1
|
Mukherjee A, Kar I, Patra AK. Understanding anthelmintic resistance in livestock using "omics" approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125439-125463. [PMID: 38015400 DOI: 10.1007/s11356-023-31045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Widespread and improper use of various anthelmintics, genetic, and epidemiological factors has resulted in anthelmintic-resistant (AR) helminth populations in livestock. This is currently quite common globally in different livestock animals including sheep, goats, and cattle to gastrointestinal nematode (GIN) infections. Therefore, the mechanisms underlying AR in parasitic worm species have been the subject of ample research to tackle this challenge. Current and emerging technologies in the disciplines of genomics, transcriptomics, metabolomics, and proteomics in livestock species have advanced the understanding of the intricate molecular AR mechanisms in many major parasites. The technologies have improved the identification of possible biomarkers of resistant parasites, the ability to find actual causative genes, regulatory networks, and pathways of parasites governing the AR development including the dynamics of helminth infection and host-parasite infections. In this review, various "omics"-driven technologies including genome scan, candidate gene, quantitative trait loci, transcriptomic, proteomic, and metabolomic approaches have been described to understand AR of parasites of veterinary importance. Also, challenges and future prospects of these "omics" approaches are also discussed.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Oklahoma, 73050, USA.
| |
Collapse
|
2
|
Chylinski C, Cortet J, Cabaret J, Blanchard A. Haemonchus contortus Adopt Isolate-Specific Life History Strategies to Optimize Fitness and Overcome Obstacles in Their Environment: Experimental Evidence. Animals (Basel) 2023; 13:1759. [PMID: 37889629 PMCID: PMC10251867 DOI: 10.3390/ani13111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 10/29/2023] Open
Abstract
Gastrointestinal nematodes (GIN) use flexible life history strategies to maintain their fitness under environmental challenges. Costs incurred by a challenge to one life trait can be recouped by increasing the expression of subsequent life traits throughout their life cycle. Anticipating how parasites respond to the challenge of control interventions is critical for the long-term sustainability of the practice and to further ensure that the parasites withstand favourable adaptive responses. There is currently limited information on whether distinct populations of a GIN species respond to the same environmental challenge in a consistent manner, with similar alterations to their life history strategies or comparable fitness outcomes. This study compared the life history traits and experimental fitness of three distinct Haemonchus contortus isolates exposed to environmental challenges at both the parasitic (i.e., passage through resistant or susceptible sheep) and free-living (i.e., exposure to diverse climatic conditions) life stages. The key findings show that H. contortus maintain their fitness under challenge with isolate-specific alterations to their life history strategies. Further, partial exploration of the H. contortus isolates transcriptomes using cDNA-AFLP methods confirmed disparate expression profiles between them. These results bring fresh insights into our understanding of the non-genetic adaptive processes of GIN that may hinder the efficacy of parasite control strategies.
Collapse
Affiliation(s)
- Caroline Chylinski
- Archer Daniels Midland (ADM) International Sarl, A One Business Centre, La Pièce 3, 1180 Rolle, Switzerland
- ISP, INRAE, Université Tours, UMR1282, 37380 Nouzilly, France
| | - Jacques Cortet
- ISP, INRAE, Université Tours, UMR1282, 37380 Nouzilly, France
| | - Jacques Cabaret
- ISP, INRAE, Université Tours, UMR1282, 37380 Nouzilly, France
| | - Alexandra Blanchard
- Archer Daniels Midland (ADM) International Sarl, A One Business Centre, La Pièce 3, 1180 Rolle, Switzerland
| |
Collapse
|
3
|
Baltrušis P, Halvarsson P, Charvet CL, Höglund J. The presence and relative frequency detection of the levamisole-resistance-associated S168T substitution in hco-acr-8 in Haemonchus contortus. Int J Parasitol Drugs Drug Resist 2023; 21:91-95. [PMID: 36774659 PMCID: PMC9945773 DOI: 10.1016/j.ijpddr.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Parasitic sheep nematodes, among which Haemonchus contortus is often considered to be the most clinically important, exact a significant toll on the animals, not least because of their capacity to evolve drug resistance. Despite decades of research, our understanding of the mechanism of resistance to compounds such as levamisole is fairly limited, which therefore constrains our ability to develop sensitive and efficient molecular diagnostic tools for rapid and accurate resistance detection in field settings. Herein, we investigated the presence and frequency of the newly reported, levamisole-resistance-associated, mutation, yielding a S168T substitution in exon 4 of hco-acr-8, in six different phenotypically described isolates (three susceptible and three resistant), three Swedish field isolates and eight larvae culture samples, the latter two of which originated on farms where levamisole showed complete parasite elimination. For this purpose, we created both an allele-specific and droplet digital PCR approaches and found the mutated allele to be present only in the Kokstad isolate, whereas the other five as well as both the Swedish isolates and larvae cultures displayed only the non-mutated, serine-encoding, allele. While the finding of only the non-mutated allele in the phenotypically susceptible and Swedish isolate and larvae culture samples seemed sensible, we speculate that for the other two phenotypically resistant isolates, different (perhaps secondary) variants are responsible for conferring the resistance to levamisole phenotype, given the polygenic nature of levamisole resistance. All in all, despite the limited number of samples tested here, the mutation causing the S168T substitution in hco-acr-8 represents a plausible levamisole resistance-associated variant in, at least, some isolates of H. contortus.
