1
|
Schulze RJ, Schott MB, Casey CA, Tuma PL, McNiven MA. The cell biology of the hepatocyte: A membrane trafficking machine. J Cell Biol 2019; 218:2096-2112. [PMID: 31201265 PMCID: PMC6605791 DOI: 10.1083/jcb.201903090] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022] Open
Abstract
The liver performs numerous vital functions, including the detoxification of blood before access to the brain while simultaneously secreting and internalizing scores of proteins and lipids to maintain appropriate blood chemistry. Furthermore, the liver also synthesizes and secretes bile to enable the digestion of food. These diverse attributes are all performed by hepatocytes, the parenchymal cells of the liver. As predicted, these cells possess a remarkably well-developed and complex membrane trafficking machinery that is dedicated to moving specific cargos to their correct cellular locations. Importantly, while most epithelial cells secrete nascent proteins directionally toward a single lumen, the hepatocyte secretes both proteins and bile concomitantly at its basolateral and apical domains, respectively. In this Beyond the Cell review, we will detail these central features of the hepatocyte and highlight how membrane transport processes play a key role in healthy liver function and how they are affected by disease.
Collapse
Affiliation(s)
- Ryan J Schulze
- Division of Gastroenterology and Hepatology, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Micah B Schott
- Division of Gastroenterology and Hepatology, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - Carol A Casey
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE
- Departments of Internal Medicine and Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | | | - Mark A McNiven
- Division of Gastroenterology and Hepatology, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| |
Collapse
|
2
|
Schneeberger K, Roth S, Nieuwenhuis EES, Middendorp S. Intestinal epithelial cell polarity defects in disease: lessons from microvillus inclusion disease. Dis Model Mech 2018; 11:11/2/dmm031088. [PMID: 29590640 PMCID: PMC5894939 DOI: 10.1242/dmm.031088] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is a highly organized tissue. The establishment of epithelial cell polarity, with distinct apical and basolateral plasma membrane domains, is pivotal for both barrier formation and for the uptake and vectorial transport of nutrients. The establishment of cell polarity requires a specialized subcellular machinery to transport and recycle proteins to their appropriate location. In order to understand and treat polarity-associated diseases, it is necessary to understand epithelial cell-specific trafficking mechanisms. In this Review, we focus on cell polarity in the adult mammalian intestine. We discuss how intestinal epithelial polarity is established and maintained, and how disturbances in the trafficking machinery can lead to a polarity-associated disorder, microvillus inclusion disease (MVID). Furthermore, we discuss the recent developments in studying MVID, including the creation of genetically manipulated cell lines, mouse models and intestinal organoids, and their uses in basic and applied research. Summary: Microvillus inclusion disease serves as a useful model to enhance our understanding of the intestinal trafficking and polarity machinery in health and disease.
Collapse
Affiliation(s)
- Kerstin Schneeberger
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabrina Roth
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Edward E S Nieuwenhuis
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabine Middendorp
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands .,Regenerative Medicine Center Utrecht, University Medical Centre (UMC) Utrecht, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
3
|
Padia SH, Kemp BA, Howell NL, Keller SR, Gildea JJ, Carey RM. Mechanisms of dopamine D(1) and angiotensin type 2 receptor interaction in natriuresis. Hypertension 2011; 59:437-45. [PMID: 22203736 DOI: 10.1161/hypertensionaha.111.184788] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Renal dopamine D(1)-like receptors (D(1)Rs) and angiotensin type 2 receptors (AT(2)Rs) are important natriuretic receptors counterbalancing angiotensin type 1 receptor-mediated tubular sodium reabsorption. Here we explore the mechanisms of D(1)R and AT(2)R interactions in natriuresis. In uninephrectomized, sodium-loaded Sprague-Dawley rats, direct renal interstitial infusion of the highly selective D(1)R agonist fenoldopam induced a natriuretic response that was abolished by the AT(2)R-specific antagonist PD-123319 or by microtubule polymerization inhibitor nocodazole but not by actin polymerization inhibitor cytochalasin D. By confocal microscopy and immunoelectron microscopy, fenoldopam translocated AT(2)Rs from intracellular sites to the apical plasma membranes of renal proximal tubule cells, and this translocation was abolished by nocodazole. Because D(1)R activation induces natriuresis via an adenylyl cyclase/cAMP signaling pathway, we explored whether this pathway is responsible for AT(2)R recruitment and AT(2)R-mediated natriuresis. Renal interstitial coinfusion of the adenylyl cyclase activator forskolin and 3-isobutly-1-methylxanthine induced natriuresis that was abolished either by PD-123319 or nocodazole but was unaffected by specific the D(1)R antagonist SCH-23390. Coadministration of forskolin and 3-isobutly-1-methylxanthine also translocated AT(2)Rs to the apical plasma membranes of renal proximal tubule cells; this translocation was abolished by nocodazole but was unaffected by SCH-23390. The results demonstrate that D(1)R-induced natriuresis requires AT(2)R recruitment to the apical plasma membranes of renal proximal tubule cells in a microtubule-dependent manner involving an adenylyl cyclase/cAMP signaling pathway. These studies provide novel insights regarding the mechanisms whereby renal D(1)Rs and AT(2)Rs act in concert to promote sodium excretion in vivo.
