1
|
Trösch R, Willmund F. The conserved theme of ribosome hibernation: from bacteria to chloroplasts of plants. Biol Chem 2020; 400:879-893. [PMID: 30653464 DOI: 10.1515/hsz-2018-0436] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
Cells are highly adaptive systems that respond and adapt to changing environmental conditions such as temperature fluctuations or altered nutrient availability. Such acclimation processes involve reprogramming of the cellular gene expression profile, tuning of protein synthesis, remodeling of metabolic pathways and morphological changes of the cell shape. Nutrient starvation can lead to limited energy supply and consequently, remodeling of protein synthesis is one of the key steps of regulation since the translation of the genetic code into functional polypeptides may consume up to 40% of a cell's energy during proliferation. In eukaryotic cells, downregulation of protein synthesis during stress is mainly mediated by modification of the translation initiation factors. Prokaryotic cells suppress protein synthesis by the active formation of dimeric so-called 'hibernating' 100S ribosome complexes. Such a transition involves a number of proteins which are found in various forms in prokaryotes but also in chloroplasts of plants. Here, we review the current understanding of these hibernation factors and elaborate conserved principles which are shared between species.
Collapse
Affiliation(s)
- Raphael Trösch
- Department of Biology, Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| | - Felix Willmund
- Department of Biology, Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
2
|
Functional Analysis of PSRP1, the Chloroplast Homolog of a Cyanobacterial Ribosome Hibernation Factor. PLANTS 2020; 9:plants9020209. [PMID: 32041317 PMCID: PMC7076655 DOI: 10.3390/plants9020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022]
Abstract
Bacterial ribosome hibernation factors sequester ribosomes in an inactive state during the stationary phase and in response to stress. The cyanobacterial ribosome hibernation factor LrtA has been suggested to inactivate ribosomes in the dark and to be important for post-stress survival. In this study, we addressed the hypothesis that Plastid Specific Ribosomal Protein 1 (PSRP1), the chloroplast-localized LrtA homolog in plants, contributes to the global repression of chloroplast translation that occurs when plants are shifted from light to dark. We found that the abundance of PSRP1 and its association with ribosomes were similar in the light and the dark. Maize mutants lacking PSRP1 were phenotypically normal under standard laboratory growth conditions. Furthermore, the absence of PSRP1 did not alter the distribution of chloroplast ribosomes among monosomes and polysomes in the light or in the dark, and did not affect the light-regulated synthesis of the chloroplast psbA gene product. These results suggest that PSRP1 does not play a significant role in the regulation of chloroplast translation by light. As such, the physiological driving force for the retention of PSRP1 during chloroplast evolution remains unclear.
Collapse
|
3
|
Abstract
Protein synthesis consumes a large fraction of available resources in the cell. When bacteria encounter unfavorable conditions and cease to grow, specialized mechanisms are in place to ensure the overall reduction of costly protein synthesis while maintaining a basal level of translation. A number of ribosome-associated factors are involved in this regulation; some confer an inactive, hibernating state of the ribosome in the form of 70S monomers (RaiA; this and the following are based on Escherichia coli nomenclature) or 100S dimers (RMF and HPF homologs), and others inhibit translation at different stages in the translation cycle (RsfS, YqjD and paralogs, SRA, and EttA). Stationary phase cells therefore exhibit a complex array of different ribosome subpopulations that adjusts the translational capacity of the cell to the encountered conditions and ensures efficient reactivation of translation when conditions improve. Here, we review the current state of research regarding stationary phase-specific translation factors, in particular ribosome hibernation factors and other forms of translational regulation in response to stress conditions.
Collapse
Affiliation(s)
- Thomas Prossliner
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | | | | | - Kenn Gerdes
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| |
Collapse
|
4
|
The C Terminus of the Ribosomal-Associated Protein LrtA Is an Intrinsically Disordered Oligomer. Int J Mol Sci 2018; 19:ijms19123902. [PMID: 30563168 PMCID: PMC6321479 DOI: 10.3390/ijms19123902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/28/2018] [Accepted: 12/02/2018] [Indexed: 01/01/2023] Open
Abstract
The 191-residue-long LrtA protein of Synechocystis sp. PCC 6803 is involved in post-stress survival and in stabilizing 70S ribosomal particles. It belongs to the hibernating promoting factor (HPF) family, intervening in protein synthesis. The protein consists of two domains: The N-terminal region (N-LrtA, residues 1–101), which is common to all the members of the HPF, and seems to be well-folded; and the C-terminal region (C-LrtA, residues 102–191), which is hypothesized to be disordered. In this work, we studied the conformational preferences of isolated C-LrtA in solution. The protein was disordered, as shown by computational modelling, 1D-1H NMR, steady-state far-UV circular dichroism (CD) and chemical and thermal denaturations followed by fluorescence and far-UV CD. Moreover, at physiological conditions, as indicated by several biochemical and hydrodynamic techniques, isolated C-LrtA intervened in a self-association equilibrium, involving several oligomerization reactions. Thus, C-LrtA was an oligomeric disordered protein.