Collapse
Affiliation(s)
- Paulius Baltrušis
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Peter Halvarsson
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Johan Höglund
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Baltrušis P, Charvet CL, Halvarsson P, Mikko S, Höglund J. Using droplet digital PCR for the detection of hco-acr-8b levamisole resistance marker in H. contortus. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 15:168-176. [PMID: 33799059 PMCID: PMC8044644 DOI: 10.1016/j.ijpddr.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 11/19/2022]
Abstract
The nematode Haemonchus contortus is one of the most prevalent and pathogenic parasites in small ruminants. Although usually controlled using anthelmintics, the development of drug resistance by the parasite has become a major issue in livestock production. While the molecular detection of benzimidazole resistance in H. contortus is well developed, the molecular tools and protocols are far less advanced for the detection of levamisole resistance. The hco-acr-8 gene encodes a critical acetylcholine susceptible subunit that confers levamisole-sensitivity to the receptor. Here, we report the development of a droplet digital PCR assay as a molecular tool to detect a 63 bp deletion in the hco-acr-8 that has been previously associated with levamisole resistance. Sanger sequencing of single adult H. contortus yielded 56 high-quality consensus sequences surrounding the region containing the deletion. Based on the sequencing data, new primers and probes were designed and validated with a novel droplet digital PCR assay for the quantification of the deletion containing “resistant” allele in genomic DNA samples. Single adult worms from six phenotypically described isolates (n = 60) and from two Swedish sheep farms (n = 30) where levamisole was effective were tested. Even though a significant difference in genotype frequencies between the resistant and susceptible reference isolates was found (p = 0.01), the homozygous “resistant” genotype was observed to be abundantly present in both the susceptible isolates as well as in some Swedish H. contortus samples. Furthermore, field larval culture samples, collected pre- (n = 7) and post- (n = 6) levamisole treatment on seven Swedish sheep farms where levamisole was fully efficacious according to Fecal Egg Count Reduction Test results, were tested to evaluate the frequency of the “resistant” allele in each. Frequencies of the deletion ranged from 35 to 80% in the pre-treatment samples, whereas no amplifiable H. contortus genomic DNA was detected in the post-treatment samples. Together, these data reveal relatively high frequencies of the 63 bp deletion in the hco-acr-8 both on individual H. contortus and field larval culture scales, and cast doubt on the utility of the deletion in the hco-acr-8 as a molecular marker for levamisole resistance detection on sheep farms. Acr8b – levamisole resistance marker investigated in single worms and larval cultures. Individuals homozygous for acr8b found more commonly, even in susceptible isolates. Levamisole treatment efficacy was unaffected by increased acr8b frequencies in larvae.