Collapse
Affiliation(s)
- Shetal H Padia
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA 22908-1414, USA
| | | | | | | | | | | |
Collapse
|
4
|
Wang JA, Meyer TF, Rudel T. Cytoskeleton and motor proteins are required for the transcytosis of Neisseria gonorrhoeae through polarized epithelial cells. Int J Med Microbiol 2007; 298:209-21. [PMID: 17683982 DOI: 10.1016/j.ijmm.2007.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 04/27/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022] Open
Abstract
Neisseria gonorrhoeae interact with polarized T84 epithelial cells by engaging carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) receptors. Adherent bacteria that are taken up by the cells are able to traverse the epithelial layer from the apical to the basal side. Herein, we demonstrate that the actin cytoskeleton of the cells is not required for the initial adherence of the bacteria, however, it is essential for invasion into and traversal through T84 cells. Furthermore, microtubule inhibitors blocked the traversal, but not the adherence and invasion of the bacteria. Inhibition of the motor activity of myosins reduced invasion and traversal, but not bacterial adherence. Immunofluorescence confocal laser scanning microscopy revealed the colocalization of the microtubule-based kinesin and dynein motors, and the actin-based motor myosin with adherent and intracellular gonococci. Transcytosis was reduced by blocking kinesin and myosin with specific antibodies. This underlines the importance of these motor proteins for the transcytosis of epithelial monolayers by N. gonorrhoeae.
Collapse
Affiliation(s)
- Jun A Wang
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | |
Collapse
|
5
|
Tietz PS, McNiven MA, Splinter PL, Huang BQ, Larusso NF. Cytoskeletal and motor proteins facilitate trafficking of AQP1-containing vesicles in cholangiocytes. Biol Cell 2006; 98:43-52. [PMID: 16354161 DOI: 10.1042/bc20040089] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND INFORMATION We have previously showed that: (i) cholangiocytes contain AQP1 (aquaporin 1) water channels sequestered in intracellular vesicles; and (ii) upon stimulation with choleretic agonists such as secretin or dibutyryl-cAMP (dbcAMP), the AQP1 vesicles move via microtubules to the apical cholangiocyte membrane to facilitate osmotically driven, passive water movement (i.e. ductal bile secretion). The aim of the present study was to determine which proteins and mechanisms regulate AQP1 trafficking in cholangiocytes. RESULTS Using polarized cultured NMCs (normal mouse cholangiocytes) or NRCs (normal rat cholangiocytes) and affinity-purified antibodies, we performed immunofluorescent confocal microscopy on fixed cells or immunoblotting on cell lysates for actin, tubulin, kinesin and dynein, proteins known to regulate intracellular vesicle trafficking. By immunostaining, the appropriate orientation of the actin (i.e. sub-apical) and tubulin (i.e. generalized) cytoskeleton was apparent; kinesin and dynein displayed a homogeneous punctate distribution. Immunoblotting showed kinesin and dynein to be present in both cholangiocyte lysates and in isolated AQP1-containing vesicles. We utilized real-time fluorescence confocal microscopy of NMCs transfected with a GFP (green fluorescent protein)-AQP1 fusion construct in the presence and absence of dbcAMP. CONCLUSIONS Our results provide additional insights into the potential molecular mechanisms of ductal bile secretion.