Collapse
|
5
|
Contreras LM, Sevilla P, Cámara-Artigas A, Hernández-Cifre JG, Rizzuti B, Florencio FJ, Muro-Pastor MI, García de la Torre J, Neira JL. The Cyanobacterial Ribosomal-Associated Protein LrtA from Synechocystis sp. PCC 6803 Is an Oligomeric Protein in Solution with Chameleonic Sequence Properties. Int J Mol Sci 2018; 19:ijms19071857. [PMID: 29937518 PMCID: PMC6073757 DOI: 10.3390/ijms19071857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022] Open
Abstract
The LrtA protein of Synechocystis sp. PCC 6803 intervenes in cyanobacterial post-stress survival and in stabilizing 70S ribosomal particles. It belongs to the hibernating promoting factor (HPF) family of proteins, involved in protein synthesis. In this work, we studied the conformational preferences and stability of isolated LrtA in solution. At physiological conditions, as shown by hydrodynamic techniques, LrtA was involved in a self-association equilibrium. As indicated by Nuclear Magnetic Resonance (NMR), circular dichroism (CD) and fluorescence, the protein acquired a folded, native-like conformation between pH 6.0 and 9.0. However, that conformation was not very stable, as suggested by thermal and chemical denaturations followed by CD and fluorescence. Theoretical studies of its highly-charged sequence suggest that LrtA had a Janus sequence, with a context-dependent fold. Our modelling and molecular dynamics (MD) simulations indicate that the protein adopted the same fold observed in other members of the HPF family (β-α-β-β-β-α) at its N-terminal region (residues 1–100), whereas the C terminus (residues 100–197) appeared disordered and collapsed, supporting the overall percentage of overall secondary structure obtained by CD deconvolution. Then, LrtA has a chameleonic sequence and it is the first member of the HPF family involved in a self-association equilibrium, when isolated in solution.
Collapse
Affiliation(s)
- Lellys M Contreras
- Center for Environmental Biology and Chemistry Research, Facultad Experimental de Ciencias y Tecnología, Universidad de Carabobo, 2001 Valencia, Venezuela.
| | - Paz Sevilla
- Facultad de Farmacia, Departamento de Química Física II, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain.
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería- ceiA3, 04120 Almería, Spain.
| | | | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy.
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, 41092 Seville, Spain.
| | - María Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, 41092 Seville, Spain.
| | | | - José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain.
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain.
| |
Collapse
|
6
|
A Proteomic Signature of Dormancy in the Actinobacterium Micrococcus luteus. J Bacteriol 2017; 199:JB.00206-17. [PMID: 28484042 DOI: 10.1128/jb.00206-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/24/2017] [Indexed: 12/13/2022] Open
Abstract
Dormancy is a protective state in which diverse bacteria, including Mycobacterium tuberculosis, Staphylococcus aureus, Treponema pallidum (syphilis), and Borrelia burgdorferi (Lyme disease), curtail metabolic activity to survive external stresses, including antibiotics. Evidence suggests dormancy consists of a continuum of interrelated states, including viable but nonculturable (VBNC) and persistence states. VBNC and persistence contribute to antibiotic tolerance, reemergence from latent infections, and even quorum sensing and biofilm formation. Previous studies indicate that the protein mechanisms regulating persistence and VBNC states are not well understood. We have queried the VBNC state of Micrococcus luteus NCTC 2665 (MI-2665) by quantitative proteomics combining gel electrophoresis, high-performance liquid chromatography, and tandem mass spectrometry to elucidate some of these mechanisms. MI-2665 is a nonpathogenic actinobacterium containing a small (2.5-Mb), high-GC-content genome which exhibits a well-defined VBNC state induced by nutrient deprivation. The MI-2665 VBNC state demonstrated a loss of protein diversity accompanied by increased levels of 18 proteins that are conserved across actinobacteria, 14 of which have not been previously identified in VNBC. These proteins implicate an anaplerotic strategy in the transition to VBNC, including changes in the glyoxylate shunt, redox and amino acid metabolism, and ribosomal regulatory processes. Our data suggest that MI-2665 is a viable model for dissecting the protein mechanisms underlying the VBNC stress response and provide the first protein-level signature of this state. We expect that this protein signature will enable future studies deciphering the protein mechanisms of dormancy and identify novel therapeutic strategies effective against antibiotic-tolerant bacterial infections.IMPORTANCE Dormancy is a protective state enabling bacteria to survive antibiotics, starvation, and the immune system. Dormancy is comprised of different states, including persistent and viable but nonculturable (VBNC) states that contribute to the spread of bacterial infections. Therefore, it is imperative to identify how bacteria utilize these different dormancy states to survive antibiotic treatment. The objective of our research is to eliminate dormancy as a route to antibiotic tolerance by understanding the proteins that control dormancy in Micrococcus luteus NCTC 2665. This bacterium has unique advantages for studying dormancy, including a small genome and a well-defined and reproducible VBNC state. Our experiments implicate four previously identified and 14 novel proteins upregulated in VBNC that may regulate this critical survival mechanism.
