1
|
Setzer WN, Stokes SL, Bansal A, Haber WA, Caffrey CR, Hansell E, McKerrow JH. Chemical Composition and Cruzain Inhibitory Activity of Croton draco Bark Essential Oil from Monteverde, Costa Rica. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0700200613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
American trypanosomiasis, Chagas disease, is a great cause of human morbidity and mortality in the Neotropics. Although there is currently no effective treatment for this parasitic disease, a number of potential biochemical targets have been identified, including the cysteine protease cruzain. Croton draco Cham. & Schldl. (Euphorbiaceae), commonly known as sangre de drago, is used in traditional medicine for a number of maladies. In this study, Croton draco bark essential oil has been shown to inhibit the activity of cruzain. The bark oil has been analyzed by GC-MS and the major components found to be β-caryophyllene (31.9%), caryophyllene oxide (22.0%), 1,8-cineole (6.2%), and α-humulene (5.6%). The major components have been tested for cruzain inhibitory activity, but show minimal activity, so it is not clear if the activity of Croton draco bark oil is due to a synergistic effect of the essential oil components or due to very active minor components. Croton draco bark oil has also been tested for cytotoxic activity against a panel of human tumor cell lines, but shows little activity.
Collapse
Affiliation(s)
- William N. Setzer
- Department of Chemistry, University of Alabama in HuntsvilleHuntsville, Alabama 35899, USA
| | - Sean L. Stokes
- Department of Chemistry, University of Alabama in HuntsvilleHuntsville, Alabama 35899, USA
| | - Anita Bansal
- Department of Chemistry, University of Alabama in HuntsvilleHuntsville, Alabama 35899, USA
| | - William A. Haber
- Missouri Botanical Garden, St. Louis, Missouri 63166, USA Apdo. 50-5655, Monteverde, Puntarenas, Costa Rica, Central America
| | - Conor R. Caffrey
- Tropical Disease Research Unit, Department of Pathology, University of California San Francisco, VAMC, 4150 Clement Street-113B, San Francisco, California 94121, USA
| | - Elizabeth Hansell
- Tropical Disease Research Unit, Department of Pathology, University of California San Francisco, VAMC, 4150 Clement Street-113B, San Francisco, California 94121, USA
| | - James H. McKerrow
- Tropical Disease Research Unit, Department of Pathology, University of California San Francisco, VAMC, 4150 Clement Street-113B, San Francisco, California 94121, USA
| |
Collapse
|
2
|
Mantilla BS, Marchese L, Casas-Sánchez A, Dyer NA, Ejeh N, Biran M, Bringaud F, Lehane MJ, Acosta-Serrano A, Silber AM. Proline Metabolism is Essential for Trypanosoma brucei brucei Survival in the Tsetse Vector. PLoS Pathog 2017; 13:e1006158. [PMID: 28114403 PMCID: PMC5289646 DOI: 10.1371/journal.ppat.1006158] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/02/2017] [Accepted: 12/29/2016] [Indexed: 01/18/2023] Open
Abstract
Adaptation to different nutritional environments is essential for life cycle completion by all Trypanosoma brucei sub-species. In the tsetse fly vector, L-proline is among the most abundant amino acids and is mainly used by the fly for lactation and to fuel flight muscle. The procyclic (insect) stage of T. b. brucei uses L-proline as its main carbon source, relying on an efficient catabolic pathway to convert it to glutamate, and then to succinate, acetate and alanine as the main secreted end products. Here we investigated the essentiality of an undisrupted proline catabolic pathway in T. b. brucei by studying mitochondrial Δ1-pyrroline-5-carboxylate dehydrogenase (TbP5CDH), which catalyzes the irreversible conversion of gamma-glutamate semialdehyde (γGS) into L-glutamate and NADH. In addition, we provided evidence for the absence of a functional proline biosynthetic pathway. TbP5CDH expression is developmentally regulated in the insect stages of the parasite, but absent in bloodstream forms grown in vitro. RNAi down-regulation of TbP5CDH severely affected the growth of procyclic trypanosomes in vitro in the absence of glucose, and altered the metabolic flux when proline was the sole carbon source. Furthermore, TbP5CDH knocked-down cells exhibited alterations in the mitochondrial inner membrane potential (ΔΨm), respiratory control ratio and ATP production. Also, changes in the proline-glutamate oxidative capacity slightly affected the surface expression of the major surface glycoprotein EP-procyclin. In the tsetse, TbP5CDH knocked-down cells were impaired and thus unable to colonize the fly’s midgut, probably due to the lack of glucose between bloodmeals. Altogether, our data show that the regulated expression