Collapse
Affiliation(s)
- Paulius Baltrušis
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | - Peter Halvarsson
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sofia Mikko
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Höglund
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Yang X, Khan S, Zhao X, Zhang J, Nisar A, Feng X. Suppression of hyaluronidase reduces invasion and establishment of Haemonchus contortus larvae in sheep. Vet Res 2020; 51:106. [PMID: 32854758 PMCID: PMC7534805 DOI: 10.1186/s13567-020-00831-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/11/2020] [Indexed: 11/20/2022] Open
Abstract
Haemonchus contortus is a hematophagous endoparasite of small ruminants, which is responsible for huge economic losses in livestock sector. Hyaluronidase produced by infective larvae of H. contortus can degrade hyaluronic acid present in the host’s abomasal tissue. Thus, it facilitates larval tissue invasion and early establishment. We herein explored this ability of hyaluronidase in H. contortus, and tested whether hyaluronidase is utilized as a virulence factor by H. contortus while establishing the infection. We first successfully blocked the hyaluronidase gene in L3 larvae by RNA interference (RNAi), which was subsequently confirmed by qPCR, enzymatic activity, and immunohistochemistry assays. Using these larvae we then conducted in vivo and in vitro assays on sheep to assess the effects of hyaluronidase suppression on larval invasion and establishment of infection. The in vivo assay showed a significant drop in worm burden in siRNA treated group in comparison to control group. During in vitro assay we applied an ovine ex vivo model where siRNA treated group of larvae showed significantly reduced invasion of the abomasal tissue explants as compared to control group. These findings indicate that hyaluronidase plays a key role in host’s tissue invasion and larval establishment, and it is used as a virulence factor by H. contortus while establishing the infection. As an invasive virulence molecule, its functional research is thus conducive to the prevention of haemonchosis.
Collapse
Affiliation(s)
- Xiangshu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.,College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Sawar Khan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China
| | - Xiaochao Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China
| | - Jiayan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.,College of Life Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Ayesha Nisar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China
| | - Xingang Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
6
|
Bartley DJ, Meslé M, Donegan H, Devin L, Morrison AA. Phenotypic assessment of the ovicidal activity of monepantel and monepantel sulfone on gastro-intestinal nematode eggs. Vet Parasitol 2016; 220:87-92. [PMID: 26995727 DOI: 10.1016/j.vetpar.2016.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 02/11/2016] [Accepted: 02/20/2016] [Indexed: 11/29/2022]
Abstract
The in vitro ovicidal activity of the amino acetonitrile derivative, monepantel (MPTL) and its active metabolite monepantel sulfone (MPTL-SO2) were assessed against a number of commercially important nematode species of ruminants, namely Teladorsagia circumcincta, Haemonchus contortus and Trichostrongylus axei. An egg hatch test (EHT) was used to make the assessment of both drug sensitive and drug resistant isolates. Both MPTL and MPTL-SO2 showed moderate ovicidal activity in vitro against all of the species examined, although species specific differences as measured by inhibitory concentration were observed. Analysis of the drug sensitive isolates showed H. contortus to be the most sensitive to both MPTL and MPTL-SO2 (ED50 1.7 and 2.7 μg/ml respectively) followed by T. circumcincta (ED50 2.1 and 2.7 μg/ml respectively) followed by T. axei (ED50 68.7 and 60.1 μg/ml respectively). Overall the EHT results would suggest no "global" in vitro discriminatory dose for detection of MPTL resistance is likely to be achievable, using the egg hatch test, due to large inherent variability observed between species. The test identified a dose dependent increase in MPTL and MPTL-SO2 sensitivity in two MPTL resistant T. circumcincta isolates and therefore offers to be a promising tool for the phenotypic characterisation of MPTL sensitivity, allowing exploration into the mechanisms involved in selection and development of MPTL resistance.
Collapse
Affiliation(s)
- D J Bartley
- Department of Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, United Kingdom.
| | - M Meslé
- Department of Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, United Kingdom.
| | - H Donegan
- Department of Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, United Kingdom.
| | - L Devin
- Department of Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, United Kingdom.
| | - A A Morrison
- Department of Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, United Kingdom.
| |
Collapse
|
7
|
Exploring the limitations of pathophysiological indicators used for targeted selective treatment in sheep experimentally infected with Haemonchus contortus. Vet Parasitol 2015; 207:85-93. [DOI: 10.1016/j.vetpar.2014.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 10/22/2014] [Accepted: 10/26/2014] [Indexed: 11/24/2022]
|
8
|
Novel assay for the detection and monitoring of levamisole resistance in Haemonchus contortus. Int J Parasitol 2014; 44:235-41. [DOI: 10.1016/j.ijpara.2013.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 11/19/2022]
|
9
|
Treger RS, Otchere J, Keil MF, Quagraine JE, Rai G, Mott BT, Humphries DL, Wilson M, Cappello M, Vermeire JJ. In vitro screening of compounds against laboratory and field isolates of human hookworm reveals quantitative differences in anthelmintic susceptibility. Am J Trop Med Hyg 2013; 90:71-4. [PMID: 24297811 DOI: 10.4269/ajtmh.12-0547] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A panel of 80 compounds was screened for anthelmintic activity against a laboratory strain of Ancylostoma ceylanicum and field isolates of hookworm obtained from school children in the Kintampo North District of the Brong Ahafo Region of Ghana. Although the laboratory strain of A. ceylanicum was more susceptible to the compounds tested than the field isolates of hookworm, a twofold increase in compound concentration resulted in comparable egg hatch percent inhibition for select compounds. These data provide evidence that the efficacy of anthelmintic compounds may be species-dependent and that field and laboratory strains of hookworm differ in their sensitivities to the anthelmintics tested. These data also suggest that both compound concentration and hookworm species must be considered when screening to identify novel anthelmintic compounds.