Collapse
|
7
|
McClure RS, Overall CC, McDermott JE, Hill EA, Markillie LM, McCue LA, Taylor RC, Ludwig M, Bryant DA, Beliaev AS. Network analysis of transcriptomics expands regulatory landscapes in Synechococcus sp. PCC 7002. Nucleic Acids Res 2016; 44:8810-8825. [PMID: 27568004 PMCID: PMC5062996 DOI: 10.1093/nar/gkw737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/05/2016] [Indexed: 12/29/2022] Open
Abstract
Cyanobacterial regulation of gene expression must contend with a genome organization that lacks apparent functional context, as the majority of cellular processes and metabolic pathways are encoded by genes found at disparate locations across the genome and relatively few transcription factors exist. In this study, global transcript abundance data from the model cyanobacterium Synechococcus sp. PCC 7002 grown under 42 different conditions was analyzed using Context-Likelihood of Relatedness (CLR). The resulting network, organized into 11 modules, provided insight into transcriptional network topology as well as grouping genes by function and linking their response to specific environmental variables. When used in conjunction with genome sequences, the network allowed identification and expansion of novel potential targets of both DNA binding proteins and sRNA regulators. These results offer a new perspective into the multi-level regulation that governs cellular adaptations of the fast-growing physiologically robust cyanobacterium Synechococcus sp. PCC 7002 to changing environmental variables. It also provides a methodological high-throughput approach to studying multi-scale regulatory mechanisms that operate in cyanobacteria. Finally, it provides valuable context for integrating systems-level data to enhance gene grouping based on annotated function, especially in organisms where traditional context analyses cannot be implemented due to lack of operon-based functional organization.
Collapse
Affiliation(s)
- Ryan S McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Christopher C Overall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Eric A Hill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Lye Meng Markillie
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Lee Ann McCue
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ronald C Taylor
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Marcus Ludwig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Alexander S Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
8
|
The stringent response regulates adaptation to darkness in the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci U S A 2016; 113:E4867-76. [PMID: 27486247 DOI: 10.1073/pnas.1524915113] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cyanobacterium Synechococcus elongatus relies upon photosynthesis to drive metabolism and growth. During darkness, Synechococcus stops growing, derives energy from its glycogen stores, and greatly decreases rates of macromolecular synthesis via unknown mechanisms. Here, we show that the stringent response, a stress response pathway whose genes are conserved across bacteria and plant plastids, contributes to this dark adaptation. Levels of the stringent response alarmone guanosine 3'-diphosphate 5'-diphosphate (ppGpp) rise after a shift from light to dark, indicating that darkness triggers the same response in cyanobacteria as starvation in heterotrophic bacteria. High levels of ppGpp are sufficient to stop growth and dramatically alter many aspects of cellular physiology, including levels of photosynthetic pigments and polyphosphate, DNA content, and the rate of translation. Cells unable to synthesize ppGpp display pronounced growth defects after exposure to darkness. The stringent response regulates expression of a number of genes in Synechococcus, including ribosomal hibernation promoting factor (hpf), which causes ribosomes to dimerize in the dark and may contribute to decreased translation. Although the metabolism of Synechococcus differentiates it from other model bacterial systems, the logic of the stringent response remains remarkably conserved, while at the same time having adapted to the unique stresses of the photosynthetic lifestyle.
Collapse
|
9
|
Galmozzi CV, Florencio FJ, Muro-Pastor MI. The Cyanobacterial Ribosomal-Associated Protein LrtA Is Involved in Post-Stress Survival in Synechocystis sp. PCC 6803. PLoS One 2016; 11:e0159346. [PMID: 27442126 PMCID: PMC4956104 DOI: 10.1371/journal.pone.0159346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023] Open
Abstract
A light-repressed transcript encodes the LrtA protein in cyanobacteria. We show that half-life of lrtA transcript from Synechocystis sp. PCC 6803 is higher in dark-treated cells as compared to light-grown cells, suggesting post-transcriptional control of lrtA expression. The lrtA 5´ untranslated leader region is involved in that darkness-dependent regulation. We also found that Synechocystis sp. PCC 6803 LrtA is a ribosome-associated protein present in both 30S and 70S ribosomal particles. In order to investigate the function of this protein we have constructed a deletion mutant of the lrtA gene. Cells lacking LrtA (∆lrtA) had significantly lower amount of 70S particles and a greater amount of 30S and 50S particles, suggesting a role of LrtA in stabilizing 70S particles. Synechocystis strains with different amounts of LrtA protein: wild-type, ∆lrtA, and LrtAS (overexpressing lrtA) showed no differences in their growth rate under standard laboratory conditions. However, a clear LrtA dose-dependent effect was observed in the presence of the antibiotic tylosin, being the LrtAS strains the most sensitive. Similar results were obtained under hyperosmotic stress caused by sorbitol. Conversely, after prolonged periods of starvation, ∆lrtA strains were delayed in their growth with respect to the wild-type and the LrtAS strains. A positive role of LrtA protein in post-stress survival is proposed.
Collapse
Affiliation(s)
- Carla V. Galmozzi
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Francisco J. Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| | - M. Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
10
|
Trauner A, Lougheed KEA, Bennett MH, Hingley-Wilson SM, Williams HD. The dormancy regulator DosR controls ribosome stability in hypoxic mycobacteria. J Biol Chem 2012; 287:24053-63. [PMID: 22544737 PMCID: PMC3390679 DOI: 10.1074/jbc.m112.364851] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/27/2012] [Indexed: 01/01/2023] Open
Abstract
It is thought that during latent infection, Mycobacterium tuberculosis bacilli are retained within granulomas in a low-oxygen environment. The dormancy survival (Dos) regulon, regulated by the response regulator DosR, appears to be essential for hypoxic survival in M. tuberculosis, but it is not known how the regulon promotes survival. Here we report that mycobacteria, in contrast to enteric bacteria, do not form higher-order structures (e.g. ribosomal dimers) upon entry into stasis. Instead, ribosomes are stabilized in the associated form (70S). Using a strategy incorporating microfluidic, proteomic, and ribosomal profiling techniques to elucidate the fate of mycobacterial ribosomes during hypoxic stasis, we show that the dormancy regulator DosR is required for optimal ribosome stabilization. We present evidence that the majority of this effect is mediated by the DosR-regulated protein MSMEG_3935 (a S30AE domain protein), which is associated with the ribosome under hypoxic conditions. A Δ3935 mutant phenocopies the ΔdosR mutant during hypoxia, and complementation of ΔdosR with the MSMEG_3935 gene leads to complete recovery of dosR mutant phenotypes during hypoxia. We suggest that this protein is named ribosome-associated factor under hypoxia (RafH) and that it is the major factor responsible for DosR-mediated hypoxic survival in mycobacteria.