Collapse
Affiliation(s)
- Pamela S Tietz
- Center for Basic Research in Digestive Diseases, Department of Internal Medicine, Mayo Medical School, Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
6
|
Ivanov AI, McCall IC, Babbin B, Samarin SN, Nusrat A, Parkos CA. Microtubules regulate disassembly of epithelial apical junctions. BMC Cell Biol 2006; 7:12. [PMID: 16509970 PMCID: PMC1444913 DOI: 10.1186/1471-2121-7-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 03/01/2006] [Indexed: 11/21/2022] Open
Abstract
Background Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion. Results Calcium depletion resulted in disruption and internalization of epithelial TJs and AJs along with reorganization of perijunctional F-actin into contractile rings. Microtubules reorganized into dense plaques positioned inside such F-actin rings. Depolymerization of microtubules with nocodazole prevented junctional disassembly and F-actin ring formation. Stabilization of microtubules with either docetaxel or pacitaxel blocked contraction of F-actin rings and attenuated internalization of junctional proteins into a subapical cytosolic compartment. Likewise, pharmacological inhibition of microtubule motors, kinesins, prevented contraction of F-actin rings and attenuated disassembly of apical junctions. Kinesin-1 was enriched at the AJC in cultured epithelial cells and it also accumulated at epithelial cell-cell contacts in normal human colonic mucosa. Furthermore, immunoprecipitation experiments demonstrated association of kinesin-1 with the E-cadherin-catenin complex. Conclusion Our data suggest that microtubules play a role in disassembly of the AJC during calcium depletion by regulating formation of contractile F-actin rings and internalization of AJ/TJ proteins.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Ingrid C McCall
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Brian Babbin
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Stanislav N Samarin
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Asma Nusrat
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Charles A Parkos
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
7
|
Schnaeker EM, Ossig R, Ludwig T, Dreier R, Oberleithner H, Wilhelmi M, Schneider SW. Microtubule-dependent matrix metalloproteinase-2/matrix metalloproteinase-9 exocytosis: prerequisite in human melanoma cell invasion. Cancer Res 2005; 64:8924-31. [PMID: 15604254 DOI: 10.1158/0008-5472.can-04-0324] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that cleave and degrade a wide spectrum of extracellular matrix components. By enhancing turnover of extracellular matrix, MMP activity is also known to play a key role in tumor cell invasion. Because extracellular protease activity requires efficient release of these proteases to the cellular surface, we investigated storage, transport, and exocytosis of MMP-2 and MMP-9 in human melanoma cells using immunofluorescence, electrical, and biochemical techniques. Immunolabeling of melanoma cells with antibodies specific for MMP-2 and MMP-9 led to the identification of two distinct populations of small cytoplasmatic vesicles containing MMP-2 or MMP-9, respectively. In combination with alpha-tubulin-specific antibodies, both vesicle populations were found to be aligned along the microtubular network. Moreover, the molecular motor protein kinesin is shown to be localized on most of these vesicles, providing evidence that the identified vesicles are actively propelled along microtubules toward the plasma membrane. The functional relevance of these findings is demonstrated using low dosage (5.9 nmol/L) of paclitaxel to affect the microtubular function of melanoma cells. Although cell proliferation is not altered, paclitaxel treatment impairs secretion of MMP-2/MMP-9 and significantly reduces invasive activity in our new cell invasion assay. In conclusion, we demonstrate in melanoma cells that microtubule-dependent traffic of MMP-containing vesicles and exocytosis are critical steps for invasive behavior and therefore are potential targets for specific antitumor drugs.
Collapse
Affiliation(s)
- Eva-Maria Schnaeker
- Institute of Physiology-Nanolab, Institute of Physiological Chemistry and Pathobiochemistry, and Department of Dermatology, University of Muenster, Muenster, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Sawaguchi A, McDonald KL, Forte JG. High-pressure freezing of isolated gastric glands provides new insight into the fine structure and subcellular localization of H+/K+-ATPase in gastric parietal cells. J Histochem Cytochem 2004; 52:77-86. [PMID: 14688219 DOI: 10.1177/002215540405200108] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
High-pressure freezing (HPF) is currently the most reliable method to obtain an adequately frozen sample for high-resolution morphological evaluation. Here we applied the HPF technique to isolated rabbit gastric glands to reveal structural evidence that may be correlated with functional activity of gastric parietal cells. This approach provided well-preserved fine structure and excellent antigenicity of several parietal cell proteins. Microtubules were abundant in the cytoplasm and frequently appeared to be associating with tubulovesicles. Interestingly, many electron-dense coated vesicles were apparent around the intracellular canaliculi (IC) of resting parietal cells, consistent with active membrane retrieval from the apical membranes. Immunolabeling of H+/K+-ATPase was evident on the endocytic components (e.g., multivesicular bodies) and tubulovesicles. After histamine stimulation, the parietal cells characteristically showed expanded IC membranes with varied features of their apical microvilli. The labeling density of H+/K+-ATPase was four-fold higher on the IC membrane of stimulated parietal cells than on that of resting parietal cells. Immunolabeling of ezrin was clearly identified on the IC and basolateral membranes of parietal cells, corresponding to their F-actin-rich sites. The present findings provide a new insight into the correlation of cell structure and function in gastric parietal cells.