Collapse
Affiliation(s)
- Rebecca S Treger
- Department of Pediatrics and Program in International Child Health, Yale University School of Medicine, New Haven, Connecticut; Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana; Chemical Genomics Center, National Institutes of Health, Bethesda, Maryland; Yale School of Public Health, Yale University, New Haven, Connecticut
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Villarroel A, Halliburton MK. Control of extensive chorioptic mange natural infection in lactating dairy cattle without milk withdrawal. Vet J 2013; 197:233-7. [DOI: 10.1016/j.tvjl.2013.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/03/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
|
11
|
Selective effect of the anthelmintic bephenium on Haemonchus contortus levamisole-sensitive acetylcholine receptors. INVERTEBRATE NEUROSCIENCE 2012; 12:43-51. [PMID: 22526556 DOI: 10.1007/s10158-012-0130-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
Acetylcholine receptors (AChRs) are pentameric ligand-gated ion channels involved in the neurotransmission of both vertebrates and invertebrates. A number of anthelmintic compounds like levamisole and pyrantel target the AChRs of nematodes producing spastic paralysis of the worms. The muscle AChRs of nematode parasites fall into three pharmacological classes that are preferentially activated by the cholinergic agonists levamisole (L-type), nicotine (N-type) and bephenium (B-type), respectively. Despite a number of studies of the B-type AChR in parasitic species, this receptor remains to be characterized at the molecular level. Recently, we have reconstituted and functionally characterized two distinct L-AChR subtypes of the gastro-intestinal parasitic nematode Haemonchus contortus in the Xenopus laevis oocyte expression system by providing the cRNAs encoding the receptor subunits and three ancillary proteins (Boulin et al. in Br J Pharmacol 164(5):1421-1432, 2011). In the present study, the effect of the bephenium drug on Hco-L-AChR1 and Hco-L-AChR2 subtypes was examined using the two-microelectrode voltage-clamp technique. We demonstrate that bephenium selectively activates the Hco-L-AChR1 subtype made of Hco-UNC-29.1, Hco-UNC-38, Hco-UNC-63, Hco-ACR-8 subunits that is more sensitive to levamisole than acetylcholine. Removing the Hco-ACR-8 subunit produced the Hco-L-AChR2 subtype that is more sensitive to pyrantel than acetylcholine and partially activated by levamisole, but which was bephenium-insensitive indicating that the bephenium-binding site involves Hco-ACR-8. Attempts were made to modify the subunit stoichiometry of the Hco-L-AChR1 subtype by injecting five fold more cRNA of individual subunits. Increased Hco-unc-29.1 cRNA produced no functional receptor. Increasing Hco-unc-63, Hco-unc-38 or Hco-acr-8 cRNAs did not affect the pharmacological characteristics of Hco-L-AChR1 but reduced the currents elicited by acetylcholine and the other agonists. Here, we provide the first description of the molecular composition and functional characteristics of any invertebrate bephenium-sensitive receptor.
