1
|
Kikuyama S, Yamamoto K, Toyoda F, Kouki T, Okada R. Hormonal and pheromonal studies on amphibians with special reference to metamorphosis and reproductive behavior. Dev Growth Differ 2023; 65:321-336. [PMID: 37246964 DOI: 10.1111/dgd.12868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
In this article, we review studies which have been conducted to investigate the hormonal influence on metamorphosis in bullfrog (Rana catesbeiana) and Japanese toad (Bufo japonicus) larvae, in addition to studies conducted on the hormonal and pheromonal control of reproductive behavior in red-bellied newts (Cynops pyrrhogaster). Metamorphosis was studied with an emphasis on the roles of prolactin (PRL) and thyrotropin (TSH). The release of PRL was shown to be regulated by thyrotropin-releasing hormone (TRH) and that of TSH was evidenced to be regulated by corticotropin-releasing factor. The significance of the fact that the neuropeptide that controls the secretion of TSH is different from those encountered in mammals is discussed in consideration of the observation that the release of TRH, which stimulates the release of PRL, is enhanced when the animals are subjected to a cold temperature. Findings that were made by using melanin-rich cells of Bufo embryos and larvae, such as the determination of the origin of the adenohypophyseal primordium, identification of the pancreatic chitinase, and involvement of the rostral preoptic recess organ as the hypothalamic inhibitory center of α-melanocyte-stimulating hormone (α-MSH) secretion, are mentioned in this article. In addition, the involvement of hormones in eliciting courtship behavior in male red-bellied newts and the discovery of the peptide sex pheromones and hormonal control of their secretion are also discussed in the present article.
Collapse
Affiliation(s)
- Sakae Kikuyama
- Department of Biology, Faculty of Education and Integrated Sciences, Center for Advanced Biomedical Sciences, Waseda University, Tokyo, Japan
| | - Kazutoshi Yamamoto
- Department of Biology, Faculty of Education and Integrated Sciences, Center for Advanced Biomedical Sciences, Waseda University, Tokyo, Japan
| | - Fumiyo Toyoda
- Physiology Department I, Nara Medical University, Nara, Japan
| | - Tom Kouki
- Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Reiko Okada
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
2
|
Kikuyama S, Hasunuma I, Okada R. Development of the hypothalamo-hypophyseal system in amphibians with special reference to metamorphosis. Mol Cell Endocrinol 2021; 524:111143. [PMID: 33385474 DOI: 10.1016/j.mce.2020.111143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
In this review article, topics of the embryonic origin of the adenohypophysis and hypothalamus and the development of the hypothalamo-hypophyseal system for the completion of metamorphosis in amphibians are included. The primordium of the adenohypophysis as well as the primordium of the hypothalamus in amphibians is of neural origin as shown in other vertebrates, and both are closely associated with each other at the earliest stage of development. Metamorphosis progresses via the interaction of thyroid hormone and adrenal corticosteroids, of which secretion is enhanced by thyrotropin and corticotropin, respectively. However, unlike in mammals, the hypothalamic releasing factor for thyrotropin is not thyrotropin-releasing hormone (TRH), but corticotropin-releasing factor (CRF) and the major releasing factor for corticotropin is arginine vasotocin (AVT). Prolactin, the release of which is profoundly enhanced by TRH at the metamorphic climax, is another pituitary hormone involved in metamorphosis. Prolactin has a dual role: modulation of the metamorphic speed and the development of organs for adult life. The secretory activities of the pituitary cells containing the three above-mentioned pituitary hormones are elevated toward the metamorphic climax in parallel with the activities of the CRF, AVT, and TRH neurons.
