1
|
Springer MS, Emerling CA, Gatesy J. Three Blind Moles: Molecular Evolutionary Insights on the Tempo and Mode of Convergent Eye Degeneration in Notoryctes typhlops (Southern Marsupial Mole) and Two Chrysochlorids (Golden Moles). Genes (Basel) 2023; 14:2018. [PMID: 38002961 PMCID: PMC10671557 DOI: 10.3390/genes14112018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Golden moles (Chrysochloridae) and marsupial moles (Notoryctidae) are textbook examples of convergent evolution. Both taxa are highly adapted to subterranean lifestyles and have powerful limbs for digging through the soil/sand, ears that are adapted for low-frequency hearing, vestigial eyes that are covered by skin and fur, and the absence of optic nerve connections between the eyes and the brain. The eyes of marsupial moles also lack a lens as well as retinal rods and cones. Two hypotheses have been proposed to account for the greater degeneracy of the eyes of marsupial moles than golden moles. First, marsupial moles may have had more time to adapt to their underground habitat than other moles. Second, the eyes of marsupial moles may have been rapidly and recently vestigialized to (1) reduce the injurious effects of sand getting into the eyes and (2) accommodate the enlargement of lacrimal glands that keep the nasal cavity moist and prevent the entry of sand into the nasal passages during burrowing. Here, we employ molecular evolutionary methods on DNA sequences for 38 eye genes, most of which are eye-specific, to investigate the timing of relaxed selection (=neutral evolution) for different groups of eye-specific genes that serve as proxies for distinct functional components of the eye (rod phototransduction, cone phototransduction, lens/cornea). Our taxon sampling included 12 afrothere species, of which two are golden moles (Amblysomus hottentotus, Chrysochloris asiatica), and 28 marsupial species including two individuals of the southern marsupial mole (Notoryctes typhlops). Most of the sequences were mined from databases, but we also provide new genome data for A. hottentotus and one of the two N. typhlops individuals. Even though the eyes of golden moles are less degenerate than the eyes of marsupial moles, there are more inactivating mutations (e.g., frameshift indels, premature stop codons) in their cone phototransduction and lens/cornea genes than in orthologous genes of the marsupial mole. We estimate that cone phototransduction recovery genes were inactivated first in each group, followed by lens/cornea genes and then cone phototransduction activation genes. All three groups of genes were inactivated earlier in golden moles than in marsupial moles. For the latter, we estimate that lens/cornea genes were inactivated ~17.8 million years ago (MYA) when stem notoryctids were burrowing in the soft soils of Australian rainforests. Selection on phototransduction activation genes was relaxed much later (5.38 MYA), during the early stages of Australia's aridification that produced coastal sand plains and eventually sand dunes. Unlike cone phototransduction activation genes, rod phototransduction activation genes are intact in both golden moles and one of the two individuals of N. typhlops. A second marsupial mole individual has just a single inactivating mutation in one of the rod phototransduction activation genes (PDE6B). One explanation for this result is that some rod phototransduction activation genes are pleiotropic and are expressed in extraocular tissues, possibly in conjunction with sperm thermotaxis.
Collapse
Affiliation(s)
- Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | | | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA;
| |
Collapse
|
2
|
Abu-Romman A, Scholand KK, Pal-Ghosh S, Yu Z, Kelagere Y, Yazdanpanah G, Kao WWY, Coulson-Thomas VJ, Stepp MA, de Paiva CS. Conditional deletion of CD25 in the corneal epithelium reveals sex differences in barrier disruption. Ocul Surf 2023; 30:57-72. [PMID: 37516317 PMCID: PMC10812880 DOI: 10.1016/j.jtos.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE IL-2 promotes activation, clonal expansion, and deletion of T cells. IL-2 signals through its heterotrimeric receptor (IL-2R) consisting of the CD25, CD122 and CD132 chains. CD25 knockout (KO) mice develop Sjögren Syndrome-like disease. This study investigates whether corneal CD25/IL-2 signaling is critical for ocular health. METHODS Eyes from C57BL/6 mice were collected and prepared for immunostaining or in-situ hybridization. Bulk RNA sequencing was performed on the corneal epithelium from wild-type and CD25KO mice. We generated a conditional corneal-specific deletion of CD25 in the corneal epithelium (CD25Δ/ΔCEpi). Corneal barrier function was evaluated based on the uptake of a fluorescent dye. Mice were subjected to unilateral corneal debridement, followed by epithelial closure over time. RESULTS In C57BL/6 mice, CD25 mRNA was expressed in ocular tissues. Protein expression of CD25, CD122, and CD132 was confirmed in the corneal epithelium. Delayed corneal re-epithelization was seen in female but not male CD25KO mice. There were 771 differentially expressed genes in the corneal epithelium of CD25KO compared to wild-type mice. While barrier function is disrupted in CD25Δ/ΔCEpi mice, re-epithelialization rates are not delayed. CONCLUSIONS All three chains of the IL-2R are expressed in the corneal epithelium. Our results indicate for the first time, deleting CD25 systemically in all tissues in the mouse and deleting CD25 locally in just the corneal epithelium compromises corneal epithelial barrier function, leading to dry eye disease in female mice. Future studies are needed to delineate the pathways used by IL-2 signaling to influence cornea homeostasis.
Collapse
Affiliation(s)
- Anmar Abu-Romman
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Yashaswini Kelagere
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Ghasem Yazdanpanah
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, United States.
| | | | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States; Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| |
Collapse
|
3
|
Song L, Yang X, Cui H. Plasma fibrin membranes loaded with bone marrow mesenchymal stem cells and corneal epithelial cells promote corneal injury healing via attenuating inflammation and fibrosis after corneal burns. Biomater Sci 2023; 11:5970-5983. [PMID: 37486330 DOI: 10.1039/d3bm00713h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The shortage of corneal donors has prompted the development of tissue-engineered corneal grafts as an alternative solution. Currently, amniotic membranes with good biocompatibility are widely used as scaffolds for loading stem cells in the treatment of corneal injury. However, this approach has its limitations. In this study, BMSCs were induced to differentiate into corneal epithelial cells via direct contact co-culture, and platelet-poor plasma was used to prepare fibrin gels, which were compressed to remove excess liquid and then lyophilized to obtain plasma fibrin membranes (PFMs). A tissue-engineered corneal implant with PFMs as a scaffold loaded with BMSCs and corneal epithelial cells was designed and obtained. Scanning electron microscopy showed that PFMs have a uniformly distributed microporous surface that facilitates cell attachment and nutrient transport. The rheological results showed that the freeze-dried and rehydrated PFMs were more rigid than fresh membranes, which makes it easier to use them for transplantation after cell loading. The experimental results of a rat alkali burn cornea injury model showed that PFMs effectively reduced the inflammatory reaction, inhibited fibrosis, and accelerated the healing of corneal wounds. It was also found that some of the BMSCs were successfully implanted into the corneal injury site in rats and differentiated into corneal epithelial cells. These results demonstrate the potential of tissue-engineered corneal implants using BMSCs and corneal epithelial cells and PFMs as scaffolds as a new treatment option for corneal injury.
Collapse
Affiliation(s)
- Liqun Song
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Xue Yang
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Huifei Cui
- Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- National Glycoengineering Research Center, Cheeloo College of Medicine, Shandon University, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry end Glycobiology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
4
|
Sunny SS, Lachova J, Dupacova N, Kozmik Z. Multiple roles of Pax6 in postnatal cornea development. Dev Biol 2022; 491:1-12. [PMID: 36049534 DOI: 10.1016/j.ydbio.2022.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022]
Abstract
Mammalian corneal development is a multistep process, including formation of the corneal epithelium (CE), endothelium and stroma during embryogenesis, followed by postnatal stratification of the epithelial layers and continuous renewal of the epithelium to replace the outermost corneal cells. Here, we employed the Cre-loxP system to conditionally deplete Pax6 proteins in two domains of ocular cells, i.e., the ocular surface epithelium (cornea, limbus and conjunctiva) (OSE) or postnatal CE via K14-cre or Aldh3-cre, respectively. Earlier and broader inactivation of Pax6 in the OSE resulted in thickened OSE with CE and limbal cells adopting the conjunctival keratin expression pattern. More restricted depletion of Pax6 in postnatal CE resulted in an abnormal cornea marked by reduced epithelial thickness despite increased epithelial cell proliferation. Immunofluorescence studies revealed loss of intermediate filament Cytokeratin 12 and diffused expression of adherens junction components, together with reduced tight junction protein, Zonula occludens-1. Furthermore, the expression of Cytokeratin 14, a basal cell marker in apical layers, indicates impaired differentiation of CE cells. Collectively, our data demonstrate that Pax6 is essential for maintaining proper differentiation and strong intercellular adhesion in postnatal CE cells, whereas limbal Pax6 is required to prevent the outgrowth of conjunctival cells to the cornea.
Collapse
Affiliation(s)
- Sweetu Susan Sunny
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Praha 4, 142 20, Czech Republic
| | - Jitka Lachova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Praha 4, 142 20, Czech Republic
| | - Naoko Dupacova
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Praha 4, 142 20, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Praha 4, 142 20, Czech Republic.
| |
Collapse
|
5
|
Kao WWY. Keratin expression by corneal and limbal stem cells during development. Exp Eye Res 2020; 200:108206. [PMID: 32882212 DOI: 10.1016/j.exer.2020.108206] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Keratins are the forming units of intermediate filaments (IF) that provide mechanical support, and formation of desmosomes between cells and hemi desmosomes with basement membranes for epithelium integrity. Keratin IF are polymers of obligate heterodimer consisting one type I keratin and one type II keratin molecules. There are 54 functional keratin genes in human genome, which are classified into three major groups, i.e., epithelial keratins, hair follicle cell-specific epithelial keratins and hair keratins. Their expression is cell type-specific and developmentally regulated. Corneal epithelium expresses a subgroup of keratins similar to those of epidermal epithelium. Limbal basal stem cells express K5/K14, and K8/K18 and K8/K19 IF suggesting that there probably are two populations of limbal stem cells (LSCs). In human, LSCs at limbal basal layer can directly stratify and differentiate to limbal suprabasal cells that express K3/K12 IF, or centripetally migrate then differentiate to corneal basal transient amplifying cells (TAC) that co-express both K3/K12 and K5/K14 prior to moving upward and assuming suprabasal cells phenotype of only K3/K12 expression that signifies corneal type epithelium differentiation. In rodent, the differentiated cornea epithelial cells express K5/K12 in lieu of K3/K12, because K3 allele exists as a pseudogene and does not encode a functional K3 protein. The basal corneal cells of new-born mice originate from surface ectoderm during embryonic development slowly commit to differentiation of becoming TAC co-expressing K5/K12 and K5/K14 IF. However, the centripetal migration may still occur at a slower rate in young mice, which is accelerated during wound healing. In this review, we will discuss and compare the cornea-specific keratins expression patterns between corneal and epidermal epithelial cells during mouse development, and between human and mouse during development and homeostasis in adult, and pathology caused by a mutation of keratins.