Collapse
|
12
|
Candidate anthelmintic resistance-associated gene expression and sequence polymorphisms in a triple-resistant field isolate of Haemonchus contortus. Mol Biochem Parasitol 2011; 180:99-105. [DOI: 10.1016/j.molbiopara.2011.09.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 11/24/2022]
|
13
|
Genetic diversity of levamisole receptor subunits in parasitic nematode species and abbreviated transcripts associated with resistance. Pharmacogenet Genomics 2010; 20:414-25. [DOI: 10.1097/fpc.0b013e328338ac8c] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Fauvin A, Charvet C, Issouf M, Cortet J, Cabaret J, Neveu C. cDNA-AFLP analysis in levamisole-resistant Haemonchus contortus reveals alternative splicing in a nicotinic acetylcholine receptor subunit. Mol Biochem Parasitol 2010; 170:105-7. [DOI: 10.1016/j.molbiopara.2009.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/16/2022]
|
15
|
Standardization of the egg hatch test for the detection of benzimidazole resistance in parasitic nematodes. Parasitol Res 2009; 105:825-34. [PMID: 19452165 DOI: 10.1007/s00436-009-1466-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
The ability to reliably detect anthelmintic resistance is a crucial part of resistance management. If data between countries are to be compared, the same test should give the same results in each laboratory. As the egg hatch test for benzimidazole resistance is used for both research and surveys, the ability of different laboratories to obtain similar results was studied through testing of known isolates of cyathostomins, Haemonchus contortus, Ostertagia ostertagi, and Cooperia oncophora in programs supported by the EU (Cost B16 and FP6-PARASOL). Initial results showed difficulties in obtaining reproducible and similar data within and between laboratories. A series of ring tests, i.e., simultaneous and coordinated rounds of testing of nematode isolates in different laboratories was subsequently performed. By adopting identical protocols, especially the use of deionized water and making dilutions of thiabendazole in dimethyl sulfoxide in the final ring test, laboratories correctly identified both susceptible and resistant isolates. The protocols for the test and preparation of solutions of thiabendazole are described.
Collapse
|
16
|
Neveu C, Charvet C, Fauvin A, Cortet J, Castagnone-Sereno P, Cabaret J. Identification of levamisole resistance markers in the parasitic nematode Haemonchus contortus using a cDNA-AFLP approach. Parasitology 2007; 134:1105-10. [PMID: 17608970 DOI: 10.1017/s0031182007000030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
cDNA-AFLP (cDNA-Amplified Fragment Length Polymorphism)-based strategy has been used to identify levamisole (LEV) resistance markers in the nematode Haemonchus contortus. Transcript profiles of adult nematodes from two LEV-resistant and two susceptible isolates were compared. Among the 17 280 transcript-derived fragments (TDFs) amplified, 26 presented a polymorphic pattern between resistant and susceptible nematodes: 11 TDFs were present in both resistant isolates and absent from both susceptible isolates whereas 15 TDFs were present in both susceptible isolates and absent from both resistant isolates. 8 TDFs specifically present in resistant isolates were cloned and sequenced. Some of these TDFs could represent novel genes, as their sequences presented no homologies in databases. Interestingly, specific expression of one candidate (HA17) in resistant nematodes from different isolates was confirmed by RT-PCR experiments. The finding that HA17 expression correlates with LEV resistance in three H. contortus isolates vs five susceptible isolates strongly suggest that we identified a new potential marker of LEV resistance. This differential approach at the transcriptome level could be of great interest for the identification of the molecular mechanism involved in this phenotype.
Collapse
Affiliation(s)
- C Neveu
- INRA, IASP, 213, UR 1282, F-37380 Nouzilly, France.
| | | | | | | | | | | |
Collapse
|
17
|
Otsen M, Plas ME, Lenstra JA, Roos MH, Hoekstra R. Microsatellite diversity of isolates of the parasitic nematode Haemonchus contortus. Mol Biochem Parasitol 2000; 110:69-77. [PMID: 10989146 DOI: 10.1016/s0166-6851(00)00257-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The alarming development of anthelmintic resistance in important gastrointestinal nematode parasites of man and live-stock is caused by selection for specific genotypes. In order to provide genetic tools to study the nematode populations and the consequences of anthelmintic treatment, we isolated and sequenced 59 microsatellites of the sheep and goat parasite Haemonchus contortus. These microsatellites consist typically of 2-10 tandems CA/GT repeats that are interrupted by sequences of 1-10 bp. A predominant cause of the imperfect structure of the microsatellites appeared mutations of G/C bp in the tandem repeat. About 44% of the microsatellites were associated with the HcREP1 direct repeat, and it was demonstrated that a generic HcREP1 primer could be used to amplify HcREP1-associated microsatellites. Thirty microsatellites could be typed by polymerase chain reaction (PCR) of which 27 were polymorphic. A number of these markers were used to detect genetic contamination of an experimental inbred population. The microsatellites may also contribute to the genetic mapping of drug resistance genes.
