1
|
Garg G, Dienemann C, Farnung L, Schwarz J, Linden A, Urlaub H, Cramer P. Structural insights into human co-transcriptional capping. Mol Cell 2023:S1097-2765(23)00424-0. [PMID: 37369200 DOI: 10.1016/j.molcel.2023.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/22/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Co-transcriptional capping of the nascent pre-mRNA 5' end prevents degradation of RNA polymerase (Pol) II transcripts and suppresses the innate immune response. Here, we provide mechanistic insights into the three major steps of human co-transcriptional pre-mRNA capping based on six different cryoelectron microscopy (cryo-EM) structures. The human mRNA capping enzyme, RNGTT, first docks to the Pol II stalk to position its triphosphatase domain near the RNA exit site. The capping enzyme then moves onto the Pol II surface, and its guanylyltransferase receives the pre-mRNA 5'-diphosphate end. Addition of a GMP moiety can occur when the RNA is ∼22 nt long, sufficient to reach the active site of the guanylyltransferase. For subsequent cap(1) methylation, the methyltransferase CMTR1 binds the Pol II stalk and can receive RNA after it is grown to ∼29 nt in length. The observed rearrangements of capping factors on the Pol II surface may be triggered by the completion of catalytic reaction steps and are accommodated by domain movements in the elongation factor DRB sensitivity-inducing factor (DSIF).
Collapse
Affiliation(s)
- Gaurika Garg
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Lucas Farnung
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Juliane Schwarz
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Institute of Clinical Chemistry, Bionalytics Group, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Andreas Linden
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Institute of Clinical Chemistry, Bionalytics Group, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Institute of Clinical Chemistry, Bionalytics Group, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
2
|
Abstract
The passage of mRNAs through the nuclear pores into the cytoplasm is essential in all eukaryotes. For regulation, mRNA export is tightly connected to the full machinery of nuclear mRNA processing, starting at transcription. Export competence of pre-mRNAs gradually increases by both transient and permanent interactions with multiple RNA processing and export factors. mRNA export is best understood in opisthokonts, with limited knowledge in plants and protozoa. Here, I review and compare nuclear mRNA processing and export between opisthokonts and Trypanosoma brucei. The parasite has many unusual features in nuclear mRNA processing, such as polycistronic transcription and trans-splicing. It lacks several nuclear complexes and nuclear-pore-associated proteins that in opisthokonts play major roles in mRNA export. As a consequence, trypanosome mRNA export control is not tight and export can even start co-transcriptionally. Whether trypanosomes regulate mRNA export at all, or whether leakage of immature mRNA to the cytoplasm is kept to a low level by a fast kinetics of mRNA processing remains to be investigated. mRNA export had to be present in the last common ancestor of eukaryotes. Trypanosomes are evolutionary very distant from opisthokonts and a comparison helps understanding the evolution of mRNA export.
Collapse
|
3
|
Wulf MG, Buswell J, Chan SH, Dai N, Marks K, Martin ER, Tzertzinis G, Whipple JM, Corrêa IR, Schildkraut I. The yeast scavenger decapping enzyme DcpS and its application for in vitro RNA recapping. Sci Rep 2019; 9:8594. [PMID: 31197197 PMCID: PMC6565619 DOI: 10.1038/s41598-019-45083-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/30/2019] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic mRNAs are modified at their 5′ end early during transcription by the addition of N7-methylguanosine (m7G), which forms the “cap” on the first 5′ nucleotide. Identification of the 5′ nucleotide on mRNA is necessary for determination of the Transcription Start Site (TSS). We explored the effect of various reaction conditions on the activity of the yeast scavenger mRNA decapping enzyme DcpS and examined decapping of 30 chemically distinct cap structures varying the state of methylation, sugar, phosphate linkage, and base composition on 25mer RNA oligonucleotides. Contrary to the generally accepted belief that DcpS enzymes only decap short oligonucleotides, we found that the yeast scavenger decapping enzyme decaps RNA transcripts as long as 1400 nucleotides. Further, we validated the application of yDcpS for enriching capped RNA using a strategy of specifically tagging the 5′ end of capped RNA by first decapping and then recapping it with an affinity-tagged guanosine nucleotide.