Collapse
Affiliation(s)
- Sakae Kikuyama
- Department of Biology, Faculty of Education and Integrated Sciences, Center for Advanced Biomedical Sciences, Waseda University, Tokyo, 162-8480, Japan
| | - Itaru Hasunuma
- Department of Biology, Faculty of Science, Toho University, Chiba, 274-8510, Japan
| | - Reiko Okada
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
3
|
Kikuyama S, Okada R, Hasunuma I, Nakada T. Some aspects of the hypothalamic and pituitary development, metamorphosis, and reproductive behavior as studied in amphibians. Gen Comp Endocrinol 2019; 284:113212. [PMID: 31238076 DOI: 10.1016/j.ygcen.2019.113212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 06/12/2019] [Accepted: 06/21/2019] [Indexed: 01/10/2023]
Abstract
In this review article, information about the development of the hypothalamo-hypophyseal axis, endocrine control of metamorphosis, and hormonal and pheromonal involvements in reproductive behavior in some amphibian species is assembled from the works conducted mainly by our research group. The hypothalamic and pituitary development was studied using Bufo embryos and larvae. The primordium of the epithelial hypophysis originates at the anterior neural ridge and migrates underneath the brain to form a Rathke's pouch-like structure. The hypothalamo-hypophyseal axis develops under the influence of thyroid hormone (TH). For the morphological and functional development of the median eminence, which is a key structure in the transport of regulatory hormones to the pituitary, contact of the adenohypophysis with the undeveloped median eminence is necessary. For the development of proopiomelanocortin-producing cells, contact of the pituitary primordium with the infundibulum is required. The significance of avascularization in terms of the function of the intermediate lobe of the pituitary was evidenced with transgenic Xenopus frogs expressing a vascular endothelial growth factor in melanotropes. Metamorphosis progresses via the interaction of TH, adrenal corticosteroids, and prolactin (PRL). We emphasize that PRL has a dual role: modulation of the speed of metamorphic changes and functional development of organs for adult life. A brief description about a novel type of PRL (1B) that was detected was made. A possible reason why the main hypothalamic factor that stimulates the release of thyrotropin is not thyrotropin-releasing hormone, but corticotropin-releasing factor is considered in light of the fact that amphibians are poikilotherms. As regards the reproductive behavior in amphibians, studies were focused on the courtship behavior of the newt, Cynops pyrrhogaster. Male newts exhibit a unique courtship behavior toward sexually developed conspecific females. Hormonal interactions eliciting this behavior and hormonal control of the courtship pheromone secretion are discussed on the basis of our experimental results.
Collapse
Affiliation(s)
- Sakae Kikuyama
- Department of Biology, Faculty of Education and Integrated Sciences, Center for Advanced Biomedical Sciences, Waseda University, Tokyo 162-8480, Japan.
| | - Reiko Okada
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | - Itaru Hasunuma
- Department of Biology, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Tomoaki Nakada
- Department of Comparative and Behavioral Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| |
Collapse
|
4
|
Kikuyama S, Tsutsui K. Historical view of development of comparative endocrinology in Japan. Gen Comp Endocrinol 2011; 171:117-23. [PMID: 21310153 DOI: 10.1016/j.ygcen.2011.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 10/18/2022]
Abstract
This article describing a brief history of development of comparative endocrinology in Japan is contributed to the journal General and Comparative Endocrinology, in commemoration of the 50th anniversary of its publication. It covers significant works in the field of comparative endocrinology that have been done by Japanese endocrinologists, focusing those achieved during the past 70 years. The contents were arranged according to the taxonomical order of the experimental animals with which individual researchers or research groups have contributed to the acquisition of important knowledge in comparative endocrinology.