Collapse
Affiliation(s)
- Akira Sawaguchi
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | |
Collapse
|
9
|
Rukstalis JM, Kowalik A, Zhu L, Lidington D, Pin CL, Konieczny SF. Exocrine specific expression of Connexin32 is dependent on the basic helix-loop-helix transcription factor Mist1. J Cell Sci 2003; 116:3315-25. [PMID: 12829745 DOI: 10.1242/jcs.00631] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gap junctions are intercellular channels that provide direct passage of small molecules between adjacent cells. In pancreatic acini, the connexin26 (Cx26) and connexin32 (Cx32) proteins form functional channels that coordinate the secretion of digestive enzymes. Although the function of Cx26/Cx32 gap junctions are well characterized, the regulatory circuits that control the spatial and temporal expression patterns of these connexin genes are not known. In an effort to identify the molecular pathways that regulate connexin gene expression, we examined Cx26 and Cx32 gene activities in mice lacking the basic helix-loop-helix transcription factor Mist1 (Mist1KO). Mist1, Cx26 and Cx32 are co-expressed in most exocrine cell types, and acinar cells from Mist1KO mice exhibit a highly disorganized cellular architecture and an altered pattern of expression for several genes involved in regulated exocytosis. Analysis of Mist1KO mice revealed a dramatic decrease in both connexin proteins, albeit through different molecular mechanisms. Cx32 gene transcription was greatly reduced in all Mist1KO exocrine cells, while Cx26 gene expression remained unaffected. However, in the absence of Cx32 protein, Cx26 did not participate in gap junction formation, leading to a complete lack of intercellular communication among Mist1KO acinar cells. Additional studies testing Mist1 gene constructs in pancreatic exocrine cells confirmed that Mist1 transcriptionally regulates expression of the Cx32 gene. We conclude that Mist1 functions as a positive regulator of Cx32 gene expression and, in its absence, acinar cell gap junctions and intercellular communication pathways become disrupted.
Collapse
Affiliation(s)
- J Michael Rukstalis
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Transcytosis, the vesicular transport of macromolecules from one side of a cell to the other, is a strategy used by multicellular organisms to selectively move material between two environments without altering the unique compositions of those environments. In this review, we summarize our knowledge of the different cell types using transcytosis in vivo, the variety of cargo moved, and the diverse pathways for delivering that cargo. We evaluate in vitro models that are currently being used to study transcytosis. Caveolae-mediated transcytosis by endothelial cells that line the microvasculature and carry circulating plasma proteins to the interstitium is explained in more detail, as is clathrin-mediated transcytosis of IgA by epithelial cells of the digestive tract. The molecular basis of vesicle traffic is discussed, with emphasis on the gaps and uncertainties in our understanding of the molecules and mechanisms that regulate transcytosis. In our view there is still much to be learned about this fundamental process.
Collapse
Affiliation(s)
- Pamela L Tuma
- Hunterian 119, Department of Cell Biology, 725 N Wolfe St, Baltimore, MD 21205, USA
| | | |
Collapse
|
11
|
Abstract
The Golgi apparatus is a dynamic organelle through which nascent secretory and transmembrane proteins are transported, post-translationally modified and finally packaged into carrier vesicles for transport along the cytoskeleton to a variety of destinations. In the past decade, studies have shown that a number of 'molecular motors' are involved in maintaining the proper structure and function of the Golgi apparatus. Here, we review just some of the many functions performed by these mechanochemical enzymes - dyneins, kinesins, myosins and dynamin - in relation to the Golgi apparatus.
