1
|
Nguyen BX, VandeVen W, MacNeil GA, Zhou W, Paterson AR, Walsby CJ, Chiang L. High-Valent Ni and Cu Complexes of a Tetraanionic Bis(amidateanilido) Ligand. Inorg Chem 2023; 62:15180-15194. [PMID: 37676794 DOI: 10.1021/acs.inorgchem.3c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
High-valent metal species are often invoked as intermediates during enzymatic and synthetic catalytic cycles. Anionic donors are often required to stabilize such high-valent states by forming strong bonds with the Lewis acidic metal centers while decreasing their oxidation potentials. In this report, we discuss the synthesis of two high-valent metal complexes [ML]+ in which the NiIII and CuIII centers are ligated by a new tetradentate, tetraanionic bis(amidateanilido) ligand. [ML]+, obtained via chemical oxidation of ML, exhibits UV-vis-NIR, EPR, and XANES spectra characteristic of square planar, high-valent MIII species, suggesting the locus of oxidation for both [ML]+ is predominantly metal-based. This is supported by theoretical analyses, which also support the observed visible transitions as ligand-to-metal charge transfer transitions characteristic of square planar, high-valent MIII species. Notably, [ML]+ can also be obtained via O2 oxidation of ML due to its remarkably negative oxidation potentials (CuL/[CuL]+: -1.16 V, NiL/[NiL]+: -1.01 V vs Fc/Fc+ in MeCN). This demonstrates the exceptionally strong donating nature of the tetraanionic bis(amidateanilido) ligation and its ability to stabilize high-valent metal centers..
Collapse
Affiliation(s)
- Bach X Nguyen
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Wen Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Alisa R Paterson
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Charles J Walsby
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Linus Chiang
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
| |
Collapse
|
2
|
Copper Dithiocarbamates: Coordination Chemistry and Applications in Materials Science, Biosciences and Beyond. INORGANICS 2021. [DOI: 10.3390/inorganics9090070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Copper dithiocarbamate complexes have been known for ca. 120 years and find relevance in biology and medicine, especially as anticancer agents and applications in materials science as a single-source precursor (SSPs) to nanoscale copper sulfides. Dithiocarbamates support Cu(I), Cu(II) and Cu(III) and show a rich and diverse coordination chemistry. Homoleptic [Cu(S2CNR2)2] are most common, being known for hundreds of substituents. All contain a Cu(II) centre, being either monomeric (distorted square planar) or dimeric (distorted trigonal bipyramidal) in the solid state, the latter being held together by intermolecular C···S interactions. Their d9 electronic configuration renders them paramagnetic and thus readily detected by electron paramagnetic resonance (EPR) spectroscopy. Reaction with a range of oxidants affords d8 Cu(III) complexes, [Cu(S2CNR2)2][X], in which copper remains in a square-planar geometry, but Cu–S bonds shorten by ca. 0.1 Å. These show a wide range of different structural motifs in the solid-state, varying with changes in anion and dithiocarbamate substituents. Cu(I) complexes, [Cu(S2CNR2)2]−, are (briefly) accessible in an electrochemical cell, and the only stable example is recently reported [Cu(S2CNH2)2][NH4]·H2O. Others readily lose a dithiocarbamate and the d10 centres can either be trapped with other coordinating ligands, especially phosphines, or form clusters with tetrahedral [Cu(μ3-S2CNR2)]4 being most common. Over the past decade, a wide range of Cu(I) dithiocarbamate clusters have been prepared and structurally characterised with nuclearities of 3–28, especially exciting being those with interstitial hydride and/or acetylide co-ligands. A range of mixed-valence Cu(I)–Cu(II) and Cu(II)–Cu(III) complexes are known, many of which show novel physical properties, and one Cu(I)–Cu(II)–Cu(III) species has been reported. Copper dithiocarbamates have been widely used as SSPs to nanoscale copper sulfides, allowing control over the phase, particle size and morphology of nanomaterials, and thus giving access to materials with tuneable physical properties. The identification of copper in a range of neurological diseases and the use of disulfiram as a drug for over 50 years makes understanding of the biological formation and action of [Cu(S2CNEt2)2] especially important. Furthermore, the finding that it and related Cu(II) dithiocarbamates are active anticancer agents has pushed them to the fore in studies of metal-based biomedicines.
Collapse
|
3
|
Sarker JC, Hogarth G. Dithiocarbamate Complexes as Single Source Precursors to Nanoscale Binary, Ternary and Quaternary Metal Sulfides. Chem Rev 2021; 121:6057-6123. [PMID: 33847480 DOI: 10.1021/acs.chemrev.0c01183] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanodimensional metal sulfides are a developing class of low-cost materials with potential applications in areas as wide-ranging as energy storage, electrocatalysis, and imaging. An attractive synthetic strategy, which allows careful control over stoichiometry, is the single source precursor (SSP) approach in which well-defined molecular species containing preformed metal-sulfur bonds are heated to decomposition, either in the vapor or solution phase, resulting in facile loss of organics and formation of nanodimensional metal sulfides. By careful control of the precursor, the decomposition environment and addition of surfactants, this approach affords a range of nanocrystalline materials from a library of precursors. Dithiocarbamates (DTCs) are monoanionic chelating ligands that have been known for over a century and find applications in agriculture, medicine, and materials science. They are easily prepared from nontoxic secondary and primary amines and form stable complexes with all elements. Since pioneering work in the late 1980s, the use of DTC complexes as SSPs to a wide range of binary, ternary, and multinary sulfides has been extensively documented. This review maps these developments, from the formation of thin films, often comprised of embedded nanocrystals, to quantum dots coated with organic ligands or shelled by other metal sulfides that show high photoluminescence quantum yields, and a range of other nanomaterials in which both the phase and morphology of the nanocrystals can be engineered, allowing fine-tuning of technologically important physical properties, thus opening up a myriad of potential applications.