Collapse
Affiliation(s)
- Sakae Kikuyama
- Department of Biology, Waseda University, Tokyo 162-8480, Japan
| | | |
Collapse
|
5
|
Terakado K. Placode formation and generation of gonadotropin-releasing hormone (GnRH) neurons in ascidians. Zoolog Sci 2009; 26:398-405. [PMID: 19583498 DOI: 10.2108/zsj.26.398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurogenic placodes, a chordate innovation, generate several neuronal populations, including gonadotropin-releasing hormone (GnRH) neurons which are crucial for vertebrate and solitary ascidian urochordate reproduction. The dorsal strand placode of ascidians Is derived from the anterior ridge of the embryonic neural plate and thus shares a common developmental origin and expression of various transcription factors with vertebrate placodes. Despite their importance for understanding vertebrate origins, the evolutionary and developmental origins of the neurogenic placode remain obscure. Here I demonstrate the formation of an elaborate neurogenic placode, which forms the dorsal strand, on part of the neural gland epithelium in a solitary ascidian urochordate, Halocynthia roretzi. Two modes of GnRH neurogenesis in the dorsal strand (a peripheral organ) and the migration of GnRH neurons into the brain along the visceral nerve are also described. Ontogenetically, GnRH neurons are first detected in the dorsal strand and cerebral ganglion of very young Juveniles at almost the same time, demonstrating that ascidians possess morphological and developmental features in common with vertebrates. These results further indicate that the onset of peripheral GnRH neurogenesis and the ability of neurons to migrate into the brain predate the divergence of ascidians and vertebrates. Thus, based on the generation of GnRH neurons, the dorsal strand in ascidians may be homologous to the vertebrate olfactory placode. These organs are derived from the anterior region of the embryonic neural plate, which expresses several transcription factors that invertebrate chordates and vertebrates have in common. These results provide unequivocal support for the clade Olfactories (tunicates + vertebrates).
Collapse
Affiliation(s)
- Kiyoshi Terakado
- Innovative Research Organization, Saitama University, Sakura-Ku, Saitama 338-8570, Japan.
| |
Collapse
|
6
|
Morash MG, MacDonald AB, Croll RP, Anini Y. Molecular cloning, ontogeny and tissue distribution of zebrafish (Danio rerio) prohormone convertases: pcsk1 and pcsk2. Gen Comp Endocrinol 2009; 162:179-87. [PMID: 19332069 DOI: 10.1016/j.ygcen.2009.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/27/2009] [Accepted: 03/23/2009] [Indexed: 11/17/2022]
Abstract
Prohormone convertase subtilisin/kexin (PCSK) enzymes are a family of nine related serine proteases, found in a multitude of tissues, and responsible for the maturation of a variety of protein and peptide precursors. Pcsk1 and Pcsk2 are found within dense core secretory granules in endocrine and neuroendocrine cells and are responsible for cleaving several hormones and neuropeptide precursors. In this work, we cloned and sequenced the cDNA of pcsk1 and pcsk2 from zebrafish (Danio rerio). pcsk1 is a 2268bp ORF, whose 755 amino acid protein product is identical to that predicted from the genome sequence. pcsk2 is a 1941bp ORF, encoding a 646 amino acid peptide. Both Pcsk1 and Pcsk2 display high degrees of similarity to their counterparts in other species, including the conservation of the catalytic triad and other essential residues. The brain contained the highest expression levels of both pcsk1 (1.49+/-0.21) (displayed as ratio to EF-1a), and pcsk2 (0.23+/-0.04). Both transcripts were also detectable in the fore, mid and distal gut. pcsk1 and 2 were detectable at 4.5h post-fertilization, and while pcsk1 expression increased throughout development (0.12+/-0.01 maximum at 3 days post-fertilization), pcsk2 expression was highest at day 5 post-fertilization (0.03+/-0.01), and decreased prior. For the first time, we have identified and characterized a pcsk1 transcript in fish. We have also identified and characterized the pcsk2 transcript in zebrafish, and have assessed the tissue distribution and ontogeny of both.