Collapse
Affiliation(s)
- Victoria J Allan
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
12
|
Abstract
The current flow of papers on intestinal structure, radiation science, and intestinal radiation response is reflected in the contents of this review. Multiparameter findings and changes in compartments, cells, or subcellular structure all contribute to the overall profile of the response. The well-recognized changes in proliferation, vessels, and fibrogenesis are accompanied by alterations in other compartments, such as neuroendocrine or immune components of the intestinal wall. The responses at the molecular level, such as in levels of hormones, cytokines, or neurotransmitters, are of fundamental importance. The intestine responds to localized radiation, or to changes in other organs that influence its structure or function: some structural parameters respond differently to different radiation schedules. Apart from radiation conditions, factors affecting the outcome include the pathophysiology of the irradiated subject and accompanying treatment or intervention. More progress in understanding the overall responses is expected in the next few years.
Collapse
Affiliation(s)
- K E Carr
- The Queen's University of Belfast and MRC Radiation and Genome Stability Unit, Didcot, Oxfordshire, United Kingdom
| |
Collapse
|
13
|
Pin CL, Rukstalis JM, Johnson C, Konieczny SF. The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. J Cell Biol 2001; 155:519-30. [PMID: 11696558 PMCID: PMC2198859 DOI: 10.1083/jcb.200105060] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pancreas is a complex organ that consists of separate endocrine and exocrine cell compartments. Although great strides have been made in identifying regulatory factors responsible for endocrine pancreas formation, the molecular regulatory circuits that control exocrine pancreas properties are just beginning to be elucidated. In an effort to identify genes involved in exocrine pancreas function, we have examined Mist1, a basic helix-loop-helix transcription factor expressed in pancreatic acinar cells. Mist1-null (Mist1(KO)) mice exhibit extensive disorganization of exocrine tissue and intracellular enzyme activation. The exocrine disorganization is accompanied by increases in p8, RegI/PSP, and PAP1/RegIII gene expression, mimicking the molecular changes observed in pancreatic injury. By 12 m, Mist1(KO) mice develop lesions that contain cells coexpressing acinar and duct cell markers. Analysis of the factors involved in cholecystokinin (CCK) signaling reveal inappropriate levels of the CCK receptor A and the inositol-1,4,5-trisphosphate receptor 3, suggesting that a functional defect exists in the regulated exocytosis pathway of Mist1(KO) mice. Based on these observations, we propose that Mist1(KO) mice represent a new genetic model for chronic pancreas injury and that the Mist1 protein serves as a key regulator of acinar cell function, stability, and identity.
Collapse
Affiliation(s)
- C L Pin
- Department of Paediatrics, Child Health Research Institute, University of Western Ontario, London, Ontario N6C 2V5, Canada
| | | | | | | |
Collapse
|
14
|
Török NJ, Larusso EM, McNiven MA. Alterations in vesicle transport and cell polarity in rat hepatocytes subjected to mechanical or chemical cholestasis. Gastroenterology 2001; 121:1176-84. [PMID: 11677210 DOI: 10.1053/gast.2001.28652] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The molecular mechanisms that contribute to the cholestatic condition in hepatocytes are poorly defined. It has been postulated that a disruption of normal vesicle-based protein trafficking may lead to alterations in hepatocyte polarity. METHODS To determine if vesicle motility is reduced by cholestasis, hepatocytes cultured from livers of bile duct ligation (BDL)- or ethinyl estradiol (EE)-injected rats, were viewed and recorded by high-resolution video microscopy. Cholestatic hepatocytes were analyzed by phalloidin staining and electron microscopy. Functional analysis was done by the sodium fluorescein sequestration assay. RESULTS In cholestatic hepatocytes, there was a significant decrease in the number of motile cytoplasmic vesicles observed compared with control cells. Further examination of cells from BDL- or EE-treated livers revealed the presence of numerous large intracellular lumina. More than 24% of cells in BDL-treated livers and 19% of cells in EE-treated livers displayed these structures, compared with 1.1% found in control hepatocytes. Phalloidin staining of hepatocytes showed a prominent sheath of actin surrounding the lumina, reminiscent of those seen about bile canaliculi. Electron microscopy revealed that these structures were lined by actin-filled microvilli. Further, these pseudocanaliculi perform many of the functions exhibited by bona fide canaliculi, such as sequestering sodium fluorescein. CONCLUSIONS Both mechanically and chemically induced cholestasis have substantial effects on vesicle-based transport, leading to marked disruption of hepatocellular polarity.