Collapse
Affiliation(s)
- Winston W-Y Kao
- Departments of Ophthalmology, University of Cincinnati, Cincinnati, OH, 45267-0838, USA.
| |
Collapse
|
6
|
Tseng SCG, Chen SY, Mead OG, Tighe S. Niche regulation of limbal epithelial stem cells: HC-HA/PTX3 as surrogate matrix niche. Exp Eye Res 2020; 199:108181. [PMID: 32795525 DOI: 10.1016/j.exer.2020.108181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/15/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
Homeostasis of the corneal epithelium is ultimately maintained by stem cells that reside in a specialized microenvironment within the corneal limbus termed palisades of Vogt. This limbal niche nourishes, protects, and regulates quiescence, self-renewal, and fate decision of limbal epithelial stem/progenitor cells (LEPCs) toward corneal epithelial differentiation. This review focuses on our current understanding of the mechanism by which limbal (stromal) niche cells (LNCs) regulate the aforementioned functions of LEPCs. Based on our discovery and characterization of a unique extracellular matrix termed HC-HA/PTX3 (Heavy chain (HC1)-hyaluronan (HA)/pentraxin 3 (PTX3) complex, "-" denotes covalent linkage; "/" denotes non-covalent binding) in the birth tissue, i.e., amniotic membrane and umbilical cord, we put forth a new paradigm that HC-HA/PTX3 serves as a surrogate matrix niche by maintaining the in vivo nuclear Pax6+ neural crest progenitor phenotype to support quiescence and self-renewal but prevent corneal fate decision of LEPCs. This new paradigm helps explain how limbal stem cell deficiency (LSCD) develops in aniridia due to Pax6-haplotype deficiency and further explains why transplantation of HC-HA/PTX3-containing amniotic membrane prevents LSCD in acute chemical burns and Stevens Johnson syndrome, augments the success of autologous LEPCs transplantation in patients suffering from partial or total LSCD, and assists ex vivo expansion (engineering) of a graft containing LEPCs. We thus envisage that this new paradigm based on regenerative matrix HC-HA/PTX3 as a surrogate niche can set a new standard for regenerative medicine in and beyond ophthalmology.
Collapse
Affiliation(s)
- Scheffer C G Tseng
- Research & Development Department, TissueTech, Inc., Miami, FL, 33126, USA; Ocular Surface Center and Ocular Surface Research & Education Foundation, Miami, FL, 33126, USA.
| | - Szu-Yu Chen
- Research & Development Department, TissueTech, Inc., Miami, FL, 33126, USA
| | - Olivia G Mead
- Research & Development Department, TissueTech, Inc., Miami, FL, 33126, USA
| | - Sean Tighe
- Research & Development Department, TissueTech, Inc., Miami, FL, 33126, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Ophthalmology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
7
|
Zhao XY, Xie HT, Duan CY, Li J, Zhang MC. Rat limbal niche cells can induce transdifferentiation of oral mucosal epithelial cells into corneal epithelial-like cells in vitro. Stem Cell Res Ther 2018; 9:256. [PMID: 30257715 PMCID: PMC6158850 DOI: 10.1186/s13287-018-0996-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Cultivated oral mucosal epithelial cells (OMECs) are widely used in the treatment of limbal stem cell deficiency (LSCD) for their ocular reconstruction capability. As the most important component of the limbal microenvironment, limbal niche cells (LNCs) play a key role in the direction of stem cell differentiation. In this study, we investigated whether LNCs can induce the transdifferentiation of rat OMECs to corneal epithelial-like cells. METHODS We isolated OMECs and LNCs from rats by dispase and collagenase, respectively, to establish a three-dimensional or Transwell coculturing system. NIH-3T3 cells and renewed LNCs were also used as feeder layers in the Transwell system to compare their ability to support the OMECs. The airlift method was used for the culture of OMECs to obtain a stratified epithelial sheet. Cocultured OMECs were characterized by reverse-transcription polymerase chain reaction, Western blotting, hematoxylin and eosin staining, and immunohistochemistry. RESULTS The cocultured OMECs showed corneal epithelial-like morphology and expressed the corneal epithelial markers CK12 and Pax6 in most cocultured systems. Furthermore, we found that the expression level of CK12, Pax6, and proliferation marker Ki67 was upregulated when compared with that of other groups by renewing the LNCs in the Transwell system (p < 0.05, n = 3), suggesting that this might be a potential method for improving the efficiency of transdifferentiation. The obtained stratified epithelial sheet expressed CK3 and CK12. CONCLUSION Through coculturing OMECs and LNCs in vitro, we successfully cultivated corneal epithelial-like OMECs. This investigation is of great significance for the treatment of LSCD and ocular surface reconstruction.
Collapse
Affiliation(s)
- Xin-Yue Zhao
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao-Ye Duan
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming-Chang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
8
|
Comptour A, Rouzaire M, Belville C, Bonnin N, Daniel E, Chiambaretta F, Blanchon L, Sapin V. Lysyl oxidase-like 4 involvement in retinoic acid epithelial wound healing. Sci Rep 2016; 6:32688. [PMID: 27597564 PMCID: PMC5011693 DOI: 10.1038/srep32688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/11/2016] [Indexed: 01/09/2023] Open
Abstract
Vitamin A and its active forms (retinoic acids/RAs) are known to have pro-healing properties, but their mechanisms of action are still poorly understood. This work aimed to identify the cellular and molecular processes by which atRA (all-trans RA) improves wound healing, using an in vivo model of mouse corneal alkali burns and an in vitro cellular human corneal epithelial injury model. Regulation by atRA has been studied on most of the cellular events that occur in wound healing. We investigated the direct influence of atRA on a specific target gene known to be involved in the extracellular matrix (ECM) dynamics, one of the pathways contributing to epithelial repair. Our results demonstrate that atRA promotes corneal epithelial wound healing by acting preferentially on migration. The induction of lysyl oxidase-like 4 (LOXL4) expression by atRA in the corneal epithelium environment was established as essential in the mechanism of atRA-dependent wound healing. Our study describes for the first time a direct link between a retinoic-induced gene and protein, LOXL4, and its general clinical pro-healing properties in ECM dynamics.
Collapse
Affiliation(s)
- Aurélie Comptour
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| | - Marion Rouzaire
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| | - Corinne Belville
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- Clermont Université, Université d’Auvergne, GReD, F-63000 Clermont-Ferrand, France
| | - Nicolas Bonnin
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Ophthalmology Department, F-63000 Clermont-Ferrand, France
| | - Estelle Daniel
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Ophthalmology Department, F-63000 Clermont-Ferrand, France
| | - Frédéric Chiambaretta
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Ophthalmology Department, F-63000 Clermont-Ferrand, France
| | - Loïc Blanchon
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Clermont Université, Université d’Auvergne, EA7281 – Retinoids, Reproduction Developmental Diseases, School of Medicine, F-63000 Clermont-Ferrand, France
| |
Collapse
|
9
|
Comparative Analysis of KnockOut™ Serum with Fetal Bovine Serum for the In Vitro Long-Term Culture of Human Limbal Epithelial Cells. J Ophthalmol 2016; 2016:7304812. [PMID: 27446607 PMCID: PMC4944074 DOI: 10.1155/2016/7304812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 11/25/2022] Open
Abstract
The limbal epithelial cells can be maintained on 3T3 feeder layer with fetal bovine serum supplemented culture medium, and these cells have been used to successfully treat limbal stem cell deficiency. However, fetal bovine serum contains unknown components and displays quantitative and qualitative lot-to-lot variations. To improve the culture condition, the defined KnockOut serum replacement was investigated to replace fetal bovine serum for culturing human limbal epithelial cell. Human primary limbal epithelial cells were cultured in KnockOut serum and fetal bovine serum supplemented medium, respectively. The cell growth rate, gene expression, and maintenance of limbal epithelial stem cells were studied and compared between these two groups. Human primary limbal epithelial cells were isolated and successfully serially cultivated in this novel KnockOut serum supplemented medium; the cell proliferation and stem cell maintenance were similar to those of cells grown in fetal bovine serum supplemented medium. These data suggests that this KnockOut serum supplemented medium is an efficient replacement to traditional fetal bovine serum supplemented medium for limbal epithelial cell culture, and this medium has great potential for long term maintenance of limbal epithelial cells, limbal epithelial stem cells transplantation, and tissue regeneration.
Collapse
|
10
|
Tseng SCG, He H, Zhang S, Chen SY. Niche Regulation of Limbal Epithelial Stem Cells: Relationship between Inflammation and Regeneration. Ocul Surf 2016; 14:100-12. [PMID: 26769483 DOI: 10.1016/j.jtos.2015.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/17/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023]
Abstract
Human limbal palisades of Vogt are the ideal site for studying and practicing regenerative medicine due to their accessibility. Nonresolving inflammation in limbal stroma is common manifestation of limbal stem cell (SC) deficiency and presents as a threat to the success of transplanted limbal epithelial SCs. This pathologic process can be overcome by transplantation of cryopreserved human amniotic membrane (AM), which exerts anti-inflammatory, antiscarring and anti-angiogenic action to promote wound healing. To determine how AM might exert anti-inflammation and promote regeneration, we have purified a novel matrix, HC-HA/PTX3, responsible for the efficacy of AM efficacy. HC-HA complex is covalently formed by hyaluronan (HA) and heavy chain 1 (HC1) of inter-α-trypsin inhibitor by the catalytic action of tumor necrosis factor-stimulated gene-6 (TSG-6) and are tightly associated with pentraxin 3 (PTX3) to form HC-HA/PTX3. In vitro reconstitution of the limbal niche can be established by reunion between limbal epithelial progenitors and limbal niche cells on different substrates. In 3-dimensional Matrigel, clonal expansion indicative of SC renewal is correlated with activation of canonical Wnt signaling and suppression of canonical bone morphogenetic protein (BMP) signaling. In contrast, SC quiescence can be achieved in HC-HA/PTX3 by activation of canonical BMP signaling and non-canonical planar cell polarity (PCP) Wnt signaling, but suppression of canonical Wnt signaling. HC-HA/PTX3 is a novel matrix mitigating nonresolving inflammation and restoring SC quiescence in the niche for various applications in regenerative medicine.