Collapse
Affiliation(s)
- Michael G Morash
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Medical Building, NS, Canada
| | | | | | | |
Collapse
|
7
|
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:347-99. [PMID: 16003766 DOI: 10.1002/jez.b.21055] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ectodermal placodes comprise the adenohypophyseal, olfactory, lens, profundal, trigeminal, otic, lateral line, and epibranchial placodes. The first part of this review presents a brief overview of placode development. Placodes give rise to a variety of cell types and contribute to many sensory organs and ganglia of the vertebrate head. While different placodes differ with respect to location and derivative cell types, all appear to originate from a common panplacodal primordium, induced at the anterior neural plate border by a combination of mesodermal and neural signals and defined by the expression of Six1, Six4, and Eya genes. Evidence from mouse and zebrafish mutants suggests that these genes promote generic placodal properties such as cell proliferation, cell shape changes, and specification of neurons. The common developmental origin of placodes suggests that all placodes may have evolved in several steps from a common precursor. The second part of this review summarizes our current knowledge of placode evolution. Although placodes (like neural crest cells) have been proposed to be evolutionary novelties of vertebrates, recent studies in ascidians and amphioxus have proposed that some placodes originated earlier in the chordate lineage. However, while the origin of several cellular and molecular components of placodes (e.g., regionalized expression domains of transcription factors and some neuronal or neurosecretory cell types) clearly predates the origin of vertebrates, there is presently little evidence that these components are integrated into placodes in protochordates. A scenario is presented according to which all placodes evolved from an adenohypophyseal-olfactory protoplacode, which may have originated in the vertebrate ancestor from the anlage of a rostral neurosecretory organ (surviving as Hatschek's pit in present-day amphioxus).
Collapse
|
8
|
Satoh G. A trajectory of increasing activity and the elaboration of chemosensory modality: a new perspective on vertebrate origins. Zoolog Sci 2005; 22:613-26. [PMID: 15988155 DOI: 10.2108/zsj.22.613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article reviews recent advances in comparative biological studies of vertebrate origins, with the aim of revisiting the long-standing controversy concerning these origins. Since early vertebrate evolution is paralleled by an evolutionary trend towards increasing activity, I focus on the evolution of respiratory and circulatory systems and discuss their potential roles in early vertebrate evolution. I give particular attention to the nasohypophyseal duct, an orifice characteristically found in agnathan vertebrates, and hypothesize that this duct originally functioned to convey oxygen dissolved in seawater to the respiratory gills. The chemosensory cell population that originated from the wall of the duct became the incipient olfactory organ and played a role in the organization of feeding behavior. An increase in chemosensory receptor genes via large-scale genomic evolution in the vertebrate lineage caused the repertoire of chemosensory cells to diversify and led to the appearance of the integrative center, including telencephalic structures typically lacking in protochordates.
Collapse
Affiliation(s)
- Gouki Satoh
- Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto University, Wakayama, Japan.
| |
Collapse
|
9
|
Mackie GO, Burighel P. The nervous system in adult tunicates: current research directions. CAN J ZOOL 2005. [DOI: 10.1139/z04-177] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review covers 25 years of progress on structural, functional, and developmental neurobiology of adult tunicates. The focus is on ascidians rather than pelagic species. The ascidian brain and peripheral nervous system are considered from the point of view of ultrastructure, neurotransmitters, regulatory peptides, and electrical activity. Sensory reception and effector control are stressed. Discussion of the dorsal strand plexus centres on its relationship with photoreceptors, the presence in it of gonadotropin-releasing hormone and its role in reproductive control. In addition to hydrodynamic sense organs based on primary sensory neurons (cupular organs), ascidians are now known to have coronal sense organs based on axonless hair cells resembling those of the vertebrate acustico-lateralis system. The peripheral nervous system is remarkable in that the motor neuron terminals are apparently interconnected synaptically, providing the equivalent of a nerve net. Development of the neural complex in ascidians is reviewed, highlighting recent embryological and molecular evidence for stomodeal, neurohypophyseal, and atrial placodes. The nervous system forms similarly during embryogenesis in the oozooid and blastogenesis in colonial forms. The regeneration of the brain in Ciona intestinalis (L., 1767) is discussed in relation to normal neurogenesis. Finally, the viviparous development of salps is considered, where recent work traces the early development of the brain, outgrowth of nerve roots, and the targetting of motor nerves to the appropriate muscles.
Collapse
|