Collapse
Affiliation(s)
- Andrej Trauner
- From the Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kathryn E. A. Lougheed
- From the Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mark H. Bennett
- From the Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Suzanne M. Hingley-Wilson
- From the Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Huw D. Williams
- From the Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
11
|
Sharma MR, Dönhöfer A, Barat C, Marquez V, Datta PP, Fucini P, Wilson DN, Agrawal RK. PSRP1 is not a ribosomal protein, but a ribosome-binding factor that is recycled by the ribosome-recycling factor (RRF) and elongation factor G (EF-G). J Biol Chem 2009; 285:4006-4014. [PMID: 19965869 DOI: 10.1074/jbc.m109.062299] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plastid-specific ribosomal proteins (PSRPs) have been proposed to play roles in the light-dependent regulation of chloroplast translation. Here we demonstrate that PSRP1 is not a bona fide ribosomal protein, but rather a functional homologue of the Escherichia coli cold-shock protein pY. Three-dimensional Cryo-electron microscopic (Cryo-EM) reconstructions reveal that, like pY, PSRP1 binds within the intersubunit space of the 70S ribosome, at a site overlapping the positions of mRNA and A- and P-site tRNAs. PSRP1 induces conformational changes within ribosomal components that comprise several intersubunit bridges, including bridge B2a, thereby stabilizes the ribosome against dissociation. We find that the presence of PSRP1/pY lowers the binding of tRNA to the ribosome. Furthermore, similarly to tRNAs, PSRP1/pY is recycled from the ribosome by the concerted action of the ribosome-recycling factor (RRF) and elongation factor G (EF-G). These results suggest a novel function for EF-G and RRF in the post-stress return of PSRP1/pY-inactivated ribosomes to the actively translating pool.
Collapse
Affiliation(s)
- Manjuli R Sharma
- From the Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509
| | - Alexandra Dönhöfer
- the Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany; Gene Center and Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Chandana Barat
- From the Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509
| | - Viter Marquez
- the Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany; Gene Center and Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Partha P Datta
- From the Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509
| | - Paola Fucini
- the Cluster of Excellence for Macromolecular Complexes, Institut fur Organische Chemie und Chemische Biologie, J. W. Goethe-Universitaet Frankfurt am Main, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany, and
| | - Daniel N Wilson
- the Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany; Gene Center and Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universitat München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany.
| | - Rajendra K Agrawal
- From the Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509; the Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12201.
| |
Collapse
|
12
|
Vila-Sanjurjo A. Modification of the Ribosome and the Translational Machinery during Reduced Growth Due to Environmental Stress. EcoSal Plus 2008; 3. [PMID: 26443727 DOI: 10.1128/ecosalplus.2.5.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Indexed: 06/05/2023]
Abstract
Escherichia coli strains normally used under laboratory conditions have been selected for maximum growth rates and require maximum translation efficiency. Recent studies have shed light on the structural and functional changes undergone by the translational machinery in E. coli during heat and cold shock and upon entry into stationary phase. In these situations both the composition and the partitioning of this machinery into the different pools of cellular ribosomes are modified. As a result, the translational capacity of the cell is dramatically altered. This review provides a comprehensive account of these modifications, regardless of whether or not their underlying mechanisms and their effects on cellular physiology are known. Not only is the composition of the ribosome modified upon entry into stationary phase, but the modification of other components of the translational machinery, such as elongation factor Tu (EFTu) and tRNAs, has also been observed. Hibernation-promoting factor (HPF), paralog protein Y (PY), and ribosome modulation factor (RMF) may also be related to the general protection against environmental stress observed in stationary-phase E. coli cells, a role that would not be revealed necessarily by the viability assays. Even for the best-characterized ribosome-associated factors induced under stress (RMF, PY, and initiation factors), we are far from a complete understanding of their modes of action.
Collapse
|
13
|
Ueta M, Ohniwa RL, Yoshida H, Maki Y, Wada C, Wada A. Role of HPF (hibernation promoting factor) in translational activity in Escherichia coli. J Biochem 2008; 143:425-33. [PMID: 18174192 DOI: 10.1093/jb/mvm243] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the stationary phase of growth in Escherichia coli, ribosome modulation factor (RMF) and hibernation promoting factor (HPF) dimerize most 70S ribosomes to form 100S ribosomes. The process of 100S formation has been termed 'ribosomal hibernation'. Here, the contributions of HPF to 100S formation and translation were analysed in vitro. HPF bound to, but did not dimerize the 70S ribosome. RMF dimerized and formed immature 90S ribosomes. Binding of both HPF and RMF converted 90S ribosomes to mature 100S ribosomes, which is consistent with the in vivo data. The role of HPF in in vitro translation also was investigated. In an artificial mRNA poly (U)-dependent phenylalanine incorporation assay, HPF bound to ribosomal particles and inhibited translation. In contrast, in a natural MS2 mRNA-dependent leucine incorporation assay, bound HPF was removed and hardly inhibited normal translation. Multiple alignment and phylogenetic analyses indicates that the hibernation system mediated by the HPF homologue, RMF and 100S ribosome formation may be specific to the proteobacteria gamma group. In contrast, most bacteria have at least one HPF homologue, and these homologues can be classified into three types, long HPF, short HPF and YfiA.