Collapse
Affiliation(s)
- Scheffer C G Tseng
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA.
| | - Hua He
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA
| | - Suzhen Zhang
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA
| | - Szu-Yu Chen
- R&D Department, TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research and Education Foundation, Miami, Florida, USA
| |
Collapse
|
11
|
Chen SY, Han B, Zhu YT, Mahabole M, Huang J, Beebe DC, Tseng SCG. HC-HA/PTX3 Purified From Amniotic Membrane Promotes BMP Signaling in Limbal Niche Cells to Maintain Quiescence of Limbal Epithelial Progenitor/Stem Cells. Stem Cells 2015; 33:3341-55. [PMID: 26148958 DOI: 10.1002/stem.2091] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/08/2015] [Accepted: 05/23/2015] [Indexed: 12/13/2022]
Abstract
To explore how limbal niche cells (LNCs) may control quiescence, self-renewal, and corneal epithelial lineage commitment/differentiation of limbal epithelial progenitor/stem cells (LEPCs), we have established an in vitro sphere assay by reunion between the two cell types in three-dimensional Matrigel. The resultant sphere exhibits inhibition of corneal epithelial lineage commitment/differentiation and marked clonal growth of LEPCs, of which the latter is correlated with activation of canonical Wnt signaling. Herein, we have created a similar reunion assay in immobilized heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3), which is purified from amniotic membrane (AM) and consists of a complex formed by hyaluronic covalently linked to heavy chain 1 of inter-α-inhibitor and noncovalently linked to pentraxin 3. The resultant spheres exhibited similar suppression of corneal epithelial lineage commitment/differentiation but upregulation of quiescence markers including nuclear translocation of Bmi-1, and negligible clonal growth of LEPCs. This outcome was correlated with the suppression of canonical Wnt but activation of noncanonical (Planar cell polarity) Wnt signaling as well as BMP signaling in both LEPCs and LNCs. The activation of BMP signaling in LNCs was pivotal because nuclear translocation of pSmad1/5/8 was prohibited in hLEPCs when reunioned with mLNCs of conditionally deleted Bmpr1a;Acvr1(DCKO) mice. Furthermore, ablation of BMP signaling in LEPCs led to upregulation of cell cycle genes, downregulation of Bmi-1, nuclear exclusion of phosphorylated Bmi-1, and marked promotion of the clonal growth of LEPCs. Hence, HC-HA/PTX3 uniquely upregulates BMP signaling in LNCs which leads to BMP signaling in LEPCs to achieve quiescence, helping explain how AM transplantation is clinically useful to be used as a matrix for ex vivo expansion of LEPCs and to treat corneal blindness caused by limbal stem cells deficiency.
Collapse
Affiliation(s)
- Szu-Yu Chen
- R&D Department, TissueTech, Inc., Miami, Florida, USA
| | - Bo Han
- Ocular Surface Research & Education Foundation, Miami, Florida, USA.,Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ying-Ting Zhu
- R&D Department, TissueTech, Inc., Miami, Florida, USA
| | | | - Jie Huang
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri, USA
| | - David C Beebe
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri, USA
| | - Scheffer C G Tseng
- R&D Department, TissueTech, Inc., Miami, Florida, USA.,Ocular Surface Research & Education Foundation, Miami, Florida, USA
| |
Collapse
|
12
|
Abstract
Although corneal epithelial stem cells (SCs) are located at the limbus between the cornea and the conjunctiva, not all limbal basal epithelial cells are SCs. Using 2 dispase digestions to remove different amounts of limbal basal epithelial cells for cross-sections, flat mounts, and cytospin preparations, double immunostaining to pancytokeratins (PCK) and vimentin (Vim) identified 3 p63+ epithelial progenitors such as PCK-/Vim+, PCK/Vim, and PCK-/Vim+ and 1 p63+ mesenchymal cell, PCK-/Vim+. PCK-/Vim- progenitors had the smallest cell size were 10-20 times more enriched on collagen I-coated dishes in the 5-minute rapid adherent fraction that contained the highest percentage of p63+ cells but the lowest percentage of cytokeratin12+ cells, and gave rise to high Ki67 labeling and vivid clonal growth. In contrast, PCK+/Vim+ and PCK+/Vim- progenitors were found more in the slow-adherent fraction and yielded poor clonal growth. PCK/Vim progenitors and clusters of PCK-/Vim+ mesenchymal cells, which were neither melanocytes nor Langerhans cells, were located in the limbal basal region. Therefore, differential expression of PCK and Vim helps identify small PCK-/Vim- cells as the most likely candidate for SCs among a hierarchy of heterogeneous limbal basal progenitors, and their close association with PCK-/Vim+ presumed "niche" cells.
Collapse
|
13
|
Tsai RJF, Tsai RYN. From stem cell niche environments to engineering of corneal epithelium tissue. Jpn J Ophthalmol 2014; 58:111-9. [PMID: 24492887 DOI: 10.1007/s10384-014-0306-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/19/2013] [Indexed: 12/13/2022]
Abstract
Studies on stem cells (SC) show that SC functions are determined by the extracellular microenvironment, known as the "niche", and by intrinsic genetic programs in the SCs; both are involved in regulating the delicate balance of self-renewal and differentiation. We have identified an animal model of limbal SC (LSC) deficiency and transplantation of SC-containing limbal tissue to treat the LSC deficiency, which could not only replace LSCs by providing new healthy corneal epithelial cells but also restore the lost niche of the limbal stromal layer, causing the regression of vessels and rearrangement of the corneal stromal lamellae. The purpose of the ex-vivo expansion technique is to develop a method that will enable culture of a small number of SCs which could than be expanded in a defined cultured system while preserving the original characteristics and properties of the SCs. In addition, SC characteristics will continue to be maintained when the cultured cells are transplanted back into the host. Bromodeoxyuridine-retaining, ΔNp63, ABCG2, p120, and N-cadherin immunoreactive studies of LSC cultured on an amniotic membrane have been performed. Pathological studies have been conducted for cases with preexisting central corneal stromal opacity treated by transplantation of LSCs followed by penetrating keratoplasty. The results indicate that the amniotic membrane can provide the niche environment for cultured LSCs and maintain the limbal-like environment for the transplanted area of cornea.
Collapse
Affiliation(s)
- Ray Jui-Fang Tsai
- Taipei Eye Center, 2F, 350 Section 4, ChengKung Road, Taipei 114, Taiwan,
| | | |
Collapse
|
14
|
Han B, Chen SY, Zhu YT, Tseng SCG. Integration of BMP/Wnt signaling to control clonal growth of limbal epithelial progenitor cells by niche cells. Stem Cell Res 2014; 12:562-73. [PMID: 24530980 DOI: 10.1016/j.scr.2014.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 12/13/2022] Open
Abstract
Both BMP and Wnt signaling control stem cells in bulge/dermal papilla, intestinal crypt, and bone marrow. To explore their roles in the limbal niche, which govern corneal epithelial homeostasis, we established an in vitro model of sphere growth by reunion between single limbal epithelial progenitor cells (LEPCs) and aggregates of limbal niche cells (LNCs) in 3D Matrigel. Compared to LEPCs alone, spheres formed by LEPC+LNC exhibited higher clonal growth and less corneal epithelial differentiation. Furthermore, pSmad1/5/8 was in the nucleus of LEPCs, but not LNCs, and correlated with upregulation of BMP1, BMP3, BMP4, all three BMP receptors, and BMP target genes. Inactivation of BMP signaling in LNCs was correlated with upregulation of noggin preferentially expressed by LNCs. Additionally, β-catenin was stabilized in the perinuclear cytoplasm in LEPCs and correlated with upregulation of Wnt7A and FZD5 preferentially expressed by LEPCs. Inactivation of Wnt signaling in LNCs was correlated with upregulation of DKK1/2 by LNCs. Addition of XAV939 that expectedly downregulated perinuclear β-catenin in LEPCs led to significant reduction of epithelial clonal growth, but upregulated all three BMP receptors and downregulated LNC-derived noggin, resulting in activation of BMP signaling in LNCs. Addition of noggin that expectedly downregulated nuclear localization of pSmad1/5/8 in LEPCs led to nuclear localization of β-catenin in larger LEPCs but membrane relocation of β-catenin in smaller LEPCs and significant upregulation of DKK1/2. Hence, balancing acts between Wnt signaling and BMP signaling exist not only within LEPCs but also between LEPCs and LNCs to regulate clonal growth of LEPCs.
Collapse
Affiliation(s)
- Bo Han
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Ocular Surface Research & Education Foundation, Miami, FL, USA
| | - Szu-Yu Chen
- R&D Department, TissueTech, Inc., Miami, FL, USA
| | | | - Scheffer C G Tseng
- R&D Department, TissueTech, Inc., Miami, FL, USA; Ocular Surface Center, Miami, FL, USA; Ocular Surface Research & Education Foundation, Miami, FL, USA.
| |
Collapse
|
15
|
Zhang Y, Lam O, Nguyen MTT, Ng G, Pear WS, Ai W, Wang IJ, Kao WWY, Liu CY. Mastermind-like transcriptional co-activator-mediated Notch signaling is indispensable for maintaining conjunctival epithelial identity. Development 2013; 140:594-605. [PMID: 23293291 DOI: 10.1242/dev.082842] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conjunctival goblet cells primarily synthesize mucins to lubricate the ocular surface, which is essential for normal vision. Notch signaling has been known to associate with goblet cell differentiation in intestinal and respiratory tracts, but its function in ocular surface has yet to be fully characterized. Herein, we demonstrate that conditional inhibition of canonical Notch signaling by expressing dominant negative mastermind-like 1 (dnMaml1) in ocular surface epithelia resulted in complete suppression of goblet cell differentiation during and subsequent to development. When compared with the ocular surface of wild-type mice (OS(Wt)), expression of dnMaml1 at the ocular surface (OS(dnMaml1)) caused conjunctival epithelial hyperplasia, aberrant desquamation, failure of Mucin 5ac (Muc5ac) synthesis, subconjunctival inflammation and epidermal metaplasia in cornea. In addition, conditional deletion of Notch1 from the ocular surface epithelia partially recapitulated OS(dnMaml1) phenotypes. We have demonstrated that N1-ICD (Notch1 intracellular domain) transactivated the mouse Krüppel-like factor 4 (Klf) promoter and that Klf4 directly bound to and significantly potentiated the Muc5ac promoter. By contrast, OS(dnMaml1) dampened Klf4 and Klf5 expression, and diminished Muc5ac synthesis. Collectively, these findings indicated that Maml-mediated Notch signaling plays a pivotal role in the initiation and maintenance of goblet cell differentiation for normal ocular surface morphogenesis and homeostasis through regulation of Klf4 and Klf5.
Collapse
Affiliation(s)
- Yujin Zhang
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Notara M, Hernandez D, Mason C, Daniels JT. Characterization of the phenotype and functionality of corneal epithelial cells derived from mouse embryonic stem cells. Regen Med 2012; 7:167-78. [PMID: 22397607 DOI: 10.2217/rme.11.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIMS To investigate the optimum conditions for the differentiation of a mouse embryonic stem cell line towards corneal epithelial cell fate. MATERIALS & METHODS The effect of conditioned media from both metabolically active (to produce lineage A) and growth-arrested limbal fibroblasts (lineage G) were compared with basal media (lineage N) in terms of morphology and marker expression, assessed by immunocytochemistry and reverse transcription PCR. Cultures were transplanted into a porcine ex vivo model to investigate their ability for wound healing and cornea repair. RESULTS Lineage N exhibited cobblestone morphology and expressed CK12 and p63α, while OCT4 and SSEA1 were downregulated. Post-transplantation, these cells were able to multilayer and heal after wounding while maintaining marker expression. CONCLUSION Lineages with corneal epithelial-like characteristics, which are derived from embryonic stem cells, have potential for use in the study of corneal wound healing and therapy.