Collapse
Affiliation(s)
- M Otsen
- Faculty of Veterinary Medicine, Institute of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Otsen M, Plas ME, Groeneveld J, Roos MH, Lenstra JA, Hoekstra R. Genetic markers for the parasitic nematode Haemonchus contortus based on intron sequences. Exp Parasitol 2000; 95:226-9. [PMID: 10964652 DOI: 10.1006/expr.2000.4532] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M Otsen
- Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, 3584 CL, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Drug resistance in human helminths: current situation and lessons from livestock. Clin Microbiol Rev 2000. [PMID: 10755998 DOI: 10.1128/cmr.13.2.207-222.2000] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this review the available reports on drug resistance in human helminths, particularly hookworms and schistosomes, are critically analyzed. The experiences with helminths of livestock are then reviewed, in particular the factors contributing to the development of anthelmintic resistance, the mechanisms and genetics of resistance to various anthelmintic classes, and the methods available for detection. These experiences appear to be worryingly similar and relevant to the potential development of drug resistance in human helminths. Recommendations to reduce its risks are suggested.
Collapse
|
20
|
Geerts S, Gryseels B. Drug resistance in human helminths: current situation and lessons from livestock. Clin Microbiol Rev 2000; 13:207-22. [PMID: 10755998 PMCID: PMC100151 DOI: 10.1128/cmr.13.2.207] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this review the available reports on drug resistance in human helminths, particularly hookworms and schistosomes, are critically analyzed. The experiences with helminths of livestock are then reviewed, in particular the factors contributing to the development of anthelmintic resistance, the mechanisms and genetics of resistance to various anthelmintic classes, and the methods available for detection. These experiences appear to be worryingly similar and relevant to the potential development of drug resistance in human helminths. Recommendations to reduce its risks are suggested.
Collapse
Affiliation(s)
- S Geerts
- Institute of Tropical Medicine, B-2000 Antwerp, Belgium.
| | | |
Collapse
|
21
|
Hoekstra R, Otsen M, Tibben J, Lenstra JA, Roos MH. Non-autonomous transposable elements in the genome of the parasitic nematode Haemonchus contortus. Mol Biochem Parasitol 2000; 106:163-8. [PMID: 10743620 DOI: 10.1016/s0166-6851(99)00195-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- R Hoekstra
- Department of Molecular Recognition, Institute for Animal Science and Health (ID-Lelystad), Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Hoekstra R, Otsen M, Lenstra JA, Roos MH. Characterisation of a polymorphic Tc1-like transposable element of the parasitic nematode Haemonchus contortus. Mol Biochem Parasitol 1999; 102:157-66. [PMID: 10477184 DOI: 10.1016/s0166-6851(99)00094-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hctc1, a member of the Tc1-family of transposable elements was isolated from the parasitic nematode Haemonchus contortus. Hctc1 is 1590 bp long, is flanked by 55 bp inverted repeats and carries a single open reading frame of a 340 amino acid transposase-like protein. Hctc1 is similar to Tc1 of Caenorhabditis elegans and elements Tcb1 and Tcb2 of Caenorhabditis briggsae in the inverted terminal repeats, the open reading frame, as well as the target insertion sequence. Furthermore, the copy number of Hctc1 is comparable with the Tc1 copy number in low copy strains of C. elegans. The sequence of Hctc1 is highly variable in H. contortus due to deletions, insertions and point mutations, with at least five distinct length variants of Hctc1. Most of the Hctc1 variation was within rather than between H. contortus populations. The high level of sequence variation is probably due to variation generally found for members of the Tc1-family, as well as a high background level of genetic variation of H. contortus.
Collapse
Affiliation(s)
- R Hoekstra
- Department of Molecular Recognition, Institute for Animal Science and Health (ID-DLO), Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
23
|
Roos MH, Hoekstra R, Plas ME, Otsen M, Lenstra JA. Polymorphic DNA markers in the genome of parasitic nematodes. J Helminthol 1998; 72:291-4. [PMID: 9858623 DOI: 10.1017/s0022149x0001662x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Polymorphic molecular markers are being identified to characterize the genomes of parasitic nematodes. The aim is to construct a map with markers evenly spread over the six chromosomes. With such a map, regions can be identified that are under selection pressure when attempts are being made to eradicate worms, be it by drugs, vaccines or genetic resistance in the sheep. Several types of markers have been developed, microsatellites, transposon-associated markers, amplified fragment length polymorphism (AFLP) and expressed sequence tag (EST) markers. Linkage groups can be constructed using several genetic crosses between inbred and drug resistant strains. EST markers will be especially important for comparative mapping with the genome of Caenorhabditis elegans, and therefore localization of the linkage group on a chromosome. It will then be possible to identify functional genes close to markers that have changed allele frequencies under selection pressure and identify the mechanisms of resistance to parasite control.
Collapse
Affiliation(s)
- M H Roos
- Department of Molecular Recognition, Institute for Animal Science and Health (ID-DLO), PO Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|