Collapse
Affiliation(s)
- Masami Ueta
- Department of Physics, Osaka Medical College, Takatsuki, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Wilson DN, Nierhaus KH. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 2007; 42:187-219. [PMID: 17562451 DOI: 10.1080/10409230701360843] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In every organism, translation of the genetic information into functional proteins is performed on the ribosome. In Escherichia coli up to 40% of the cell's total energy turnover is channelled toward the ribosome and protein synthesis. Thus, elaborate networks of translation regulation pathways have evolved to modulate gene expression in response to growth rate and external factors, ranging from nutrient deprivation, to chemical (pH, ionic strength) and physical (temperature) fluctuations. Since the fundamental players involved in regulation of the different phases of translation have already been extensively reviewed elsewhere, this review focuses on lesser known and characterized factors that regulate the ribosome, ranging from processing, modification and assembly factors, unusual initiation and elongation factors, to a variety of stress response proteins.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, Munich, Germany.
| | | |
Collapse
|
15
|
Ehira S, Ohmori M, Sato N. Identification of Low-temperature-regulated ORFs in the Cyanobacterium Anabaena sp. Strain PCC 7120: Distinguishing the Effects of Low Temperature from the Effects of Photosystem II Excitation Pressure. ACTA ACUST UNITED AC 2005; 46:1237-45. [PMID: 15919672 DOI: 10.1093/pcp/pci132] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Most organisms have developed various strategies to react rapidly to temperature down-shift and regulate expression of various genes to acclimate to low temperature. In photosynthetic organisms, temperature down-shift in the light results in not only a decrease in growth temperature but also an increase in PSII excitation pressure. Distinguishing the effects of low temperature from the effects of excitation pressure is necessary to understand the mechanism of low-temperature signal transduction. In this report, we analyzed changes in gene expression after three different environmental changes, i.e. temperature down-shift in the light, temperature down-shift in the dark and transfer to the dark, using DNA microarray in the cyanobacterium Anabaena sp. strain PCC 7120. By comparing the expression patterns under the three experimental conditions, we identified 15 open reading frames (ORFs) that were up-regulated by temperature down-shift both in the light and in the dark. These ORFs are considered to be regulated by low temperature, but not by excitation pressure. Six of them have a consensus sequence within the upstream region of their coding region and were indicated also to be up-regulated by tetracycline. Functional or structural changes in the ribosome could affect transcript levels of the low-temperature-regulated ORFs.
Collapse
Affiliation(s)
- Shigeki Ehira
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-Ohkubo, Sakura, Saitama, 338-8570 Japan
| | | | | |
Collapse
|
16
|
|
17
|
Vila-Sanjurjo A, Schuwirth BS, Hau CW, Cate JHD. Structural basis for the control of translation initiation during stress. Nat Struct Mol Biol 2004; 11:1054-9. [PMID: 15502846 DOI: 10.1038/nsmb850] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 09/28/2004] [Indexed: 11/08/2022]
Abstract
During environmental stress, organisms limit protein synthesis by storing inactive ribosomes that are rapidly reactivated when conditions improve. Here we present structural and biochemical data showing that protein Y, an Escherichia coli stress protein, fills the tRNA- and mRNA-binding channel of the small ribosomal subunit to stabilize intact ribosomes. Protein Y inhibits translation initiation during cold shock but not at normal temperatures. Furthermore, protein Y competes with conserved translation initiation factors that, in bacteria, are required for ribosomal subunit dissociation. The mechanism used by protein Y to reduce translation initiation during stress and quickly release ribosomes for renewed translation initiation may therefore occur widely in nature.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
18
|
Agafonov DE, Spirin AS. The ribosome-associated inhibitor A reduces translation errors. Biochem Biophys Res Commun 2004; 320:354-8. [PMID: 15219834 DOI: 10.1016/j.bbrc.2004.05.171] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2004] [Indexed: 11/28/2022]
Abstract
Recently we have reported about a novel stress response protein (pY or RaiA) associated with Escherichia coli ribosomes that inhibits translation at the aminoacyl-tRNA binding stage. Here we show that leucine misincorporation during in vitro poly(U) translation is inhibited by this protein much stronger than the incorporation of phenylalanine. The miscoding counteraction by RaiA is especially strong at the concentrations of magnesium ions close to those observed in vivo and diminishes at higher magnesium concentrations. The results obtained suggest that the anti-miscoding activity of RaiA could be the main function of the protein, rather than the inhibition of translation. The role of the protein in adaptation of cells to environmental stress is discussed.