Collapse
Affiliation(s)
- N J Török
- Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
15
|
Suzuki J, Ohnsihi H, Shibata H, Wada A, Hirayama T, Iiri T, Ueda N, Kanamaru C, Tsuchida T, Mashima H, Yasuda H, Fujita T. Dynamin is involved in human epithelial cell vacuolation caused by the Helicobacter pylori-produced cytotoxin VacA. J Clin Invest 2001; 107:363-70. [PMID: 11160160 PMCID: PMC199191 DOI: 10.1172/jci10254] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Helicobacter pylori-produced cytotoxin VacA induces intracellular vacuolation. To elucidate the molecular mechanism of vacuole formation by VacA, we examined the participation of dynamin, a GTPase functioning in intracellular vesicle formation, in human HeLa cells. Immunocytochemistry revealed that endogenous dynamin was localized to vacuoles induced by VacA. In cells transiently transfected with a GTPase-defective (dominant-negative) dynamin mutant, VacA failed to induce vacuolation. In contrast, VacA did induce vacuolation in cells transiently transfected with wild-type dynamin. Furthermore, under VacA treatment, neutral red dye uptake, a parameter of VacA-induced vacuolation, was inhibited in cells stably transfected with the dominant-negative dynamin mutant. In contrast, uptake was markedly enhanced in cells stably transfected with wild-type dynamin. Moreover, VacA cytopathic effects on the viability of HeLa cells were inhibited in cells stably transfected with dominant-negative dynamin-1. Sequential immunocytochemical observation confirmed that expression of dominant-negative dynamin did not affect VacA attachment to or internalization into HeLa cells. We suggest that dynamin is involved in the intracellular vacuolation induced by VacA.
Collapse
Affiliation(s)
- J Suzuki
- Department of Internal Medicine, University of Tokyo School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ueda N, Ohnishi H, Kanamaru C, Suzuki J, Tsuchida T, Mashima H, Yasuda H, Fujita T. Kinesin is involved in regulation of rat pancreatic amylase secretion. Gastroenterology 2000; 119:1123-31. [PMID: 11040199 DOI: 10.1053/gast.2000.18145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Kinesin has recently been localized to zymogen granules of pancreatic acini and is suggested to participate in exocytosis of exocrine pancreas. We examined the function of kinesin in regulated exocytosis of pancreatic acini in this study. METHODS Kinesin function in exocytosis was examined by introducing hexahistidine-tagged recombinant kinesin protein and antikinesin monoclonal antibody into streptolysin-O-permeabilized acini. Intracellular localization of introduced recombinant kinesin was investigated by immunohistochemistry. Interaction between recombinant kinesin and the microtubule network was confirmed by nocodazole pretreatment of acini. Kinesin regulation by secretagogues was investigated by examining their effect on adenosine triphosphatase (ATPase) activity of endogenous kinesin. RESULTS Recombinant kinesin enhanced calcium-stimulated amylase release from streptolysin-O-permeabilized acini. Introduced recombinant kinesin was localized to both the microtubule network and zymogen granule. Nocodazole pretreatment of acini abolished the enhancing effect of recombinant kinesin on calcium-stimulated amylase release. Antikinesin antibody inhibited amylase release stimulated by the combination of calcium and cyclic adenosine monophosphate (cAMP) but not that stimulated by calcium alone. Secretin and 8-bromo-cAMP increased ATPase activity of endogenous kinesin. CONCLUSIONS Kinesin plays a stimulatory role in regulated exocytosis of pancreatic acini and is involved in stimulus-secretion coupling through a cAMP-dependent pathway.