Collapse
Affiliation(s)
- Maria Notara
- Department of Ocular Biology & Therapeutics, UCL Institute of Ophthalmology, London, UK.
| | | | | | | |
Collapse
|
17
|
Trosan P, Svobodova E, Chudickova M, Krulova M, Zajicova A, Holan V. The key role of insulin-like growth factor I in limbal stem cell differentiation and the corneal wound-healing process. Stem Cells Dev 2012; 21:3341-50. [PMID: 22873171 DOI: 10.1089/scd.2012.0180] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Limbal stem cells (LSC), which reside in the basal layer of the limbus, are thought to be responsible for corneal epithelial healing after injury. When the cornea is damaged, LSC start to proliferate, differentiate, and migrate to the site of injury. To characterize the signaling molecules ensuring communication between the cornea and LSC, we established a mouse model of mechanical corneal damage. The central cornea or limbal tissue was excised at different time intervals after injury, and the expression of genes in the explants was determined. It was observed that a number of genes for growth and differentiation factors were significantly upregulated in the cornea rapidly after injury. The ability of these factors to regulate the differentiation and proliferation of limbal cells was tested. It was found that the insulin-like growth factor-I (IGF-I), which is rapidly overexpressed after injury, enhances the expression of IGF receptor in limbal cells and induces the differentiation of LSC into cells expressing the corneal cell marker, cytokeratin K12, without any effect on limbal cell proliferation. In contrast, the epidermal growth factor (EGF) and fibroblast growth factor-β (FGF-β), which are also produced by the damaged corneal epithelium, supported limbal cell proliferation without any effect on their differentiation. Other factors did not affect limbal cell differentiation or proliferation. Thus, IGF-I was identified as the main factor stimulating the expression of IGF receptors in limbal cells and inducing the differentiation of LSC into cells expressing corneal epithelial cell markers. The proliferation of these cells was supported by EGF and FGF.
Collapse
Affiliation(s)
- Peter Trosan
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
18
|
Xie HT, Chen SY, Li GG, Tseng SCG. Limbal epithelial stem/progenitor cells attract stromal niche cells by SDF-1/CXCR4 signaling to prevent differentiation. Stem Cells 2012; 29:1874-85. [PMID: 21948620 DOI: 10.1002/stem.743] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Corneal epithelial stem cells (SCs) are an ideal model for investigating how adult lineage-committed epithelial SCs are regulated by an anatomically defined and accessible niche, that is, limbal palisades of Vogt, located between the cornea and the conjunctiva. We have used collagenase digestion to isolate the entire limbal epithelial SCs and subjacent mesenchymal cells, and we have demonstrated that their close association is crucial for promoting epithelial clonal growth, implying that the latter serves as niche cells (NCs). After their close association was disrupted by trypsin/EDTA, single SCs and NCs could reunite to generate sphere growth in three-dimensional Matrigel in the embryonic SC medium, and that such sphere growth initiated by SC-NC reunion was mediated by SDF-1 uniquely expressed by limbal epithelial progenitor cells and its receptor CXCR4, but not CXCR7, strongly expressed by limbal stromal NCs. Inhibition of CXCR4 by AMD3100 or a blocking antibody to CXCR4 but not CXCR7 disrupted their reunion and yielded separate spheres with a reduced size, while resultant epithelial spheres exhibited more corneal differentiation and a notable loss of holoclones. For the first time, these results provide strong evidence supporting that limbal SC function depends on close physical association with their native NCs via SDF-1/CXCR4 signaling. This novel in vitro model of sphere growth with NCs can be used for investigating how limbal SC self-renewal and fate decision might be regulated in the limbal niche.
Collapse
Affiliation(s)
- Hua-Tao Xie
- R&D Department, Tissue Tech, Inc, Ocular Surface Center, Ocular Surface Research & Education Foundation, Miami, Florida 33173, USA
| | | | | | | |
Collapse
|
19
|
Chen SY, Hayashida Y, Chen MY, Xie HT, Tseng SCG. A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells. Tissue Eng Part C Methods 2011; 17:537-48. [PMID: 21175372 DOI: 10.1089/ten.tec.2010.0609] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In human corneal epithelium, self-renewal and fate decision of stem cells are highly regulated in a niche microenvironment called palisades of Vogt in the limbus. Herein, we discovered that digestion with dispase, which cleaves off the basement membrane, did not remove the entire basal epithelial progenitor cells. In contrast, digestion with collagenase isolated on cluster consisting of not only entire epithelial progenitor cells but also their closely associated mesenchymal cells because of better preservation of some basement membrane matrix. Collagenase isolated more basal epithelial progenitor cells, which were p63α+ and small in the size (8 μm in diameter), and generated significantly more holoclones and meroclones on 3T3 fibroblast feeder layers than dispase. Further, collagenase isolated more small pan-cytokeratin-/p63α-/vimentin+ cells with the size as small as 5 μm in diameter and heterogeneously expressing vimentin, Oct4, Sox2, Nanog, Rex1, Nestin, N-cadherin, SSEA4, and CD34. Maintenance of close association between them led to clonal growth in a serum-free, low-calcium medium, whereas disruption of such association by trypsin/EDTA resulted in no clonal growth unless cocultured with 3T3 fibroblast feeder layers. Similarly, on epithelially denuded amniotic membrane, maintenance of such association led to consistent and robust epithelial outgrowth, which was also abolished by trypsin/EDTA. Epithelial outgrowth generated by collagenase-isolated clusters was significantly larger in diameter and its single cells yielded more holoclones on 3T3 fibroblast feeder layers than that from dispase-isolated sheets. This new isolation method can be used for exploring how limbal epithelial stem cells are regulated by their native niche cells.
Collapse
Affiliation(s)
- Szu-Yu Chen
- Ocular Surface Center, TissueTech, Inc., Miami, Florida 33173, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
OBJECTIVE To review the use of genetically modified mouse lines for elucidating corneal morphogenesis during embryonic development and diseases. METHODS Transgenesis and gene-targeting techniques were used to create doxycycline-inducible mouse models (tet-On) to express transgenes or ablation of LoxP-modified genes or both in corneal cells, e.g., epithelial cells, and keratocytes and periocular mesenchymal cells of neural crest origin. RESULTS Two driver mouse lines, i.e., Krt12-rtTA and Kera-rtTA, were created, which express reverse tetracycline transcription activator (rtTA) in corneal epithelial cells and keratocytes, respectively. Bitransgenic (Krt12-rtTA/tet-o-FGF7) and triple transgenic mice (Krt12rtTA/tet-o-Cre/Ctnnb1 and Kera-rtTA/tet-o-Cre/Ctnnb1) were obtained through cross-breeding tet-o-FGF7, tet-o-Cre, and Ctnnb1 mice. On doxycycline induction, overexpression of FGF7 by corneal epithelial cells of bitransgenic Krt12-rtTA/tet-o-FGF7 mice caused nuclear translocation of beta-catenin and epithelium hyperplasia resembling human ocular surface squamous neoplasia; in triple transgenic mice (Krt12rtTA/tet-o-Cre/Ctnnb1), constitutive nuclear translocation of mutant beta-catenin (loss of exon 3) leads to hyper proliferation of corneal epithelial cells; in comparison of expression of beta-catenin mutant protein by migrating, periocular mesenchymal cells of Kera-rtTA/tet-o-Cre/Ctnnb1 caused eyelid malformation. CONCLUSIONS Use of genetically modified mice is of great value to study the pathophysiology of ocular surface defects resulting from genetic mutations.
Collapse
|
21
|
Abstract
OBJECTIVES To identify the stem-cell property of the ex vivo expansion of limbal stem cells (LSCs) on amniotic membrane (AM) in culture system and after clinical transplantation. METHODS Four key factors have to be performed in the defined culture system: (1) the label-retaining cells have to be identified; (2) the cells can be serially expanded and passaged in vitro; (3) the expanded cells can be labeled by tissue-specific keratin or markers, and (3) their stem cells cannot be labeled by those keratin or markers. RESULTS The ex vivo-expanded LSCs on AM were positive for p63 and ABCG2 and BrdU label-retaining studies on flat mount preparation. When the ex vivo-expanded LSCs with AM were transplanted into a subcutaneous layer of nude mice, they formed multiple layers of cells. Only the basal layer of cells was positive for p63 and BrdU. The cells over the suprabasal layers were positive for K12/K3. The pathologic studies of corneal specimen of successful LSC transplantation after penetrating keratoplasty demonstrated that P63-positive cells were noticed all over the basal layer of central cornea and AM could be identified at 10 months after LSC transplantation. CONCLUSIONS These results indicate that the AM provided the niche function for cultured LSCs and maintained the limbal-like environment for the transplanted area of cornea. The survival of cases depends on the severity of the disease entity, culture technique, and maintenance of the niche environment for LSCs in the culture and after clinical transplantation.
Collapse
|
22
|
Chen L, Meng Q, Kao W, Xia Y. IκB kinase β regulates epithelium migration during corneal wound healing. PLoS One 2011; 6:e16132. [PMID: 21264230 PMCID: PMC3022035 DOI: 10.1371/journal.pone.0016132] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/07/2010] [Indexed: 01/04/2023] Open
Abstract
The IKKβ is known to regulate transcription factor NF-κB activation leading to inflammatory responses. Recent gene knockout studies have shown that IKKβ can orchestrate local inflammatory responses and regulate homeostasis of epithelial tissues. To investigate whether IKKβ has an intrinsic role in epithelial cells, we established an in vivo system in the immune privileged corneal epithelium. We generated triple transgenic Krt12rtTA/rtTAt/tet-O-Cre/IkkβF/F (IkkβΔCE/ΔCE) mice by crossing the Krt12-rtTA knock-in mice, which express the reverse tetracycline transcription activator in corneal epithelial cells, with the tet-O-Cre and IkkβF/F mice. Doxcycline-induced IKKβ ablation occurred in corneal epithelial cells of triple transgenic IkkβΔCE/ΔCE mice, but loss of IKKβ did not cause ocular abnormalities in fetal development and postnatal maintenance. Instead, loss of IKKβ significantly delayed healing of corneal epithelial debridement without affecting cell proliferation, apoptosis or macrophage infiltration. In vitro studies with human corneal epithelial cells (HCEpi) also showed that IKKβ was required for cytokine-induced cell migration and wound closure but was dispensable for cell proliferation. In both in vivo and in vitro settings, IKKβ was required for optimal activation of NF-κB and p38 signaling in corneal epithelial cells, and p38 activation is likely mediated through formation of an IKKβ-p38 protein complex. Thus, our studies in corneal epithelium reveal a previously un-recognized role for IKKβ in the control of epithelial cell motility and wound healing.