Collapse
Affiliation(s)
- Jagodish C Sarker
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.,Department of Chemistry, Jagannath University, Dhaka-1100, Bangladesh
| | - Graeme Hogarth
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| |
Collapse
|
4
|
|
5
|
Kochem A, Molloy JK, Gellon G, Leconte N, Philouze C, Berthiol F, Jarjayes O, Thomas F. A Structurally Characterized Cu III Complex Supported by a Bis(anilido) Ligand and Its Oxidative Catalytic Activity. Chemistry 2017; 23:13929-13940. [PMID: 28742929 DOI: 10.1002/chem.201702010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Indexed: 01/23/2023]
Abstract
Three copper(II) complexes of the (R,R)-N,N'-bis(3,5-di-tert-butyl-2-aminobenzylidene)-1,2-diaminocyclohexane ligand, namely [Cu(N L)], [Cu(N LH)]+ and [Cu(N LH2 )]2+ , were prepared and structurally characterized. In [Cu(N LH2 )]2+ the copper ion lies in an octahedral geometry with the aniline groups coordinated in equatorial positions. In [Cu(N L)] the anilines are deprotonated (anilido moieties) and coordinated to an almost square-planar metal ion. Complex [Cu(N L)] displays two oxidation waves at E1/2ox, 1 =-0.14 V and E1/2ox, 2 =0.36 V vs. Fc+ /Fc in CH2 Cl2 . Complex [Cu(N LH2 )]2+ displays an irreversible oxidation wave at high potential (1.21 V), but shows a readily accessible and reversible metal-centered reduction at E1/2red =-0.67 V (CuII /CuI redox couple). Oxidation of [Cu(N L)] by AgSbF6 produces [Cu(N L)](SbF6 ), which was isolated as single crystals. X-ray structure analysis discloses a contraction of the coordination sphere by 0.05 Å upon oxidation, supporting a metal-centered process. Complex [Cu(N L)](SbF6 ) displays an intense NIR band at 1260 nm corresponding to an anilido-to-copper(III) charge transfer transition. This compound slowly evolves in CH2 Cl2 solution towards [Cu(N LH)](SbF6 ), which is a copper(II) complex comprised of both anilido and aniline groups coordinated to the metal center. The copper(III) complex [Cu(N L)](SbF6 ) is an efficient catalyst for benzyl alcohol oxidation, with 236 TON in 24 h at 298 K, without additives other than oxygen and a base.
Collapse
Affiliation(s)
- Amélie Kochem
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| | - Jennifer K Molloy
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| | - Gisèle Gellon
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| | - Nicolas Leconte
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| | - Christian Philouze
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| | - Florian Berthiol
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| | - Olivier Jarjayes
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| | - Fabrice Thomas
- Département de Chimie Moléculaire, UMR-5250, Université Grenoble Alpes, BP 53, 38041, Grenoble Cedex 9, France
| |
Collapse
|
6
|
Zhang DJ, Yang SY, Teo BK. One-Dimensional Helical Metal Coordination Polymer: Synthesis and Structure of Infinite Chain of [Ag7(S2CNEt2)6]
n
+
(as [SbF6]− salt) Composed of Ag6(S2CNEt2)6 Cluster Units Linked by Ag(I) Ions via Peculiar Chelating S–S Bites. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1112-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Synthesis, Crystal Structure, and Electroconducting Properties of a 1D Mixed-Valence Cu(I)–Cu(II) Coordination Polymer with a Dicyclohexyl Dithiocarbamate Ligand. CRYSTALS 2015. [DOI: 10.3390/cryst5020215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Poli R. New Phenomena in Organometallic-Mediated Radical Polymerization (OMRP) and Perspectives for Control of Less Active Monomers. Chemistry 2015; 21:6988-7001. [DOI: 10.1002/chem.201500015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Jiang H, Zhang L, Jiang X, Bao X, Cheng Z, Zhu X. Facile “Living” Radical Polymerization of Methyl Methacrylate in the Presence of Iniferter Agents: Homogeneous and Highly Efficient Catalysis from Copper(II) Acetate. Macromol Rapid Commun 2014; 35:1332-9. [DOI: 10.1002/marc.201400204] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/16/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Hongjuan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Lifen Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Xiaowu Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Zhenping Cheng
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Xiulin Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| |
Collapse
|
10
|
