1
|
Goossens K, Neves RP, Fernandes PA, De Winter H. A Computational and Modeling Study of the Reaction Mechanism of Staphylococcus aureus Monoglycosyltransferase Reveals New Insights on the GT51 Family of Enzymes. J Chem Inf Model 2020; 60:5513-5528. [PMID: 32786224 DOI: 10.1021/acs.jcim.0c00377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bacterial glycosyltransferases of the GT51 family are key enzymes in bacterial cell wall synthesis. Inhibiting cell wall synthesis is a very effective approach for development of antibiotics, as this can lead to either bacteriostatic or bactericidal effects. Even though the existence of this family has been known for over 50 years, only one potent inhibitor exists, which is an analog of the lipid IV product and derived from a natural product. Drug development focused on bacterial transglycosylase has been hampered due to little being know about its structure and reaction mechanism. In this study, Staphylococcus aureus monoglycosyltransferase was investigated at an atomistic level using computational methods. Classical molecular dynamics simulations were used to reveal information about the large-scale dynamics of the enzyme-substrate complex and the importance of magnesium in structure and function of the protein, while mixed mode quantum mechanics/molecular mechanics calculations unveiled a novel hypothesis for the reaction mechanism. From these results, we present a new model for the binding mode of lipid II and the reaction mechanism of the GT51 glycosyltransferases. A metal-bound hydroxide catalyzed reaction mechanism yields an estimated free energy barrier of 16.1 ± 1.0 kcal/mol, which is in line with experimental values. The importance of divalent cations is also further discussed. These findings could significantly aid targeted drug design, particularly the efficient development of transition state analogues as potential inhibitors for the GT51 glycosyltransferases.
Collapse
Affiliation(s)
- Kenneth Goossens
- Department of Pharmaceutical Sciences, Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Rui Pp Neves
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Hans De Winter
- Department of Pharmaceutical Sciences, Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
2
|
Mandal SM, Pegu R, Porto WF, Franco OL, Pratihar S. Novel boronic acid derivatives of bis(indolyl) methane as anti-MRSA agents. Bioorg Med Chem Lett 2017; 27:2135-2138. [DOI: 10.1016/j.bmcl.2017.03.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 11/30/2022]
|
3
|
Senevirathne A, Ghosh K, Roh E, Kim KP. Complete genome sequence analysis of a novel Staphylococcus phage StAP1 and proposal of a new species in the genus Silviavirus. Arch Virol 2017; 162:2145-2148. [PMID: 28324178 DOI: 10.1007/s00705-017-3316-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/09/2017] [Indexed: 11/29/2022]
Abstract
Bacteriophage StAP1 was isolated from a soil sample infecting Staphylococcus aureus and S. xylosus. Its genome was found to be 135,502 base pairs (bp) long with 30.00 mol% G+C content and 192 open reading frames. While no tRNA encoding genes were identified, 7 mobile elements were found to interrupt five StAP1 open reading frames. Comparative genomic and proteomic analysis consistently supports the establishment of a new species in the genus Silviavirus.
Collapse
Affiliation(s)
- Amal Senevirathne
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Jeollabuk-do, 561-756, Republic of Korea
| | - Kuntal Ghosh
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Jeollabuk-do, 561-756, Republic of Korea
| | - Eunjung Roh
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, 55365, Republic of Korea
| | - Kwang-Pyo Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Jeollabuk-do, 561-756, Republic of Korea.
| |
Collapse
|
4
|
Hughes SJ, Barnard L, Mottaghi K, Tempel W, Antoshchenko T, Hong BS, Allali-Hassani A, Smil D, Vedadi M, Strauss E, Park HW. Discovery of Potent Pantothenamide Inhibitors of Staphylococcus aureus Pantothenate Kinase through a Minimal SAR Study: Inhibition Is Due to Trapping of the Product. ACS Infect Dis 2016; 2:627-641. [PMID: 27759386 DOI: 10.1021/acsinfecdis.6b00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potent antistaphylococcal activity of N-substituted pantothenamides (PanAms) has been shown to at least partially be due to the inhibition of Staphylococcus aureus's atypical type II pantothenate kinase (SaPanKII), the first enzyme of coenzyme A biosynthesis. This mechanism of action follows from SaPanKII having a binding mode for PanAms that is distinct from those of other PanKs. To dissect the molecular interactions responsible for PanAm inhibitory activity, we conducted a mini SAR study in tandem with the cocrystallization of SaPanKII with two classic PanAms (N5-Pan and N7-Pan), culminating in the synthesis and characterization of two new PanAms, N-Pip-PanAm and MeO-N5-PanAm. The cocrystal structures showed that all of the PanAms are phosphorylated by SaPanKII but remain bound at the active site; this occurs primarily through interactions with Tyr240' and Thr172'. Kinetic analysis showed a strong correlation between kcat (slow PanAm turnover) and IC50 (inhibition of pantothenate phosphorylation) values, suggesting that SaPanKII inhibition occurs via a delay in product release. In-depth analysis of the PanAm-bound structures showed that the capacity for accepting a hydrogen bond from the amide of Thr172' was a stronger determinant for PanAm potency than the capacity to π-stack with Tyr240'. The two new PanAms, N-Pip-PanAm and MeO-N5-PanAm, effectively combine both hydrogen bonding and hydrophobic interactions, resulting in the most potent SaPanKII inhibition described to date. Taken together, our results are consistent with an inhibition mechanism wherein PanAms act as SaPanKII substrates that remain bound upon phosphorylation. The phospho-PanAm-SaPanKII interactions described herein may help future antistaphylococcal drug development.