Collapse
Affiliation(s)
- Liang Chen
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Qinghang Meng
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Winston Kao
- Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Ying Xia
- Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
23
|
Kao WWY, Liu CY. Corneal morphogenesis during development and wound healing. Jpn J Ophthalmol 2010; 54:206-10. [PMID: 20577853 DOI: 10.1007/s10384-010-0800-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 02/04/2010] [Indexed: 11/30/2022]
Affiliation(s)
- Winston W-Y Kao
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267-0838, USA.
| | | |
Collapse
|
24
|
Yeh LK, Liu CY, Kao WWY, Huang CJ, Hu FR, Chien CL, Wang IJ. Knockdown of zebrafish lumican gene (zlum) causes scleral thinning and increased size of scleral coats. J Biol Chem 2010; 285:28141-55. [PMID: 20551313 DOI: 10.1074/jbc.m109.043679] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lumican gene (lum), which encodes one of the major keratan sulfate proteoglycans (KSPGs) in the vertebrate cornea and sclera, has been linked to axial myopia in humans. In this study, we chose zebrafish (Danio rerio) as an animal model to elucidate the role of lumican in the development of axial myopia. The zebrafish lumican gene (zlum) spans approximately 4.6 kb of the zebrafish genome. Like human (hLUM) and mouse (mlum), zlum consists of three exons, two introns, and a TATA box-less promoter at the 5'-flanking region of the transcription initiation site. Sequence analysis of the cDNA predicts that zLum encodes 344 amino acids. zLum shares 51% amino acid sequence identity with human lumican. Similar to hLUM and mlum, zlum mRNA is expressed in the eye and many other tissues, such as brain, muscle, and liver as well. Transgenic zebrafish harboring an enhanced GFP reporter gene construct downstream of a 1.7-kb zlum 5'-flanking region displayed enhanced GFP expression in the cornea and sclera, as well as throughout the body. Down-regulation of zlum expression by antisense zlum morpholinos manifested ocular enlargement resembling axial myopia due to disruption of the collagen fibril arrangement in the sclera and resulted in scleral thinning. Administration of muscarinic receptor antagonists, e.g. atropine and pirenzepine, effectively subdued the ocular enlargement caused by morpholinos in in vivo zebrafish larvae assays. The observation suggests that zebrafish can be used as an in vivo model for screening compounds in treating myopia.
Collapse
Affiliation(s)
- Lung-Kun Yeh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhang Y, Call MK, Yeh LK, Liu H, Kochel T, Wang IJ, Chu PH, Taketo MM, Jester JV, Kao WWY, Liu CY. Aberrant expression of a beta-catenin gain-of-function mutant induces hyperplastic transformation in the mouse cornea. J Cell Sci 2010; 123:1285-94. [PMID: 20332116 DOI: 10.1242/jcs.063321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Beta-catenin signaling has been shown to play a fundamental role in embryonic development and tumorigenesis. In this study, we investigated the role of beta-catenin (Ctnnb1) in corneal homeostasis and tumorigenesis. Conditional expression of a murine Ctnnb1 gain-of-function mutation alone caused corneal neoplasia and neovascularization, resembling human ocular surface squamous neoplasia (OSSN). These corneas displayed an upregulation of cell proliferative markers (PCNA and p63), while presenting downregulation of both the Pax-6 transcription factor and the corneal differentiation marker cytokeratin 12. In addition, the expression of limbal-type keratin 15 ectopically extended to cornea, but the pattern of conjunctival keratin 4 and epidermal keratin 10 were unchanged. Moreover, epithelial E-cadherin and laminins decreased concomitantly with elevated levels of MMP-7. We also noticed a dramatic upregulation of pro-angiogenic factors (Vegf-A, Vegfr1) and angiopoietins in these corneas. Interestingly, all human OSSN specimens examined revealed nuclear beta-catenin immunoreactivity. Taken together, these results argue that beta-catenin activation is a crucial step during OSSN pathogenesis. Thus, inhibition of beta-catenin might be beneficial for treating this disease.
Collapse
Affiliation(s)
- Yujin Zhang
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Crawley Vision Research Center, Cincinnati, OH 45267-0838, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yeh LK, Chen YH, Chiu CS, Hu FR, Young TH, Wang IJ. The phenotype of bovine corneal epithelial cells on chitosan membrane. J Biomed Mater Res A 2009; 90:18-26. [DOI: 10.1002/jbm.a.32077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Okada Y, Senba E, Shirai K, Ueyama T, Reinach P, Saika S. Perturbed intraepithelial differentiation of corneal epithelium in c-Fos-null mice. Jpn J Ophthalmol 2008; 52:1-7. [PMID: 18369693 DOI: 10.1007/s10384-007-0499-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 10/12/2007] [Indexed: 12/28/2022]
Abstract
PURPOSE AP-1 is a transcription factor that plays a pivotal role in regulating cellular homeostasis and which may modulate the differentiation of corneal epithelial cells. We examined the role of c-Fos in the differentiation of corneal epithelial cells by using c-Fos-deficient (c-fos (-/-)) mice. METHODS Ten adult c-fos (-/-) mice and ten control (c-fos (+/-) or c-fos (+/+)) mice were used. The expression patterns of the mRNA and protein of keratin 12 (K12) were determined to examine the differentiation of cornea-type epithelium. To evaluate the intraepithelial differentiation from basal cells to superficial cells, the ultrastructure of the corneal epithelium was studied. We focused on the formation of desmosomes in the superficial, suprabasal, and basal cell layers, and also on the hemidesmosomes. The number of desmosomes in each epithelial layer was statistically analyzed by using an unpaired t test. The expressions of keratin 14 (K14), desmoglein, E-cadherin, occludin, connexin 43, filaggrin, loricrin, and involucrin were examined to analyze epithelial differentiation. RESULTS The mRNA and protein of K12 were expressed in the corneal epithelium of c-fos (-/-) and control mice. Ultrastructural observations showed that the number of desmosomes between the basal cells of the corneal epithelia was similar in c-fos (-/-) and control mice. However, there were fewer desmosomes between suprabasal cells and between superficial cells in c-fos (-/-) mice than in control mice. The number of hemidesmosomes in the corneal epithelial cells in c-Fos-null mice was similar to that in control mice. The expressions of the other epithelial cell differentiation markers were not affected by the absence of c-Fos. Ultrastructural observations showed a disarrangement of the corneal epithelium in the c-Fos-null mice. CONCLUSIONS The absence of c-Fos disturbs the formation of desmosomes in the superficial layers of the corneal epithelium, suggesting a perturbation of intraepithelial differentiation from the basal epithelial cells to the suprabasal and superficial epithelial cells.
Collapse
Affiliation(s)
- Yuka Okada
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Kawakita T, Shimmura S, Hornia A, Higa K, Tseng SCG. Stratified epithelial sheets engineered from a single adult murine corneal/limbal progenitor cell. J Cell Mol Med 2008; 12:1303-16. [PMID: 18318692 PMCID: PMC3225011 DOI: 10.1111/j.1582-4934.2008.00297.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The limbal region of the adult cornea contains stem cells which are ultimately responsible for regeneration of the corneal epithelium during wound repair. However, primarily-isolated murine corneal/limbal epithelial cells rapidly senesce on plastic in a serum-free low [Ca2+] medium, suggesting only transit amplifying cells are promoted. We developed a novel expansion method by seeding at a low cell density (<500 cells/cm2) and prolonging each culture time beyond the lifespan of transit amplifying cells (4 weeks). Expanded cells were uniformly small, negative to K12 keratin, but positive for p63 nuclear staining, and could be subcultured beyond 100 passages. After limiting dilution, one clone (TKE2) was selected that exhibited single cell clonal expansion with a doubling time of 34.2 hrs, and had normal karyotyping, but no anchorage-independent growth. A single cell could be continually expanded to a confluent monolayer on denuded amniotic membrane and became stratified by exposing to the air-medium interface. The resultant stratified epithelium expressed K14 keratin, involucrin, connexin 43 and p63, but not K12 keratin or Pax 6. However, expression of K12 could be up-regulated by increasing extracellular calcium concentration and addition of foetal bovine serum (FBS) at P12, but less so at P85. Therefore, this murine lim-bal/corneal epithelium-derived progenitor cell line still retained the plasticity for adopting corneal lineage differentiation, could be useful for investigating limbal niche cues that may promote corneal epithelial fate decision.
Collapse
Affiliation(s)
- Tetsuya Kawakita
- TissueTech, Inc., and Ocular Surface Center, Miami, FL 33173, USA
| | | | | | | | | |
Collapse
|
29
|
Li W, Chen YT, Hayashida Y, Blanco G, Kheirkah A, He H, Chen SY, Liu CY, Tseng SCG. Down-regulation of Pax6 is associated with abnormal differentiation of corneal epithelial cells in severe ocular surface diseases. J Pathol 2008; 214:114-22. [PMID: 18027901 DOI: 10.1002/path.2256] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pax6 is the universal master control gene for eye morphogenesis. Other than retina and lens, Pax6 also expressed in the ocular surface epithelium from early gestation until the postnatal stage, in which little is known about the function of Pax6. In this study, corneal pannus tissues from patients with ocular surface diseases such as Stevens-Johnson syndrome (SJS), chemical burn, aniridia and recurrent pterygium were investigated. Our results showed that normal ocular surface epithelial cells expressed Pax6. However, corneal pannus epithelial cells from the above patients showed a decline or absence of Pax6 expression, accompanied by a decline or absence of K12 keratin but an increase of K10 keratin and filaggrin expression. Pannus basal epithelial cells maintained nuclear p63 expression and showed activated proliferation, evidenced by positive Ki67 and K16 keratin staining. On 3T3 fibroblast feeder layers, Pax6 immunostaining was negative in clones generated from epithelial cells harvested from corneal pannus from SJS or aniridia, but positive in those from the normal limbal epithelium; whereas western blots showed that some epithelial clones expanded from pannus retained Pax6 expression. Transient transfection of an adenoviral vector carrying EGFP-Pax6 transgenes into these Pax6(-) clones increased both Pax6 and K12 keratin expression. These results indicate that Pax6 helps to maintain the normal corneal epithelial phenotype postnatally, and that down-regulation of Pax6 is associated with abnormal epidermal differentiation in severe ocular surface diseases. Reintroduction of activation of the Pax6 gene might be useful in treating squamous metaplasia of the ocular surface epithelium.
Collapse
Affiliation(s)
- W Li
- Ocular Surface Center and TissueTech Inc, Miami, FL 33173, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chikama T, Liu CY, Meij JTA, Hayashi Y, Wang IJ, Yang L, Nishida T, Kao WWY. Excess FGF-7 in corneal epithelium causes corneal intraepithelial neoplasia in young mice and epithelium hyperplasia in adult mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:638-49. [PMID: 18276784 DOI: 10.2353/ajpath.2008.070897] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We hypothesized that human ocular surface squamous neoplasia (OSSN) may result from the continuous growth stimulation of corneal epithelial progenitor cells. In the present study, we analyzed the effects of excess fibroblast growth factor-7 (FGF-7) on both the proliferation and differentiation of corneal epithelium in a novel Krt12-rtTA/tet-O-FGF-7 double transgenic mouse model in which cornea-specific FGF-7 overexpression is achieved by doxycycline (Dox) treatment. When such adult mice were exposed to Dox, they exhibited epithelial hyperplasia with increases in phospho-extracellular signal-regulated kinase 1/2-, nuclear beta-catenin-, and 5-bromo-2'-deoxyuridine-labeled cells and altered keratin (K) 14 (K14) expression pattern, a normal K12 expression pattern, and the normal absence of K10. Hyperplasia of the adult cornea was fully reversible 2 weeks after the removal of Dox from chow. In contrast, double transgenic embryos that were exposed to Dox from embryonic day 0.5 to postnatal day 21 developed papillomatous tumors in the cornea, resembling human OSSN, and ectopic gland-like structures in the limbus, accompanied by the down-regulation of K12 and the up-regulation of K14, Pax6, and p63. These epithelial anomalies observed in young experimental mice were not fully resolved after the termination of Dox induction. Taken together, Krt12-rtTA/tet-O-FGF-7 mice may be a suitable animal model for the study of the molecular and cellular mechanisms of human OSSN.