Collapse
Affiliation(s)
- N Ueda
- Fourth Department of Internal Medicine, School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Escalante-Ochoa C, Ducatelle R, Haesebrouck F. Optimal development of Chlamydophila psittaci in L929 fibroblast and BGM epithelial cells requires the participation of microfilaments and microtubule-motor proteins. Microb Pathog 2000; 28:321-33. [PMID: 10839969 DOI: 10.1006/mpat.2000.0352] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytoskeleton is involved in several cellular activities, including internalization and transport of foreign particles. Although particular functions to each cytoskeleton component have been described, interactions between those components seem to occur. The involvement of the different host cell cytoskeletal components in uptake and development of Chlamydophila psittaci is incompletely understood. In this study, the participation of the microfilament network along with the kinesin and dynein microtubule motor proteins in the internalization and further development of Chlamydophila psittaci were investigated in L929 fibroblast and BGM epithelial cells. Cytochalasin D disruption of actin filaments, and blockage of the motor proteins through the introduction of monoclonal antibodies into the host cells were carried out, either single or combined, at different moments around bacterial inoculation, and Chlamydophila infectivity determined 24 h post- inoculation by direct immunofluorescence. Our results show that, although Chlamydophila Ipsittaci can make use of both microfilament-dependent and independent entry pathways in both cell types, Chlamydophila internalization and development in the fibroblast cells mainly concerned processes mediated by microfilaments while in the epithelial cells mechanisms that require microtubule motor proteins were the ones predominantly involved. Evidence that mutual participation of the actin and tubulin networks in both host cells are required for optimal growth of Chlamydophila psittaci is also presented.
Collapse
Affiliation(s)
- C Escalante-Ochoa
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, R.U.G, Salisburylaan 133, Merelbeke, B-9820, Belgium.
| | | | | |
Collapse
|
18
|
Brendza RP, Sheehan KB, Turner FR, Saxton WM. Clonal tests of conventional kinesin function during cell proliferation and differentiation. Mol Biol Cell 2000; 11:1329-43. [PMID: 10749933 PMCID: PMC14850 DOI: 10.1091/mbc.11.4.1329] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Null mutations in the Drosophila Kinesin heavy chain gene (Khc), which are lethal during the second larval instar, have shown that conventional kinesin is critical for fast axonal transport in neurons, but its functions elsewhere are uncertain. To test other tissues, single imaginal cells in young larvae were rendered null for Khc by mitotic recombination. Surprisingly, the null cells produced large clones of adult tissue. The rates of cell proliferation were not reduced, indicating that conventional kinesin is not essential for cell growth or division. This suggests that in undifferentiated cells vesicle transport from the Golgi to either the endoplasmic reticulum or the plasma membrane can proceed at normal rates without conventional kinesin. In adult eye clones produced by null founder cells, there were some defects in differentiation that caused mild ultrastructural changes, but they were not consistent with serious problems in the positioning or transport of endoplasmic reticulum, mitochondria, or vesicles. In contrast, defective cuticle deposition by highly elongated Khc null bristle shafts suggests that conventional kinesin is critical for proper secretory vesicle transport in some cell types, particularly ones that must build and maintain long cytoplasmic extensions. The ubiquity and evolutionary conservation of kinesin heavy chain argue for functions in all cells. We suggest interphase organelle movements away from the cell center are driven by multilayered transport mechanisms; that is, individual organelles can use kinesin-related proteins and myosins, as well as conventional kinesin, to move toward the cell periphery. In this case, other motors can compensate for the loss of conventional kinesin except in cells that have extremely long transport tracks.
Collapse
Affiliation(s)
- R P Brendza
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
19
|
Ku NO, Zhou X, Toivola DM, Omary MB. The cytoskeleton of digestive epithelia in health and disease. Am J Physiol Gastrointest Liver Physiol 1999; 277:G1108-37. [PMID: 10600809 DOI: 10.1152/ajpgi.1999.277.6.g1108] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The mammalian cell cytoskeleton consists of a diverse group of fibrillar elements that play a pivotal role in mediating a number of digestive and nondigestive cell functions, including secretion, absorption, motility, mechanical integrity, and mitosis. The cytoskeleton of higher-eukaryotic cells consists of three highly abundant major protein families: microfilaments (MF), microtubules (MT), and intermediate filaments (IF), as well as a growing number of associated proteins. Within digestive epithelia, the prototype members of these three protein families are actins, tubulins, and keratins, respectively. This review highlights the important structural, regulatory, functional, and unique features of the three major cytoskeletal protein groups in digestive epithelia. The emerging exciting biological aspects of these protein groups are their involvement in cell signaling via direct or indirect interaction with a growing list of associated proteins (MF, MT, IF), the identification of several disease-causing mutations (IF, MF), the functional role that they play in protection from environmental stresses (IF), and their functional integration via several linker proteins that bridge two or potentially all three of these groups together. The use of agents that target specific cytoskeletal elements as therapeutic modalities for digestive diseases offers potential unique areas of intervention that remain to be fully explored.
Collapse
Affiliation(s)
- N O Ku
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | |
Collapse
|