Collapse
Affiliation(s)
- Dmitry E Agafonov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| | | |
Collapse
|
19
|
Imamura S, Asayama M, Takahashi H, Tanaka K, Takahashi H, Shirai M. Antagonistic dark/light-induced SigB/SigD, group 2 sigma factors, expression through redox potential and their roles in cyanobacteria. FEBS Lett 2003; 554:357-62. [PMID: 14623094 DOI: 10.1016/s0014-5793(03)01188-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expression of group 2 sigma factors is characterized in a cyanobacterium Synechocystis sp. PCC 6803 grown in culture, changing light conditions (white, red and blue light, and darkness), or the presence of drugs (rifampicin, chloramphenicol, DCMU, and DBMIB), and the roles of these sigma factors are elucidated. The expression of dark/light-induced SigB/SigD was accelerated under opposite redox (oxidation/reduction) states in an electron transport chain of photosynthesis. Expression of the dark-induced lrtA and light-induced psbA2/3 transcript was significantly reduced in the sigB and sigD knockout strains, respectively. Abundant amounts of sigB transcript and protein were observed in the sigC knockout strain, implying that SigC represses SigB expression under light. These findings clearly showed that SigB/SigD with another group 2 sigma, SigC, contribute to transcription for a subset of dark/light-responsive genes in the cyanobacterium. A possible model for SigB/SigD is presented and the potential ability for promoter recognition is also discussed.
Collapse
Affiliation(s)
- Sousuke Imamura
- Laboratory of Molecular Genetics, College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki 300-0393, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Agafonov DE, Kolb VA, Spirin AS. A novel stress-response protein that binds at the ribosomal subunit interface and arrests translation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:509-14. [PMID: 12762053 DOI: 10.1101/sqb.2001.66.509] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- D E Agafonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia 142290
| | | | | |
Collapse
|
21
|
Yamaguchi K, Subramanian AR. Proteomic identification of all plastid-specific ribosomal proteins in higher plant chloroplast 30S ribosomal subunit. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:190-205. [PMID: 12605670 DOI: 10.1046/j.1432-1033.2003.03359.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Six ribosomal proteins are specific to higher plant chloroplast ribosomes [Subramanian, A.R. (1993) Trends Biochem. Sci.18, 177-180]. Three of them have been fully characterized [Yamaguchi, K., von Knoblauch, K. & Subramanian, A. R. (2000) J. Biol. Chem. 275, 28455-28465; Yamaguchi, K. & Subramanian, A. R. (2000) J. Biol. Chem. 275, 28466-28482]. The remaining three plastid-specific ribosomal proteins (PSRPs), all on the small subunit, have now been characterized (2D PAGE, HPLC, N-terminal/internal peptide sequencing, electrospray ionization MS, cloning/ sequencing of precursor cDNAs). PSRP-3 exists in two forms (alpha/beta, N-terminus free and blocked by post-translational modification), whereas PSRP-2 and PSRP-4 appear, from MS data, to be unmodified. PSRP-2 contains two RNA-binding domains which occur in mRNA processing/stabilizing proteins (e.g. U1A snRNP, poly(A)-binding proteins), suggesting a possible role for it in the recruiting of stored chloroplast mRNAs for active protein synthesis. PSRP-3 is the higher plant orthologue of a hypothetical protein (ycf65 gene product), first reported in the chloroplast genome of a red alga. The ycf65 gene is absent from the chloroplast genomes of higher plants. Therefore, we suggest that Psrp-3/ycf65, encoding an evolutionarily conserved chloroplast ribosomal protein, represents an example of organelle-to-nucleus gene transfer in chloroplast evolution. PSRP-4 shows strong homology with Thx, a small basic ribosomal protein of Thermus thermophilus 30S subunit (with a specific structural role in the subunit crystallographic structure), but its orthologues are absent from Escherichia coli and the photosynthetic bacterium Synechocystis. We would therefore suggest that PSRP-4 is an example of gene capture (via horizontal gene transfer) during chloro-ribosome emergence. Orthologues of all six PSRPs are identifiable in the complete genome sequence of Arabidopsis thaliana and in the higher plant expressed sequence tag database. All six PSRPs are nucleus-encoded. The cytosolic precursors of PSRP-2, PSRP-3, and PSRP-4 have average targeting peptides (62, 58, and 54 residues long), and the mature proteins are of 196, 121, and 47 residues length (molar masses, 21.7, 13.8 and 5.2 kDa), respectively. Functions of the PSRPs as active participants in translational regulation, the key feature of chloroplast protein synthesis, are discussed and a model is proposed.
Collapse
Affiliation(s)
- Kenichi Yamaguchi
- Max-Planck-Institut fuer molekulare Genetik, Berlin-Dahlem, Germany.
| | | |
Collapse
|
22
|
Ye K, Serganov A, Hu W, Garber M, Patel DJ. Ribosome-associated factor Y adopts a fold resembling a double-stranded RNA binding domain scaffold. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5182-91. [PMID: 12392550 DOI: 10.1046/j.1432-1033.2002.03222.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli protein Y (pY) binds to the small ribosomal subunit and stabilizes ribosomes against dissociation when bacteria experience environmental stress. pY inhibits translation in vitro, most probably by interfering with the binding of the aminoacyl-tRNA to the ribosomal A site. Such a translational arrest may mediate overall adaptation of cells to environmental conditions. We have determined the 3D solution structure of a 112-residue pY and have studied its backbone dynamic by NMR spectroscopy. The structure has a betaalphabetabetabetaalpha topology and represents a compact two-layered sandwich of two nearly parallel alpha helices packed against the same side of a four-stranded beta sheet. The 23 C-terminal residues of the protein are disordered. Long-range angular constraints provided by residual dipolar coupling data proved critical for precisely defining the position of helix 1. Our data establish that the C-terminal region of helix 1 and the loop linking this helix with strand beta2 show significant conformational exchange in the ms- micro s time scale, which may have relevance to the interaction of pY with ribosomal subunits. Distribution of the conserved residues on the protein surface highlights a positively charged region towards the C-terminal segments of both alpha helices, which most probably constitutes an RNA binding site. The observed betaalphabetabetabetaalpha topology of pY resembles the alphabetabetabetaalpha topology of double-stranded RNA-binding domains, despite limited sequence similarity. It appears probable that functional properties of pY are not identical to those of dsRBDs, as the postulated RNA-binding site in pY does not coincide with the RNA-binding surface of the dsRBDs.