Collapse
Affiliation(s)
- Taiichiro Chikama
- Department of Ophthalmology, University of Cincinnati Medical Center, 3223 Eden Ave., Suite 350, Cincinnati, OH 45267-0527, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Yeh LK, Liu CY, Chien CL, Converse RL, Kao WWY, Chen MS, Hu FR, Hsieh FJ, Wang IJ. Molecular analysis and characterization of zebrafish keratocan (zKera) gene. J Biol Chem 2007; 283:506-517. [PMID: 17965408 DOI: 10.1074/jbc.m707656200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Corneal small leucine-rich proteoglycans play a pivotal role in maintaining corneal transparency and function. In this study, we isolated and characterized the zebrafish (Danio rerio) keratocan (zKera) gene. The human keratocan sequence was used to search zebrafish homologues. The zKera full-length genomic DNA and cDNA were generated via PCR of zebrafish genomic DNA and reverse transcription-PCR of total zebrafish eye RNA, respectively. The zKera spanning 3.5 kilobase pairs consists of two exons and one intron and a TATA-less promoter. The zKera encodes 341 amino acids with 59% identity to its human counterpart and 57% identity to that of mouse keratocan. Like mouse and chick keratocan, zKera mRNA is selectively expressed in the adult cornea; however, during embryonic development, zKera mRNA is expressed in both the brain and the cornea. Interestingly, it is expressed mainly in corneal epithelium but also in the stroma. A pseudogene was proved by introducing a zKera promoter-driven enhanced green fluorescence protein reporter gene into fertilized zebrafish eggs. Using morpholino-antisense against zKera to knock down zKera resulted in a lethal phenotype due to massive caspase-dependent apoptosis, which was noted by a significant increase of active caspase-3 and caspase-8 in the developing forebrain area, including the eyes. This is different from mouse, for which keratocan-deficient mice are viable. Taken together, our data indicate that mammalian keratocan is conserved in zebrafish in terms of gene structure, expression pattern, and promoter function.
Collapse
Affiliation(s)
- Lung-Kun Yeh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Department of Ophthalmology, Chang-Gung Memorial Hospital (Linko), Chang-Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chia-Yang Liu
- Department of Ophthalmology, Cincinnati, Ohio 45267-0838
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | - Winston W-Y Kao
- Department of Ophthalmology, Cincinnati, Ohio 45267-0838; Department of Cell Biology, Neuroscience, and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0838
| | - Muh-Shy Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Fung-Rong Hu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Fon-Jou Hsieh
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan.
| |
Collapse
|
33
|
Nakamura T, Inatomi T, Cooper LJ, Rigby H, Fullwood NJ, Kinoshita S. Phenotypic Investigation of Human Eyes with Transplanted Autologous Cultivated Oral Mucosal Epithelial Sheets for Severe Ocular Surface Diseases. Ophthalmology 2007; 114:1080-8. [PMID: 17275911 DOI: 10.1016/j.ophtha.2006.09.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 09/02/2006] [Accepted: 09/28/2006] [Indexed: 10/23/2022] Open
Abstract
PURPOSE To determine the epithelial lineage of origin of surgically removed grafts after autologous cultivated oral mucosal epithelial transplantation (COMET). DESIGN Retrospective comparative case series. PARTICIPANTS We studied 6 eyes from 5 patients with total corneal stem cell destruction; 3 eyes were from patients with Stevens-Johnson syndrome and 3 eyes had sustained chemical injury. METHODS Autologous cultivated oral mucosal epithelial sheets on human amniotic membrane (AM) were transplanted onto the ocular surface. Regrafting (2 eyes) or penetrating keratoplasty (4 eyes) was performed after the initial transplantation procedure for further visual rehabilitation. MAIN OUTCOME MEASURES The excised grafts were subjected to clinical evaluation and to light, scanning, and transmission electron microscopic (EM) study and to immunohistochemical analysis. RESULTS In clinically failed grafts, EM and immunohistochemical analysis disclosed only small areas where the original cultivated oral epithelial cells persisted. Neighboring conjunctival epithelial cells had apparently invaded a large portion of the corneal surface (keratin 3[-], Muc5ac[+]); there were many blood vessels and inflammatory cells. In clinically successful grafts, transplanted cultivated oral epithelial cells survived and had adapted well to the host corneal tissues (keratin 3[+], Muc5ac[-]); there was no infiltration by inflammatory cells, nor was there dissolution of the AM substrate. CONCLUSIONS We posit that the process of graft opacification after COMET is responsible for the loss of transplanted cultivated oral epithelial cells and that this is followed by conjunctival cell invasion onto the corneal surface. We confirmed that in clinically successfully grafted eyes, autologous cultivated oral epithelial cells survived on the corneal surface and maintained ocular surface integrity.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Li W, Hayashida Y, Chen YT, Tseng SCG. Niche regulation of corneal epithelial stem cells at the limbus. Cell Res 2007; 17:26-36. [PMID: 17211449 PMCID: PMC3190132 DOI: 10.1038/sj.cr.7310137] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Among all adult somatic stem cells, those of the corneal epithelium are unique in their exclusive location in a defined limbal structure termed Palisades of Vogt. As a result, surgical engraftment of limbal epithelial stem cells with or without ex vivo expansion has long been practiced to restore sights in patients inflicted with limbal stem cell deficiency. Nevertheless, compared to other stem cell examples, relatively little is known about the limbal niche, which is believed to play a pivotal role in regulating self-renewal and fate decision of limbal epithelial stem cells. This review summarizes relevant literature and formulates several key questions to guide future research into better understanding of the pathogenesis of limbal stem cell deficiency and further improvement of the tissue engineering of the corneal epithelium by focusing on the limbal niche.
Collapse
Affiliation(s)
- Wei Li
- Ocular Surface Center and TissueTech Inc. Miami, Florida, 33173, USA
| | | | | | | |
Collapse
|
35
|
Chen YT, Li W, Hayashida Y, He H, Chen SY, Tseng DY, Kheirkhah A, Tseng SCG. Human amniotic epithelial cells as novel feeder layers for promoting ex vivo expansion of limbal epithelial progenitor cells. Stem Cells 2007; 25:1995-2005. [PMID: 17495107 PMCID: PMC3197019 DOI: 10.1634/stemcells.2006-0677] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human amniotic epithelial cells (HAECs) are a unique embryonic cell source that potentially can be used as feeder layers for expanding different types of stem cells. In vivo, HAECs uniformly expressed pan-cytokeratins (pan-CK) and heterogeneously expressed vimentin (Vim). The two phenotypes expressing either pan-CK(+)/Vim(+) or pan-CK(+)/Vim(-) were maintained in serum-free media with high calcium. In contrast, all HAECs became pan-CK(+)/Vim(+) in serum-containing media, which also promoted HAEC proliferation for at least eight passages, especially supplemented with epidermal growth factor and insulin. Mitomycin C-arrested HAEC feeder layers were more effective in promoting clonal growth of human limbal epithelial progenitors than conventional 3T3 murine feeder layers. Cells in HAEC-supported clones were uniformly smaller, sustained more proliferation, and expressed less CK12 and connexin 43 but higher levels of stem cell-associated markers such as p63, Musashi-1, and ATP-binding cassette subfamily G2 than those of 3T3-supported clones. Subculturing of clonally expanded limbal progenitors from HAEC feeder layers, but not from 3T3 feeder layers, gave rise to uniformly p63-positive epithelial progenitor cells as well as nestin-positive neuronal-like progenitors. Collectively, these results indicated that HAECs can be used as a human feeder layer equivalent for more effective ex vivo expansion of adult epithelial stem cells from the human limbus. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Ying Ting Chen
- TissueTech, Inc. and Ocular Surface Center, Miami, Florida, USA
- Department of Ophthalmology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei Li
- TissueTech, Inc. and Ocular Surface Center, Miami, Florida, USA
| | | | - Hua He
- TissueTech, Inc. and Ocular Surface Center, Miami, Florida, USA
| | - Szu Yu Chen
- TissueTech, Inc. and Ocular Surface Center, Miami, Florida, USA
| | - David Y. Tseng
- TissueTech, Inc. and Ocular Surface Center, Miami, Florida, USA
| | - Ahmad Kheirkhah
- TissueTech, Inc. and Ocular Surface Center, Miami, Florida, USA
| | | |
Collapse
|
36
|
Lu H, Zimek A, Chen J, Hesse M, Büssow H, Weber K, Magin TM. Keratin 5 knockout mice reveal plasticity of keratin expression in the corneal epithelium. Eur J Cell Biol 2006; 85:803-11. [PMID: 16759736 DOI: 10.1016/j.ejcb.2006.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/03/2006] [Accepted: 04/07/2006] [Indexed: 01/12/2023] Open
Abstract
We have recently demonstrated that the keratin K3 gene, which is active in the suprabasal human corneal epithelium, is missing in the genome of the mouse. We show that a normal K3 gene exists in a wide variety of mammals while in rodents the gene is converted to a pseudogene with a very strong sequence drift. The availability of K5-/- mice provides a unique opportunity to investigate type-specific keratin function during corneal differentiation in the absence of both K5 and K3. Here, we report that the deletion of K5, which in wild-type mice forms a cytoskeleton with K12, does neither cause keratin aggregation nor cytolysis in the cornea. This is due to the induction of K4 in corneal epithelial cells, normally restricted to corneal stem stem cells residing in the limbus. Using a combination of antibodies and RT-PCR, we identified additional keratins expressed in the mouse cornea including K23 which was previously thought to be specific for pancreatic carcinomas. This reflects an unexpected complexity of keratin expression in the cornea. Our data suggest that in the absence of mechanical stress, corneal differentiation does not depend on distinct keratin pairs, supporting a concept of functional redundancy, at least for certain keratins.
Collapse
Affiliation(s)
- Hong Lu
- Institut für Physiologische Chemie, Abteilung für Zellbiochemie, Bonner Forum Biomedizin and LIMES, Rheinische Friedrich-Wilhelms-Universität, Nussallee 11, D-53115 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Toshino A, Shiraishi A, Zhang W, Suzuki A, Kodama T, Ohashi Y. Expression of keratinocyte transglutaminase in cornea of vitamin A-deficient rats. Curr Eye Res 2005; 30:731-9. [PMID: 16146918 DOI: 10.1080/02713680591005940] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To determine the role played by keratinocyte transglutaminase (TG1, TG(K)) in the abnormal keratinization of the cornea. METHODS Vitamin A-deficient rats were produced as a model of severe dry eyes, and the expression of the mRNA and the enzyme activity of TG1 were examined in the corneas. The envelope proteins and keratins of cornified cells were also examined immunohistochemically. RESULTS The expression and enzyme activity of TG1 mRNA on the ocular surface were significantly upregulated as the vitamin A deficiency developed. As the TG1 expression was upregulated, involucrin, loricrin, and keratin 10 began to be expressed on the epithelial cells of the cornea. CONCLUSIONS Upregulation of TG1 expression followed by the appearance of the envelope proteins and keratin10 in cornified cells indicated that TG1 is involved in the abnormal keratinization of the cornea.
