Veterans Administration Medical Center, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
In addition to its fundamental role in stimulating gastric acid secretion, the peptide hormone gastrin induces growth-promoting effects on diversity of target cells. Various mechanisms, including endocrine, paracrine, and autocrine, have been proposed for gastrin's growth-promoting actions. The mitogenic effects of gastrin are mediated by specific cell surface receptors activated after gastrin binding. The functionally defined receptors for gastrin include cholecystokinin A (CCKA) receptor, which is discriminating for sulfated CCK8; cholecystokinin B (CCKB)/gastrin receptor, which binds gastrin17 sulfated, and nonsulfated CCK8 with nearly equal affinities; cholecystokinin C (CCKC), which is a low-affinity gastrin binding protein; and novel, high-affinity receptors selective for amidated gastrin, processing intermediates of gastrin, or both. The signaling pathways mediating gastrin's stimulation of the CCKB/gastrin receptor have been progressively outlined, and the pathways mediating other receptors have been slowly emerging. Engagement of the gastrin receptor initiates various biochemical and molecular events, including recruitment and activation of tyrosine kinases, activation of the phospholipase C signaling pathway leading to phosphoinositide breakdown, intracellular calcium mobilization and protein kinase C stimulation, activation of the mitogen-activated protein kinase pathway, and induction of early response genes. Current emphasis is on understanding the functional significance of processing intermediate forms of gastrin, and the receptor subtypes and pathways that promote the trophic/mitogenic effects of the different molecular forms of gastrin.
Collapse
Affiliation(s)
- R R Yassin
- Department of Medicine, MCP Hahnemann University, Philadelphia, PA 19102-1192, USA
| |
Collapse
|
40
|
Miyazaki Y, Shinomura Y, Tsutsui S, Zushi S, Higashimoto Y, Kanayama S, Higashiyama S, Taniguchi N, Matsuzawa Y. Gastrin induces heparin-binding epidermal growth factor-like growth factor in rat gastric epithelial cells transfected with gastrin receptor. Gastroenterology 1999; 116:78-89. [PMID: 9869605 DOI: 10.1016/s0016-5085(99)70231-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Parietal cells express heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF). However, it is unknown whether HB-EGF mediates the trophic action of gastrin. The purpose of this study was to determine whether gastrin modulates the expression of HB-EGF, which mediates the proliferative effects of gastrin on gastric epithelial cells. METHODS RGM1 cells, a rat gastric epithelial cell line, were transfected with a human gastrin receptor complementary DNA. Gastrin induction of messenger RNAs (mRNAs) for EGF-related polypeptides was assayed by Northern blotting. Processing of cell surface-associated proHB-EGF and secretion of HB-EGF were determined by flow cytometry and Western blotting, respectively. Tyrosine phosphorylation of the EGF receptor was assayed by immunoprecipitation and Western blotting with an antiphosphotyrosine antibody. Cell growth was evaluated by [3H]thymidine incorporation. RESULTS Gastrin induced expression of HB-EGF mRNA, processing of proHB-EGF, release of HB-EGF into the medium, and tyrosine phosphorylation of the EGF receptor. The growth-stimulatory effects of gastrin were partly inhibited by anti-rat HB-EGF serum and completely blocked by AG1478, an EGF receptor-specific tyrphostin. CONCLUSIONS The findings suggest that HB-EGF at least partially mediates the proliferative effects of gastrin on gastric epithelial cells.
Collapse
Affiliation(s)
- Y Miyazaki
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Osaka, Japan. miyazaki@imed2,med.osaka-u.ac.jp
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fukui H, Kinoshita Y, Maekawa T, Okada A, Waki S, Hassan S, Okamoto H, Chiba T. Regenerating gene protein may mediate gastric mucosal proliferation induced by hypergastrinemia in rats. Gastroenterology 1998; 115:1483-93. [PMID: 9834276 DOI: 10.1016/s0016-5085(98)70027-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS Regenerating gene (Reg) has been isolated from rat regenerating pancreatic islets, and Reg protein is mitogenic to islet cells. We have recently shown that Reg gene and Reg protein are expressed in gastric enterochromaffin-like (ECL) cells. This study aimed to clarify whether gastrin enhances Reg protein production in ECL cells and whether Reg protein is mitogenic to gastric mucosal cells. METHODS Reg gene expression in response to acute and chronic hypergastrinemia was investigated in rats. Immunohistochemical studies, Northern blotting, and in situ hybridization were performed to investigate the expression of Reg protein and Reg gene. The direct effect of gastrin on Reg gene expression was investigated using isolated ECL cells, and the trophic effect of Reg protein on cultured gastric epithelial cells was assessed by [3H]thymidine uptake. RESULTS Both chronic hypergastrinemia and short-term gastrin administration stimulated Reg gene expression and Reg protein production in fundic mucosa. Reg gene expression was also augmented in isolated ECL cells after incubation with rat gastrin. Reg protein was mitogenic to cultured rat gastric epithelial cells. CONCLUSIONS Gastrin stimulates the production of Reg protein in gastric ECL cells, which may be involved in the gastrin-induced gastric mucosal cell growth.
Collapse
Affiliation(s)
- H Fukui
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|