1
|
He Q, Vossbrinck CR, Yang Q, Meng XZ, Luo J, Pan GQ, Zhou ZY, Li T. Evolutionary and functional studies on microsporidian ATP-binding cassettes: Insights into the adaptation of microsporidia to obligated intracellular parasitism. INFECTION GENETICS AND EVOLUTION 2019; 68:136-144. [DOI: 10.1016/j.meegid.2018.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
|
2
|
García-Torres I, De la Mora-De la Mora I, Hernández-Alcántara G, Molina-Ortiz D, Caballero-Salazar S, Olivos-García A, Nava G, López-Velázquez G, Enríquez-Flores S. First characterization of a microsporidial triosephosphate isomerase and the biochemical mechanisms of its inactivation to propose a new druggable target. Sci Rep 2018; 8:8591. [PMID: 29872223 PMCID: PMC5988755 DOI: 10.1038/s41598-018-26845-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
The microsporidia are a large group of intracellular parasites with a broad range of hosts, including humans. Encephalitozoon intestinalis is the second microsporidia species most frequently associated with gastrointestinal disease in humans, especially immunocompromised or immunosuppressed individuals, including children and the elderly. The prevalence reported worldwide in these groups ranges from 0 to 60%. Currently, albendazole is most commonly used to treat microsporidiosis caused by Encephalitozoon species. However, the results of treatment are variable, and relapse can occur. Consequently, efforts are being directed toward identifying more effective drugs for treating microsporidiosis, and the study of new molecular targets appears promising. These parasites lack mitochondria, and oxidative phosphorylation therefore does not occur, which suggests the enzymes involved in glycolysis as potential drug targets. Here, we have for the first time characterized the glycolytic enzyme triosephosphate isomerase of E. intestinalis at the functional and structural levels. Our results demonstrate the mechanisms of inactivation of this enzyme by thiol-reactive compounds. The most striking result of this study is the demonstration that established safe drugs such as omeprazole, rabeprazole and sulbutiamine can effectively inactivate this microsporidial enzyme and might be considered as potential drugs for treating this important disease.
Collapse
Affiliation(s)
- Itzhel García-Torres
- Grupo de Investigación en Biomoléculas, Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - Ignacio De la Mora-De la Mora
- Grupo de Investigación en Biomoléculas, Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - Gloria Hernández-Alcántara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Dora Molina-Ortiz
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - Silvia Caballero-Salazar
- Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico
| | - Alfonso Olivos-García
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México y Hospital General, Ciudad de México, 04510, Mexico
| | - Gabriela Nava
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Gabriel López-Velázquez
- Grupo de Investigación en Biomoléculas, Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico.
| | - Sergio Enríquez-Flores
- Grupo de Investigación en Biomoléculas, Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Ciudad de México, 04530, Mexico.
| |
Collapse
|
3
|
Mittleider D, Green LC, Mann VH, Michael SF, Didier ES, Brindley PJ. Sequence survey of the genome of the opportunistic microsporidian pathogen, Vittaforma corneae. J Eukaryot Microbiol 2002; 49:393-401. [PMID: 12425527 DOI: 10.1111/j.1550-7408.2002.tb00218.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The microsporidian Vittaforma corneae has been reported as a pathogen of the human stratum corneum, where it can cause keratitis, and is associated with systemic infections. In addition to this direct role as an infectious, etiologic agent of human disease, V. corneae has been used as a model organism for another microsporidian, Enterocytozoon bieneusi, a frequent and problematic pathogen of HIV-infected patients that, unlike V. corneae, is difficult to maintain and to study in vitro. Unfortunately, few molecular sequences are available for V. corneae. In this study, seventy-four genome survey sequences (GSS) were obtained from genomic DNA of spores of laboratory-cultured V. corneae. Approximately, 41 discontinuous kilobases of V. corneae were cloned and sequenced to generate these GSS. Putative identities were assigned to 44 of the V. corneae GSS based on BLASTX searches, representing 21 discrete proteins. Of these 21 deduced V. corneae proteins, only two had been reported previously from other microsporidia (until the recent report of the Encephalitozoon cuniculi genome). Two of the V. corneae proteins were of particular interest, reverse transcriptase and topoisomerase IV (parC). Since the existence of transposable elements in microsporidia is controversial, the presence of reverse transcriptase in V. corneae will contribute to resolution of this debate. The presence of topoisomerase IV was remarkable because this enzyme previously had been identified only from prokaryotes. The 74 GSS included 26.7 kilobases of unique sequences from which two statistics were generated: GC content and codon usage. The GC content of the unique GSS was 42%, lower than that of another microsporidian, E. cuniculi (48% for protein-encoding regions), and substantially higher than that predicted for a third microsporidian, Spraguea lophii (28%). A comparison using the Pearson correlation coefficient showed that codon usage in V. corneae was similar to that in the yeasts, Saccharomyces cerevisiae (r = 0.79) and Shizosaccharomyces pombe (r = 0.70), but was markedly dissimilar to E. cuniculi (r = 0.19).
Collapse
Affiliation(s)
- Derek Mittleider
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
4
|
Cornillot E, Metenier G, Vivares CP, Dassa E. Comparative analysis of sequences encoding ABC systems in the genome of the microsporidian Encephalitozoon cuniculi. FEMS Microbiol Lett 2002; 210:39-47. [PMID: 12023075 DOI: 10.1111/j.1574-6968.2002.tb11157.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microsporidia are amitochondriate eukaryotic microbes with fungal affinities and a common status of obligate intracellular parasites. A set of 13 potential genes encoding ATP-binding cassette (ABC) systems was identified in the fully sequenced genome of Encephalitozoon cuniculi. Our analyses of multiple alignments, phylogenetic trees and conserved motifs support a distribution of E. cuniculi ABC systems within only four subfamilies. Six half transporters are homologous to the yeast ATM1 mitochondrial protein, a finding which is in agreement with the hypothesis of a cryptic mitochondrion-derived compartment playing a role in the synthesis and transport of Fe-S clusters. Five half transporters are similar to the human ABCG1 and ABCG2 proteins, involved in regulation of lipid trafficking and anthracyclin resistance respectively. Two proteins with duplicated ABC domains are clearly candidate to non-transport ABC systems: the first is homologous to mammalian RNase L inhibitor and the second to the yeast translation initiation regulator GCN20. An unusual feature of ABC systems in E. cuniculi is the lack of homologs of P-glycoprotein and other ABC transporters which are involved in multiple drug resistance in a large number of eukaryotic microorganisms.
Collapse
Affiliation(s)
- Emmanuel Cornillot
- Parasitologie moléculaire et cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, 63177 Aubière Cedex, France
| | | | | | | |
Collapse
|