Collapse
Affiliation(s)
- Keqiong Ye
- Cellular Biochemistry & Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| | | | | | | | | |
Collapse
|
23
|
Alfonso M, Perewoska I, Kirilovsky D. Redox control of ntcA gene expression in Synechocystis sp. PCC 6803. Nitrogen availability and electron transport regulate the levels of the NtcA protein. PLANT PHYSIOLOGY 2001; 125:969-981. [PMID: 11161053 PMCID: PMC64897 DOI: 10.1104/pp.125.2.969] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2000] [Revised: 08/16/2000] [Accepted: 10/16/2000] [Indexed: 05/23/2023]
Abstract
In this work we have studied the influence of the cellular redox status in the expression of the Synechocystis sp. PCC 6803 ntcA gene. Two different ntcA transcripts with different 5' ends were detected, depending on the different dark/light or nitrogen availability conditions. Accumulation of a 0.8-kb ntcA message was light and nitrogen dependent, whereas a longer 1.2-kb ntcA transcript was neither light nor nitrogen regulated. NtcA protein levels increased concomitantly with the accumulation of the 0.8-kb ntcA transcript. The light-dependent accumulation of the ntcA gene and the NtcA protein was sensitive to electron transport inhibitors. In addition, Glc-grown Synechocystis sp. cells showed a similar ntcA expression pattern in darkness to that observed under illumination. These data suggested that electron transport, and not light per se may regulate ntcA gene expression. Primer extension analysis, together with gel mobility-shift assays, demonstrated that in vitro, the Synechocystis sp. NtcA protein specifically bound to the putative promoter region from the light/nitrogen-dependent ntcA transcript but not to that from the constitutive 1.2-kb ntcA mRNA. Band-shift experiments carried out in the presence of thiol oxidizing/modifiying agents and different reducing/oxidizing conditions suggested that NtcA binding to its own promoter was under a thiol-dependent redox mechanism. Our results suggest that the cellular redox status plays a central role in the autoregulatory mechanism of the NtcA protein.
Collapse
Affiliation(s)
- M Alfonso
- Unité Mixte de Recherche, 8543 Photorégulation et Dynamique des Membranes Végetales, Centre National de la Recherche Scientifique, Ecole Normale Supériéure, 46 rue d'Ulm, 75230 Paris cedex 05, France.
| | | | | |
Collapse
|
24
|
Yamaguchi K, von Knoblauch K, Subramanian AR. The plastid ribosomal proteins. Identification of all the proteins in the 30 S subunit of an organelle ribosome (chloroplast). J Biol Chem 2000; 275:28455-65. [PMID: 10874039 DOI: 10.1074/jbc.m004350200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Identification of all the protein components of a plastid (chloroplast) ribosomal 30 S subunit has been achieved, using two-dimensional gel electropholesis, high performance liquid chromatography purification, N-terminal sequencing, polymerase chain reaction-based screening of cDNA library, nucleotide sequencing, and mass spectrometry (electrospray ionization, matrix-assisted laser desorption/ionization time-of-flight, and reversed-phase HPLC coupled with electrospray ionization mass spectrometry). 25 proteins were identified, of which 21 are orthologues of all Escherichia coli 30 S ribosomal proteins (S1-S21), and 4 are plastid-specific ribosomal proteins (PSRPs) that have no homologues in the mitochondrial, archaebacterial, or cytosolic ribosomal protein sequences in data bases. 12 of the 25 plastid 30 S ribosomal proteins (PRPs) are encoded in the plastid genome, whereas the remaining 13 are encoded by the nuclear genome. Post-translational transit peptide cleavage sites for the maturation of the 13 cytosolically synthesized PRPs, and post-translational N-terminal processing in the maturation of the 12 plastid synthesized PRPs are described. Post-translational modifications in several PRPs were observed: alpha-N-acetylation of S9, N-terminal processings leading to five mature forms of S6 and two mature forms of S10, C-terminal and/or internal modifications in S1, S14, S18, and S19, leading to two distinct forms differing in mass and/or charge (the corresponding modifications are not observed in E. coli). The four PSRPs in spinach plastid 30 S ribosomal subunit (PSRP-1, 26.8 kDa, pI 6.2; PSRP-2, 21.7 kDa, pI 5.0; PSRP-3, 13.8 kDa, pI 4.9; PSRP-4, 5.2 kDa, pI 11.8) comprise 16% (67.6 kDa) of the total protein mass of the 30 S subunit (429.3 kDa). PSRP-1 and PSRP-3 show sequence similarities with hypothetical photosynthetic bacterial proteins, indicating their possible origins in photosynthetic bacteria. We propose the hypothesis that PSRPs form a "plastid translational regulatory module" on the 30 S ribosomal subunit structure for the possible mediation of nuclear factors on plastid translation.