Collapse
Affiliation(s)
- Atsuko Toshino
- Department of Ophthalmology, Ehime University School of Medicine, Ehime, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Chen Z, de Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, Li DQ. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 2005; 22:355-66. [PMID: 15153612 PMCID: PMC2906385 DOI: 10.1634/stemcells.22-3-355] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study evaluated proposed molecular markers related to stem cell (SC) properties with the intention of characterizing a putative SC phenotype in human limbal epithelia. Human corneal and limbal tissues were cut in the vertical and horizontal meridians for histology, transmission electron microscopy (TEM), and immunostaining. Semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization were used to evaluate gene expression. TEM showed that the limbal basal cells were small primitive cells. Immunostaining disclosed that p63, ABCG2 and integrin alpha9 were primarily expressed by the basal epithelial cells of limbus. Antibodies against integrin beta1, epidermal growth factor receptor (EGFR), K19, enolase-alpha, and CD71 stained the basal cells of the limbus more brightly than the suprabasal epithelia. Integrin alpha6, nestin, E-cadherin and connexin 43 did not stain the limbal basal cells, but the suprabasal epithelia of the cornea and limbus showed strong immunoreactivity. K3 and involucrin stained only corneal and limbal superficial cells. RT-PCR showed higher levels of p63, ABCG2 and integrin alpha9 mRNA, but lower levels of K3, K12 and connexin 43 expressed in the limbal epithelia than the corneal epithelia. In situ hybridization showed that p63 transcripts were located in basal layer of the limbal epithelium. This work suggests that the basal epithelial cells of the limbus are p63, ABCG2 and integrin alpha9 positive, and nestin, E-cadherin, connexin 43, involucrin, K3, and K12 negative, with relatively higher expression of integrin beta1, EGFR, K19, and enolase-alpha. This putative SC phenotype may facilitate the identification and isolation of limbal epithelial SCs.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/metabolism
- Antigens, CD/metabolism
- Bacterial Capsules
- Biomarkers, Tumor/metabolism
- Cadherins/metabolism
- Connexin 43/metabolism
- DNA-Binding Proteins/metabolism
- Epithelium/metabolism
- Epithelium/ultrastructure
- Epithelium, Corneal/metabolism
- Epithelium, Corneal/ultrastructure
- Genes, erbB-1/genetics
- Humans
- Integrins/metabolism
- Intermediate Filament Proteins/metabolism
- Limbus Corneae/metabolism
- Limbus Corneae/ultrastructure
- Membrane Proteins/metabolism
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Neoplasm Proteins/metabolism
- Nerve Tissue Proteins/metabolism
- Nestin
- Phosphopyruvate Hydratase/metabolism
- Polysaccharides, Bacterial/metabolism
- Receptors, Transferrin/metabolism
- Stem Cells/cytology
- Stem Cells/metabolism
- Stem Cells/ultrastructure
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Zhuo Chen
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Lihui Luo
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Francis L. Kretzer
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
39
|
Sjoberg SA. Genetics of Corneal Disease for the Ocular Surface Clinician. Ocul Surf 2005; 3:155-66. [PMID: 17131020 DOI: 10.1016/s1542-0124(12)70197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Advances in the understanding of inherited corneal and external diseases may allow interventions that prevent the substantial vision impairment currently caused by these diseases. The observant clinician may first recognize inherited corneal and external diseases based on clinical examination and a careful family history. Researchers using positional cloning and candidate gene techniques have identified several disease-causing genes. Identification of the genes responsible for inherited corneal and external diseases will lead to more definitive diagnoses and represent the first step in development of effective therapies. Future endeavors are directed toward identifying additional inherited corneal and external diseases, the genes that cause them, and possible gene therapies to improve visual outcomes.
Collapse
Affiliation(s)
- Stacy A Sjoberg
- Department of Ophthalmology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| |
Collapse
|
40
|
Hayashi Y, Liu CY, Jester JJ, Hayashi M, Wang IJ, Funderburgh JL, Saika S, Roughley PJ, Kao CWC, Kao WWY. Excess biglycan causes eyelid malformation by perturbing muscle development and TGF-alpha signaling. Dev Biol 2005; 277:222-34. [PMID: 15572151 PMCID: PMC2876305 DOI: 10.1016/j.ydbio.2004.09.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 09/13/2004] [Accepted: 09/13/2004] [Indexed: 11/29/2022]
Abstract
Tissue morphogenesis during development is regulated by growth factors and cytokines, and is characterized by constant remodeling of extracellular matrix (ECM) in response to signaling molecules, for example, growth factors, cytokines, and so forth. Proteoglycans that bind growth factors are potential regulators of tissue morphogenesis during embryonic development. In this study, we showed that transgenic mice overexpressing biglycan under the keratocan promoter exhibited exposure keratitis and premature eye opening from noninfectious eyelid ulceration due to perturbation of eyelid muscle formation and the failure of meibomian gland formation. In addition, in vitro analysis revealed that biglycan binds to TGF-alpha, thus interrupting EGFR signaling pathways essential for mesenchymal cell migration induced by eyelid epithelium. The defects of TGF-alpha signaling by excess biglycan were further augmented by the interruption of the autocrine or paracrine loop of the EGFR signaling pathway of HB-EGF expression elicited by TGF-alpha. These results are consistent with the notion that under physiological conditions, biglycan secreted by mesenchymal cells serves as a regulatory molecule for the formation of a TGF-alpha gradient serving as a morphogen of eyelid morphogenesis.
Collapse
Affiliation(s)
- Yasuhito Hayashi
- Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, OH 45267-0527, United States
| | - Chia-Yang Liu
- Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, OH 45267-0527, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, United States
| | - James J. Jester
- Department of Ophthalmology, University of Texas, Southwestern Medical Center, Dallas, TX 75390, United States
| | - Miyuki Hayashi
- Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, OH 45267-0527, United States
| | - I-Jong Wang
- Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, OH 45267-0527, United States
| | - James L. Funderburgh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Shizuya Saika
- Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, OH 45267-0527, United States
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Peter J. Roughley
- Genetics Unit, Shriners Hospital for Children and Department of Surgery, McGill University, Montreal, Canada
| | - Candace Whei-Cheng Kao
- Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, OH 45267-0527, United States
| | - Winston Whei-Yang Kao
- Department of Ophthalmology, University of Cincinnati Medical Center, Cincinnati, OH 45267-0527, United States
- Corresponding author. Department of Ophthalmology, University of Cincinnati Medical Center, 3223 Eden Avenue Cincinnati, OH 45267-0527. Fax: +1 513 558 3108. (W.W.-Y. Kao)
| |
Collapse
|
41
|
Espana EM, Di Pascuale M, Grueterich M, Solomon A, Tseng SCG. Keratolimbal allograft in corneal reconstruction. Eye (Lond) 2004; 18:406-17. [PMID: 15069439 DOI: 10.1038/sj.eye.6700670] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The replenishment of corneal epithelial SC is a crucial step for reconstructing the ocular surface in patients suffering from devastating ocular surface diseases manifesting with total LSCD. KLAL is one of such procedures and has a long track record and a long follow-up for patients with bilateral total LSCD. This review summarizes the literature experiences and outline new strategies that are important to enhance the success of this procedure. Further research is needed to fully understand the biological processes involved in allogeneic tissue transplantation for preserving epithelial SC adhesion, migration, and survival.
Collapse
Affiliation(s)
- E M Espana
- Ocular Surface Center and Ocular Surface Research and Education Foundation, Miami, FL, USA
| | | | | | | | | |
Collapse
|
42
|
Davis J, Duncan MK, Robison WG, Piatigorsky J. Requirement for Pax6 in corneal morphogenesis: a role in adhesion. J Cell Sci 2003; 116:2157-67. [PMID: 12692153 DOI: 10.1242/jcs.00441] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Pax6 transcription factor functions early during embryogenesis to control key steps in brain, pancreas, olfactory and ocular system development. A requirement for Pax6 in proper formation of lens, iris and retina is well documented. By examining the corneas of heterozygous Small eye (SEY) mice, this report shows that Pax6 is also necessary for normal corneal morphogenesis. In particular, the epithelial component of the postnatal and adult SEY (+/-) cornea is thinner owing to a reduction in the number of cell layers, despite a tenfold increase in the proliferative index and no change in TUNEL labeling. Ultrastructural views revealed large gaps between corneal epithelial cells and a change in the appearance of desmosomes, suggesting that adhesion abnormalities contribute to the corneal phenotype of SEY (+/-) mice. Western blot analysis and immunofluorescence showed equivalent amounts and normal localization of E-cadherin in SEY (+/-) corneas, and the actin cytoskeleton appeared normal as judged by phalloidin staining. By contrast, the levels of desmoglein, beta-catenin and gamma-catenin were reduced in the SEY (+/-) cornea. In addition, the amount of keratin-12 mRNA and protein, the major intermediate filament, was reduced in SEY (+/-) corneal epithelium as shown by in situ hybridization and immunohistochemistry. Finally, the SEY (+/-) corneal epithelium adheres less well than wild-type when challenged with gentle rubbing using a microsponge. In conclusion, our results indicate that cellular adhesion is compromised in the SEY (+/-) corneal epithelium and suggests a role for Pax6 in the proper generation and maintenance of the adult cornea.