of the proline metabolism pathway in T. b. brucei allows this parasite to adapt to the nutritional environment of the tsetse midgut. Bloodsucking insects play a major role in the transmission of pathogens that cause major tropical diseases. Their capacity to transmit these diseases is directly associated with the availability and turnover of energy sources. Proline is the main readily-mobilizable fuel of the tsetse fly, which is the vector of sub-species of Trypanosoma brucei parasites that cause human sleeping sickness and are partly responsible for animal trypanosomiasis (Nagana disease) in sub-Saharan Africa. Once trypanosomes are ingested from an infected host by the tsetse, the parasites encounter an environment that is poor in glucose (as it is rapidly metabolized by the fly) but rich in proline, which then becomes the main carbon source once the parasite differentiates into the first insect (procyclic) stage. In this work, we provide evidence on the essentiality of T. b. brucei proline catabolism for procyclic survival within the tsetse’s digestive tract, as this organism is unable to synthesize this amino acid and strictly depends on the proline provided by the fly. We also show that parasites deficient in TbP5CDH, a mitochondrial enzyme involved in the proline degradative pathway, failed to proliferate in vitro, showed a diminished respiratory capacity, and showed compromised maintenance of energy levels and metabolic flux when proline was offered as the main carbon source. Thus, the integrity of the trypanosome proline degradation pathway is needed to maintain essential functions related to parasite bioenergetics, replication and infectivity within the insect host. Our observations answer a long-standing question on the role of parasite proline metabolism in tsetse-trypanosome interplay.
Collapse
Affiliation(s)
- Brian S. Mantilla
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Letícia Marchese
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aitor Casas-Sánchez
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Naomi A. Dyer
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicholas Ejeh
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Marc Biran
- Centre de Résonance Magnétique des Systemes Biologiques, Université Bordeaux, Bordeaux, France
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systemes Biologiques, Université Bordeaux, Bordeaux, France
| | - Michael J. Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alvaro Acosta-Serrano
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (AMS); (AAS)
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail: (AMS); (AAS)
| |
Collapse
|
3
|
Saeidnia S, Gohari AR. Trypanocidal Monoterpenes. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/b978-0-444-59514-0.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Gourguechon S, Wang CC. CRK9 contributes to regulation of mitosis and cytokinesis in the procyclic form of Trypanosoma brucei. BMC Cell Biol 2009; 10:68. [PMID: 19772588 PMCID: PMC2754446 DOI: 10.1186/1471-2121-10-68] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 09/21/2009] [Indexed: 11/10/2022] Open
Abstract
Background The Trypanosoma brucei cell cycle is regulated by combinations of cyclin/CRKs (cdc2 related kinases). Recently, two additional cyclins (CYC10, CYC11) and six new CRK (CRK7-12) homologues were identified in the T. brucei genome database [1,2]. Results Individual RNAi knockdowns of these new proteins in the procyclic form of T. brucei showed no apparent phenotype except for the CRK9 depletion, which enriched the cells in G2/M phase. But a similar CRK9 knockdown in the bloodstream form caused no apparent phenotype. CRK9 lacks the typical PSTAIRE motif for cyclin binding and the phenylalanine "gatekeeper" but binds to cyclin B2 in vitro and localizes to the nucleus in both forms of T. brucei. CRK9-depleted procyclic-form generated no detectable anucleate cells, suggesting an inhibition of cytokinesis by CRK9 depletion as well. The knockdown enriched cells with one nucleus, one kinetoplast and two closely associated basal bodies with an average distance of 1.08 mm in between, which was shorter than the control value of 1.36 μm, and the cells became morphologically deformed and rounded with time. Conclusion CRK9 may play a role in mediating the segregation between the two kinetoplast/basal body pairs prior to cytokinetic initiation. Since such a segregation over a relatively significant distance is essential for cytokinetic initiation only in the procyclic but may not be in the bloodstream form, CRK9 could be specifically involved in regulating cytokinetic initiation in the procyclic form of T. brucei.