Collapse
Affiliation(s)
| | - Leanne Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | | | - Tetyana Antoshchenko
- Department
of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, Louisiana 70112, United States
| | | | | | | | | | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Hee-Won Park
- Department
of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
5
|
Zadrazilova I, Pospisilova S, Masarikova M, Imramovsky A, Ferriz JM, Vinsova J, Cizek A, Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Pharm Sci 2015; 77:197-207. [PMID: 26079401 DOI: 10.1016/j.ejps.2015.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
A series of twenty-one salicylanilide N-alkylcarbamates was assessed for novel antibacterial characteristics against three clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus ATCC 29213 as the reference and quality control strain. The minimum inhibitory concentration was determined by the broth dilution micro-method with subsequent subcultivation of aliquots to assess minimum bactericidal concentration. The bactericidal kinetics was established by time-kill assay. Ampicillin, ciprofloxacin and vancomycin were used as reference antibacterial drugs. All the tested compounds exhibited highly potent anti-MRSA activity (⩽ 0.008-4 μg/mL) comparable or up to 250× higher than that of vancomycin, the standard in the treatment of serious MRSA infections. 4-Chloro-2-(3,4-dichlorophenylcarbamoyl)phenyl butylcarbamate and 4-chloro-2-(3,4-dichlorophenylcarbamoyl)phenyl ethylcarbamate were the most active compounds. In most cases, compounds provided reliable bacteriostatic activity, except for 4-chloro-2-(4-chlorophenylcarbamoyl)phenyl decylcarbamate exhibiting bactericidal effect at 8h (for clinical isolate of MRSA 63718) and at 24h (for clinical isolates of MRSA SA 630 and MRSA SA 3202) at 4× MIC. Structure-activity relationships are discussed.
Collapse
Affiliation(s)
- Iveta Zadrazilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic; Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic.
| | - Sarka Pospisilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Martina Masarikova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Ales Imramovsky
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10 Pardubice, Czech Republic
| | - Juana Monreal Ferriz
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jarmila Vinsova
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Josef Jampilek
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic.
| |
Collapse
|
6
|
Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules 2015; 20:9767-87. [PMID: 26023938 PMCID: PMC6272341 DOI: 10.3390/molecules20069767] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 05/19/2015] [Indexed: 01/21/2023] Open
Abstract
A series of fifteen new N-alkoxyphenylanilides of 3-hydroxynaphthalene-2-carboxylic acid was prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium tuberculosis H37Ra and M. avium subsp. paratuberculosis. Some of the tested compounds showed antibacterial and antimycobacterial activity against the tested strains comparable with or higher than that of the standards ampicillin or rifampicin. 3-Hydroxy-N-(2-propoxyphenyl)naphthalene-2-carboxamide and N-[2-(but-2-yloxy)-phenyl]-3-hydroxynaphthalene-2-carboxamide had MIC = 12 µM against all methicillin-resistant S. aureus strains; thus their activity is 4-fold higher than that of ampicillin. The second mentioned compound as well as 3-hydroxy-N-[3-(prop-2-yloxy)phenyl]-naphthalene-2-carboxamide had MICs = 23 µM and 24 µM against M. tuberculosis respectively. N-[2-(But-2-yloxy)phenyl]-3-hydroxynaphthalene-2-carboxamide demonstrated higher activity against M. avium subsp. paratuberculosis than rifampicin. Screening of the cytotoxicity of the most effective antimycobacterial compounds was performed using THP-1 cells, and no significant lethal effect was observed for the most potent compounds. The compounds were additionally tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. N-(3-Ethoxyphenyl)-3-hydroxynaphthalene-2-carboxamide (IC50 = 4.5 µM) was the most active PET inhibitor. The structure-activity relationships are discussed.
Collapse
|
7
|
In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BIOMED RESEARCH INTERNATIONAL 2015; 2015:349534. [PMID: 25692135 PMCID: PMC4321674 DOI: 10.1155/2015/349534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 11/18/2022]
Abstract
A series of nine substituted 2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides was assessed as prospective bactericidal agents against three clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus ATCC 29213 as the reference and quality control strain. The minimum bactericidal concentration was determined by subculturing aliquots from MIC determination onto substance-free agar plates. The bactericidal kinetics of compounds 5-chloro-2-hydroxy-N-[(2S)-3-methyl-1-oxo-1-{[4-(trifluoromethyl)phenyl]amino}butan-2-yl]benzamide (1f), N-{(2S)-1-[(4-bromophenyl)amino]-3-methyl-1-oxobutan-2-yl}-4-chloro-2-hydroxybenzamide (1g), and 4-chloro-N-{(2S)-1-[(3,4-dichlorophenyl)amino]-3-methyl-1-oxobutan-2-yl}-2-hydroxybenzamide (1h) was established by time-kill assay with a final concentration of the compound equal to 1x, 2x, and 4x MIC; aliquots were removed at 0, 4, 6, 8, and 24 h time points. The most potent bactericidal agent was compound 1f exhibiting remarkable rapid concentration-dependent bactericidal effect even at 2x MIC at 4, 6, and 8 h (with a reduction in bacterial count ranging from 3.08 to 3.75 log10 CFU/mL) and at 4x MIC at 4, 6, 8, and 24 h (5.30 log10 CFU/mL reduction in bacterial count) after incubation against MRSA 63718. Reliable bactericidal effect against other strains was maintained at 4x MIC at 24 h.
Collapse
|
8
|
Abstract
A novel lytic bacteriophage, SA11, infecting Staphylococcus aureus was isolated, and the whole genome was sequenced. It belongs to the siphoviridae based on electron microscopic observation. It has a linear double-stranded DNA genome of 136,326 bp. Genomic analysis showed that it is distantly related to Staphylococcus phages A5W, K, ISP, Sb-1, and G1.
Collapse
|
9
|
|