Collapse
Affiliation(s)
- Janine Davis
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-2730, USA
| | | | | | | |
Collapse
|
43
|
Kao WWY. Particle-mediated gene transfer to ocular surface epithelium. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:1297-308. [PMID: 12614071 DOI: 10.1007/978-1-4615-0717-8_189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Winston W Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
44
|
Tseng SCG, Meller D, Anderson DF, Touhami A, Pires RTF, Grüterich M, Solomon A, Espana E, Sandoval H, Ti SE, Goto E. Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane for treating corneal diseases with total limbal stem cell deficiency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:1323-34. [PMID: 12614074 DOI: 10.1007/978-1-4615-0717-8_192] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Scheffer C G Tseng
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, Florida, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hernandez Galindo EE, Theiss C, Steuhl KP, Meller D. Gap junctional communication in microinjected human limbal and peripheral corneal epithelial cells cultured on intact amniotic membrane. Exp Eye Res 2003; 76:303-14. [PMID: 12573659 DOI: 10.1016/s0014-4835(02)00314-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of the study was to determine if human limbal epithelial cells (HLEC) do not form gap junctions (GJ) during ex vivo expansion on preserved and intact human amniotic membrane (AM). Thereby, we attempt to evaluate if characteristic features of the limbal epithelial progenitor cells are preserved on AM. Primary human limbal (HLEC) and peripheral corneal (HPCEC) epithelial cells from limbal and peripheral corneal explants were cultured with SHEM either on intact AM or plastic. After 3-4 weeks, cell cultures were terminated and processed for immunofluorescence. In all cell cultures, formations of GJs were analyzed with a mouse monoclonal antibody to connexin 43 (Cx43) and a rabbit affinity purified antibody against connexin 26 (Cx26). Sections of human limbus and cornea served as positive control. Lucifer yellow (LY) known to be a GJ permeant dye was used to analyse functionality of GJ. Microinjection of LY into single cells was performed with a pressure microinjection device under visual control and with the aid of phase contrast optics. Dye spread of LY into adjacent cells indicating intercellular communication was compared between HLEC and HPCEC cultured either on AM or plastic. In vivo, a punctate pattern of Cx43 was typically found in basal and suprabasal corneal epithelial cells and labeling for Cx26 was observed in all cell layers of the human corneal epithelium, however, subpopulations of limbal basal epithelial cells lacked detectable fluorescence signals for both connexins. In HLEC cultured on AM, a scanty immunolabeling for Cx43 (12.6%) was noted, but HPCEC cultured on AM as well as HLEC cultured on plastic showed a higher labeling index (LI) for Cx43 (42.7 and 52.3%, respectively). A significant lower immunostaining for Cx26 was observed in HLEC cultured on AM (LI: 35.16%) in comparison to HLEC cultured on plastic (68.4%), as well as, HPCEC cultured either on AM or plastic (61% and 79.3%, respectively; p<0.001). Gap junctional communication was evidenced more frequently in HLEC cultured on plastic (51%, p<0.05) in contrast to HLEC cultures on AM, which exhibited a limited dye spread in 29.7% of injected cells. A significant difference in dye coupling was also evidenced between HPCEC on AM (52.9%; p<0.05) and HLEC on AM. Subpopulations of HLEC cultured on AM remain Cx43 and Cx26 negative and without functional GPs indicating that characteristic features of limbal epithelial progenitor cells might be preserved during ex-vivo expansion on AM. These data provide support to the use of the ex-vivo expansion of HLEC as an alternative therapeutic strategy for corneal surface reconstruction in distinct ocular surface diseases.
Collapse
|
46
|
Meller D, Dabul V, Tseng SCG. Expansion of conjunctival epithelial progenitor cells on amniotic membrane. Exp Eye Res 2002; 74:537-45. [PMID: 12076097 DOI: 10.1006/exer.2001.1163] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amniotic membrane (AM) reconstructed human conjunctival surfaces recover a goblet cell density higher than normal. Cultured rabbit conjunctival epithelial cells (RCE) on AM preferentially exhibit non-goblet epithelial differentiation. It was thus wondered if conjunctival progenitor cells that might have been preserved during ex vivo expansion on AM can still differentiate into conjunctival non-goblet epithelial and goblet cells under the influence of mesenchymal cells. Fourteen day old AM cultures of RCE were subcutaneously implanted in Balb/c athymic mice for 11 days and processed for PAS staining and immunostaining with monoclonal antibodies to conjunctival goblet cell mucin (MUC5AC, AM3), glycocalyx (AMEM2), cornea specific cytokeratins K3 (AE5) and K12 (AK2) and basal cell specific cytokeratin K14. Cell cycle kinetics were measured by BrdU labelling for 1 or 7 days. The 7 day labelled RCE were chased for 14 days in the same primary culture. After subcutaneous implantation, conjunctival non-goblet epithelial cells increased stratification and formed occasional cysts. The resultant epithelial phenotype was conjunctival with many PAS-positive, MUC5AC-positive, and AM3-positive goblet cells, AMEM2-positive suprabasal and superficial cells, and K14-positive basal cells, but was not corneal (negative to AE5 and AK2 staining). Twenty four hr BrdU labelling showed a labelling index of 42.5%. A higher labelling index or 69% was noted after continuous BrdU labelling for 7 days. A large number of label retaining basal cells with a labelling index of 84% were noted following 14 days of chase. Conjunctival epithelial progenitor cells for goblet and non-goblet cell differentiation are preserved by AM in vitro as evidenced by being able to differentiate into goblet cells in a permissive stromal environment, and being slow-cycling, and label retaining. This information is useful for future ex vivo expansion of conjunctival epithelial stem cells for conjunctival surface reconstruction.
Collapse
Affiliation(s)
- Daniel Meller
- Department of Ophthalmology, Bascom Palmer Eye Institute, Miami, Florida, USA
| | | | | |
Collapse
|
47
|
Kinoshita S, Adachi W, Sotozono C, Nishida K, Yokoi N, Quantock AJ, Okubo K. Characteristics of the human ocular surface epithelium. Prog Retin Eye Res 2001; 20:639-73. [PMID: 11470454 DOI: 10.1016/s1350-9462(01)00007-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An appreciation of the biological characteristics of the human ocular surface epithelium affords us a great insight into the physiology of the human ocular surface in health and disease. Here, we review five important aspects of the human ocular surface epithelium. First, we recognize the discovery of corneal epithelial stem cells, and note how the palisades of Vogt have been suggested as a clinical marker of their presence. Second, we introduce the concept of the gene expression profile of the ocular surface epithelium as arrived at using a new strategy for the systematic analysis of active genes. We also provide a summary of several genes abundantly or uniquely expressed in the human corneal epithelium, namely clusterin, keratin 3, keratin 12, aldehyde dehydrogenase 3 (ALDH3), troponin-I fast-twitch isoform, ssig-h3, cathepsin L2 (cathepsin V), uroplakin Ib, and Ca(2+)-activated chloride channel. Genes related to limbal and conjunctival epithelia are also described. Third, we touch upon the genetic abnormalities thought to be involved with epithelial dysfunction in Meesmann's dystrophy, gelatinous drop-like corneal dystrophy, and the ssig-h3-mutated corneal dystrophies. Fourth, we provide an update regarding the current state of knowledge of the role of cytokines, growth factors and apoptosis in relation to ocular surface homeostasis and tissue reconstruction; the main factors being epidermal growth factor (EGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), transforming growth factor-ss (TGF-ss), and some inflammatory cytokines. Fifth, corneal epithelial barrier function and dysfunction as measured by fluorophotometry is remarked upon, with an explanation of the FL-500 fluorophotometer and its ability to detect corneal epithelial dysfunction at a subclinical level. The research described in this review has undoubtedly generated a complete understanding of corneal epithelial pathophysiology-an understanding that, directly or indirectly, has helped advance the development of new therapeutic modalities for ocular surface reconstruction.
Collapse
Affiliation(s)
- S Kinoshita
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 645 Kajii-cho, Hirokoji Kawaramachi, Kamigyo-ku, Kyoto 602-0841, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
One of the important functions of the cornea is to maintain normal vision by refracting light onto the lens and retina. This property is dependent in part on the ability of the corneal epithelium to undergo continuous renewal. Epithelial renewal is essential because it enables this tissue to act as a barrier that protects the corneal interior from becoming infected by noxious environmental agents. Furthermore, the smooth optical properties of the corneal epithelial surface are sustained through this renewal process. The rate of renewal is dependent on a highly integrated balance between the processes of corneal epithelial proliferation, differentiation, and cell death. One experimental approach to characterize these three aspects of the renewal process has been to study the kinetics and dynamics of corneal re-epithelialization in a wound-healing model. This effort has employed in vivo and in vitro studies. From such studies it is evident that the appropriate integration and coordination of corneal epithelial proliferation, adhesion, migration, and cell demise is dependent on the actions of a myriad of cytokines. Our goal here is to provide an overview into how these mediators and environmental factors elicit control of cellular proliferation, adhesion, migration, and apoptosis. To this end we review the pertinent literature dealing with the receptor and the cell signaling events that are responsible for mediating cytokine control of corneal epithelial renewal. It is our hope that a better appreciation can be obtained about the complexity of the control processes that are responsible for assuring continuous corneal epithelial renewal in health and disease.
Collapse
Affiliation(s)
- L Lu
- Department of Physiology and Biophysics, Wright State University School of Medicine, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
49
|
Yoshida N, Yoshida S, Araie M, Handa H, Nabeshima Y. Ets family transcription factor ESE-1 is expressed in corneal epithelial cells and is involved in their differentiation. Mech Dev 2000; 97:27-34. [PMID: 11025204 DOI: 10.1016/s0925-4773(00)00419-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Involvement of an epithelium-specific transcription factor ESE-1/ESX/ELF3/jen (ESE-1) in corneal epithelial cell differentiation was investigated. ESE-1 was reported to be induced during terminal differentiation of the epidermis and primary keratinocytes and to transactivate target genes through ets binding sites. However, its expression and function in corneal epithelium have not been examined. We report here that ESE-1 is upregulated upon differentiation in mouse corneal epithelium and in immortalized human corneal epithelial cells (HCE). ESE-1 transactivates through the regulatory element of cornea-specific K12 keratin. Moreover, introduction of ESE-1 antisense RNA in HCE cells affect their differentiation. These data suggest the involvement of ESE-1 in differentiation of corneal epithelial cells.
Collapse
Affiliation(s)
- N Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Konoe-cho, Sakyo-ku, 606-8501, Kyoto, Japan
| | | | | | | | | |
Collapse
|
50
|
Corden LD, Swensson O, Swensson B, Smith FJ, Rochels R, Uitto J, McLEAN WH. Molecular genetics of Meesmann's corneal dystrophy: ancestral and novel mutations in keratin 12 (K12) and complete sequence of the human KRT12 gene. Exp Eye Res 2000; 70:41-9. [PMID: 10644419 DOI: 10.1006/exer.1999.0769] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, we identified the first mutations in corneal keratins K3 and K12 in families with Meesmann's corneal dystrophy (MCD). Here, we sequenced all regions of the human K12 gene, to enable mutation detection for all exons using genomic DNA as a template. The human K12 genomic sequence spans 5919 bp and consists of eight exons. A microsatellite dinucleotide repeat was identified within intron 3, which was highly polymorphic and which we developed for use in genotype analysis. In addition, two mutations in the helix initiation motif of K12 were found in families with MCD. A novel mutation was detected in an American kindred, 410T-->C, which predicts the amino acid substitution M129T. In a German family, mutation 428G-->C was identified, predicting amino acid change R135T. The latter mutation was identical to that which we identified in the original kindred described by Meesmann. Using the intragenic microsatellite polymorphism in K12 and additional flanking markers, we were able to show that this family shares a common haplotype with the original Meesmann kindred. These results strongly imply that R135T represents an ancestral mutation in the German population. Both mutations occur in the highly conserved helix initiation motif of the K12 polypeptide. A total of eight mutations have now been reported in the K12 gene.
Collapse
Affiliation(s)
- L D Corden
- Epithelial Genetics Group, Department of Dermatology and Cutaneous Biology, Jefferson Medical College, 233 South 10th Street, Philadelphia, PA, 19107, USA
| | | | | | | | | | | | | |
Collapse
|