Collapse
Affiliation(s)
- Stephane Gourguechon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2280, USA.
| | | |
Collapse
|
5
|
Schneider A, Charrière F, Pusnik M, Horn EK. Isolation of mitochondria from procyclic Trypanosoma brucei. Methods Mol Biol 2007; 372:67-80. [PMID: 18314718 DOI: 10.1007/978-1-59745-365-3_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mitochondrion of the parasitic protozoon Trypanosoma brucei shows a number of unique features, many of which represent highly interesting research topics. Studies of these subjects require the purification of mitochondrial fractions. Here, we describe and discuss the two most commonly used methods to isolate mitochondria from insect stage T. brucei. In the first protocol, the cells are lysed under hypotonic conditions, and mitoplast vesicles are isolated on Percoll gradients; in the second method, lysis occurs isotonically by N2 cavitation, and the mitochondrial vesicles are isolated by Nycodenz gradient centrifugation.
Collapse
|
6
|
van Luenen HGAM, Kieft R, Mussmann R, Engstler M, ter Riet B, Borst P. Trypanosomes change their transferrin receptor expression to allow effective uptake of host transferrin. Mol Microbiol 2006; 58:151-65. [PMID: 16164555 DOI: 10.1111/j.1365-2958.2005.04831.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In its mammalian host, Trypanosoma brucei covers its iron requirements by receptor-mediated uptake of host transferrin (Tf). The Tf-receptor (Tf-R) is a heterodimeric membrane protein encoded by expression site-associated gene (ESAG) 6 and 7 located promoter-proximal in a polycistronic expression site (ES). Each of the 20 ESs encodes a slightly different Tf-R; these differences strongly affect the binding affinity for Tfs of different hosts. The Tf-R encoded in the 221 ES has a low affinity for dog Tf. Transfer of trypanosomes with an active 221 ES to dilute dog serum leads to growth arrest, which they can overcome by switching to another ES encoding a Tf-R with higher affinity for dog Tf. Here we show that trypanosomes can also adapt to dilute dog serum without switching but by replacing the ESAG7 gene in the 221 ES by one from another ES, by deleting ESAG7 from the 221 ES with concomitant upregulation of transcription of ESAG7 in 'silent' ESs, by grossly overproducing the 221 Tf-R or by combinations of these alterations. Our results illustrate the striking genetic flexibility of trypanosomes.
Collapse
Affiliation(s)
- Henri G A M van Luenen
- The Netherlands Cancer Institute, Division of Molecular Biology and Centre for Biomedical Genetics, Plesmanlaan 121, 1060 CX Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
7
|
Leal S, Acosta-Serrano A, Morris J, Cross GAM. Transposon mutagenesis of Trypanosoma brucei identifies glycosylation mutants resistant to concanavalin A. J Biol Chem 2004; 279:28979-88. [PMID: 15123607 DOI: 10.1074/jbc.m403479200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have engineered Trypanosoma brucei with a novel mariner transposition system that allows large populations of mutant cells to be generated and screened. As a proof of principle, we isolated and characterized two independent clones that were resistant to the cytotoxic action of concanavalin A. In both clones, the transposon had integrated into the locus encoding a homologue of human ALG12, which encodes a dolichyl-P-Man: Man(7)GlcNAc(2)-PP-dolichyl-alpha6-mannosyltransferase. Conventional knock-out of ALG12 in a wild-type background gave an identical phenotype to the mariner mutants, and biochemical analysis confirmed that they have the same defect in the N-linked oligosaccharide synthesis pathway. To our surprise, both mariner mutants were homozygous; the second allele appeared to have undergone gene conversion by the mariner-targeted allele. Subsequent experiments showed that the frequency of gene conversion at the ALG12 locus, in the absence of selection, was 0.25%. As we approach the completion of the trypanosome genome project, transposon mutagenesis provides an important addition to the repertoire of genetic tools for T. brucei.
Collapse
Affiliation(s)
- Simone Leal
- Laboratory of Molecular Parasitology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|