Teske CL. On Ammonium-bis(dithiocarbamato)-copper(I)-monohydrate and Mono(dithiocarbamato)-copper(I). Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Hogarth G, Faulkner S. The mixed-valence coordination polymer [Cu(S2CNPr2)2]2[ClO4] containing alternating square-planar Cu(II) and Cu(III) centres. INORG CHEM COMMUN 2013. [DOI: 10.1016/j.inoche.2013.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Zhang Y, Schröder K, Kwak Y, Krys P, Morin AN, Pintauer T, Poli R, Matyjaszewski K. Reversible-Deactivation Radical Polymerization of Methyl Methacrylate and Styrene Mediated by Alkyl Dithiocarbamates and Copper Acetylacetonates. Macromolecules 2013. [DOI: 10.1021/ma400539s] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yaozhong Zhang
- Center for Macromolecular Engineering,
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Kristin Schröder
- Center for Macromolecular Engineering,
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yungwan Kwak
- Silberline Manufacturing Co., Inc., 36 Progressive Avenue, Tamaqua, Pennsylvania
18252, United States
| | - Pawel Krys
- Center for Macromolecular Engineering,
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Aurélie N. Morin
- Laboratoire
de Chimie de Coordination
(LCC), CNRS 8241, Université de Toulouse, UPS, INPT, 205 Route de Narbonne, 31077 Toulouse, France
| | - Tomislav Pintauer
- Laboratoire
de Chimie de Coordination
(LCC), CNRS 8241, Université de Toulouse, UPS, INPT, 205 Route de Narbonne, 31077 Toulouse, France
- Department of Chemistry and
Biochemistry, Duquesne University, 600
Forbes Avenue, 308 Mellon Hall, Pittsburgh, Pennsylvania 15282, United
States
| | - Rinaldo Poli
- Laboratoire
de Chimie de Coordination
(LCC), CNRS 8241, Université de Toulouse, UPS, INPT, 205 Route de Narbonne, 31077 Toulouse, France
- Institut Universitaire de France, 103, bd Saint-Michel, 75005 Paris, France
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering,
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
13
|
Tanaka N, Okubo T, Anma H, Kim KH, Inuzuka Y, Maekawa M, Kuroda-Sowa T. Halido-Bridged 1D Mixed-Valence CuI-CuIICoordination Polymers Bearing a Piperidine-1-carbodithioato Ligand: Crystal Structure, Magnetic and Conductive Properties, and Application in Dye-Sensitized Solar Cells. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300188] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Pap JS, Szywriel Ł, Rowińska-Żyrek M, Nikitin K, Fritsky IO, Kozłowski H. An efficient copper(III) catalyst in the four electron reduction of molecular oxygen by l-ascorbic acid. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcata.2010.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Okubo T, Tanaka N, Kim KH, Anma H, Seki S, Saeki A, Maekawa M, Kuroda-Sowa T. Crystal structure and carrier transport properties of a new 3D mixed-valence Cu(I)-Cu(II) coordination polymer including pyrrolidine dithiocarbamate ligand. Dalton Trans 2010; 40:2218-24. [PMID: 21180735 DOI: 10.1039/c0dt01065k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel mixed-valence Cu(i)-Cu(ii) coordination polymer having an infinite three-dimensional (3D) structure, {[Cu(I)(4)Cu(II)(2)Br(4)(Pyr-dtc)(4)]·CHCl(3)}(n) (1) (Pyr-dtc(-) = pyrrolidine dithiocarbamate), has been prepared and structurally characterized via X-ray diffraction. This complex consists of 1D Cu(i)-Br chains and bridging mononuclear copper(ii) units of Cu(II)(Pyr-dtc)(2), which form an infinite 3D network. A magnetic study indicates that this complex includes copper(ii) ions exhibiting a weak antiferromagnetic interaction (θ = -0.086 K) between the unpaired electrons of the copper(ii) ions present in the diamagnetic Cu(i)-Br chains. The carrier transport properties of 1 are investigated using an impedance spectroscopy technique and flash-photolysis time-resolved microwave conductivity measurement (FP-TRMC). The impedance spectroscopy reveals that this complex exhibits intriguing semiconducting properties at a small activation energy (E(a) = 0.29 eV (bulk)). The sum of the mobilities of the negative and positive carriers estimated via FP-TRMC is Σμ∼ 0.4 cm(2) V(-1) s(-1).
Collapse
|
16
|
Hogarth G, Rainford-Brent EJCR, Richards I. Functionalised dithiocarbamate complexes: Synthesis and molecular structures of bis(2-methoxyethyl)dithiocarbamate complexes [M{S2CN(CH2CH2OMe)2}2] (M=Ni, Cu, Zn) and [Cu{S2CN(CH2CH2OMe)2}2][ClO4]. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Giovagnini L, Sitran S, Montopoli M, Caparrotta L, Corsini M, Rosani C, Zanello P, Dou QP, Fregona D. Chemical and Biological Profiles of Novel Copper(II) Complexes Containing S-Donor Ligands for the Treatment of Cancer. Inorg Chem 2008; 47:6336-43. [DOI: 10.1021/ic800404e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
|