Collapse
Affiliation(s)
- K Yamaguchi
- Department of Biochemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
25
|
Alfonso M, Perewoska I, Kirilovsky D. Redox control of psbA gene expression in the cyanobacterium Synechocystis PCC 6803. Involvement of the cytochrome b(6)/f complex. PLANT PHYSIOLOGY 2000; 122:505-16. [PMID: 10677443 PMCID: PMC58887 DOI: 10.1104/pp.122.2.505] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/1999] [Accepted: 10/17/1999] [Indexed: 05/19/2023]
Abstract
We investigated the role of the redox state of the photosynthetic and respiratory electron transport chains on the regulation of psbA expression in Synechocystis PCC 6803. Different means to modify the redox state of the electron carriers were used: (a) dark to oxidize the whole electron transport chain; (b) a shift from dark to light to induce its reduction; (c) the chemical interruption of the electron flow at different points to change the redox state of specific electron carriers; and (d) the presence of glucose to maintain a high reducing power in darkness. We show that changes in the redox state of the intersystem electron transport chain induce modifications of psbA transcript production and psbA mRNA stability. Reduction of the intersystem electron carriers activates psbA transcription and destabilizes the mRNA, while their oxidation induces a decrease in transcription and a stabilization of the transcript. Furthermore, our data suggest that the redox state of one of the electron carriers between the plastoquinone pool and photosystem I influences not only the expression of the psbA gene, but also that of other two photosynthetic genes, psaE and cpcBA. As a working hypothesis, we propose that the occupancy of the Q(0) site in the cytochrome b(6)/f complex may be involved in this regulation.
Collapse
Affiliation(s)
- M Alfonso
- Unité Mixte de Recherche 8543, Centre National de la Recherche Scientifique, "Photorégulation et Dynamique des Membranes Végétales," Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris cedex 05, France
| | | | | |
Collapse
|
26
|
Agafonov DE, Kolb VA, Nazimov IV, Spirin AS. A protein residing at the subunit interface of the bacterial ribosome. Proc Natl Acad Sci U S A 1999; 96:12345-9. [PMID: 10535924 PMCID: PMC22919 DOI: 10.1073/pnas.96.22.12345] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Surface labeling of Escherichia coli ribosomes with the use of the tritium bombardment technique has revealed a minor unidentified ribosome-bound protein (spot Y) that is hidden in the 70S ribosome and becomes highly labeled on dissociation of the 70S ribosome into subunits. In the present work, the N-terminal sequence of the protein Y was determined and its gene was identified as yfia, an ORF located upstream the phe operon of E. coli. This 12.7-kDa protein was isolated and characterized. An affinity of the purified protein Y for the 30S subunit, but not for the 50S ribosomal subunit, was shown. The protein proved to be exposed on the surface of the 30S subunit. The attachment of the 50S subunit resulted in hiding the protein Y, thus suggesting the protein location at the subunit interface in the 70S ribosome. The protein was shown to stabilize ribosomes against dissociation. The possible role of the protein Y as ribosome association factor in translation is discussed.
Collapse
Affiliation(s)
- D E Agafonov
- Institute of Protein Research, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
| | | | | | | |
Collapse
|
27
|
Samartzidou H, Widger WR. Transcriptional and posttranscriptional control of mRNA from lrtA, a light-repressed transcript in Synechococcus sp. PCC 7002. PLANT PHYSIOLOGY 1998; 117:225-34. [PMID: 9576792 PMCID: PMC35007 DOI: 10.1104/pp.117.1.225] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/1997] [Accepted: 02/11/1998] [Indexed: 05/22/2023]
Abstract
Transcription regulation and transcript stability of a light-repressed transcript, lrtA, from the cyanobacterium Synechococcus sp. PCC 7002 were studied using ribonuclease protection assays. The transcript for lrtA was not detected in continuously illuminated cells, yet transcript levels increased when cells were placed in the dark. A lag of 20 to 30 min was seen in the accumulation of this transcript after the cells were placed in the dark. Transcript synthesis continued in the dark for 3 h and the transcript levels remained elevated for at least 7 h. The addition of 10 microM rifampicin to illuminated cells before dark adaptation inhibited the transcription of lrtA in the dark. Upon the addition of rifampicin to 3-h dark-adapted cells, lrtA transcript levels remained constant for 30 min and persisted for 3 h. A 3-h half-life was estimated in the dark, whereas a 4-min half-life was observed in the light. Extensive secondary structure was predicted for this transcript within the 5' untranslated region, which is also present in the 5' untranslated region of lrtA from a different cyanobacterium, Synechocystis sp. PCC 6803. Evidence suggests that lrtA transcript stability is not the result of differences in ribonuclease activity from dark to light. Small amounts of lrtA transcript were detected in illuminated cells upon the addition of 25 microg mL-1 chloramphenicol. The addition of chloramphenicol to dark-adapted cells before illumination allowed detection of the lrtA transcript for longer times in the light relative to controls without chloramphenicol. These results suggest that lrtA mRNA processing in the light is different from that in the dark and that protein synthesis is required for light repression of the lrtA transcript.
Collapse
Affiliation(s)
- H Samartzidou
- Department of Biochemical and Biophysical Sciences, University of Houston, Houston, Texas 77204, USA
| | | |
Collapse
|
28
|
|