Collapse
Affiliation(s)
- Madalee G Wulf
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - John Buswell
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Siu-Hong Chan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Nan Dai
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Katherine Marks
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Evan R Martin
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | | | - Joseph M Whipple
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Ira Schildkraut
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA.
| |
Collapse
|
4
|
Fujimura T, Esteban R. The cap-snatching reaction of yeast L-A double-stranded RNA virus is reversible and the catalytic sites on both Gag and the Gag domain of Gag-Pol are active. Mol Microbiol 2018; 111:395-404. [PMID: 30427078 DOI: 10.1111/mmi.14161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 02/01/2023]
Abstract
The yeast L-A double-stranded RNA virus synthesizes capped transcripts by a unique cap-snatching mechanism in which the m7 Gp moiety of host mRNA (donor) is transferred to the diphosphorylated 5' end of the viral transcript (acceptor). This reaction is activated by viral transcription. Here, we show that cap snatching can be reversible. Because only m7 Gp is transferred during the reaction, the resulting decapped donor, as expected, retained diphosphates at the 5' end. We also found that the 5' terminal nucleotide of the acceptor needs to be G but not A. Interestingly, the A-initiated molecule when equipped with a cap structure (m7 GpppA…) could work as cap donor. Because the majority of host mRNAs in yeast have A after the cap structures at the 5' ends, this finding implies that cap-snatching in vivo is virtually a one-way reaction, in favor of furnishing the viral transcript with a cap. The cap-snatching sites are located on the coat protein Gag and also the Gag domain of Gag-Pol. Here, we demonstrate that both sites are functional, indicating that activation of cap snatching by transcription is not transmitted through the peptide bonding between the Gag and Pol domains of Gag-Pol.
Collapse
Affiliation(s)
- Tsutomu Fujimura
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Rosa Esteban
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
5
|
Duan HC, Wang Y, Jia G. Dynamic and reversible RNA N 6 -methyladenosine methylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1507. [PMID: 30252201 DOI: 10.1002/wrna.1507] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022]
Abstract
N6 -methyladenosine (m6 A) is the most abundant internal chemical modification in eukaryotic messenger RNAs (mRNAs). The discovery in 2011 that m6 A is reversed by the fat mass and obesity-associated protein stimulated extensive worldwide research efforts on the regulatory biological functions of dynamic m6 A and other RNA modifications. The epitranscriptomic mark m6 A is written, read, and erased through the activities of a complicated network of enzymes and other proteins. m6 A-binding proteins read m6 A marks and transduce their downstream regulatory effects by altering RNA metabolic processes. In this review, we summarize the current knowledge of m6 A modifications, with particular focus on the functions of its writer, eraser, and reader proteins in posttranscriptional gene regulation and discuss the impact of m6 A marks on human health. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Hong-Chao Duan
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ye Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
6
|
Terenin IM, Smirnova VV, Andreev DE, Dmitriev SE, Shatsky IN. A researcher's guide to the galaxy of IRESs. Cell Mol Life Sci 2017; 74:1431-1455. [PMID: 27853833 PMCID: PMC11107752 DOI: 10.1007/s00018-016-2409-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The idea of internal initiation is frequently exploited to explain the peculiar translation properties or unusual features of some eukaryotic mRNAs. In this review, we summarize the methods and arguments most commonly used to address cases of translation governed by internal ribosome entry sites (IRESs). Frequent mistakes are revealed. We explain why "cap-independent" does not readily mean "IRES-dependent" and why the presence of a long and highly structured 5' untranslated region (5'UTR) or translation under stress conditions cannot be regarded as an argument for appealing to internal initiation. We carefully describe the known pitfalls and limitations of the bicistronic assay and artefacts of some commercially available in vitro translation systems. We explain why plasmid DNA transfection should not be used in IRES studies and which control experiments are unavoidable if someone decides to use it anyway. Finally, we propose a workflow for the validation of IRES activity, including fast and simple experiments based on a single genetic construct with a sequence of interest.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitri E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
7
|
Klungland A, Dahl JA, Greggains G, Fedorcsak P, Filipczyk A. Reversible RNA modifications in meiosis and pluripotency. Nat Methods 2017; 14:18-22. [DOI: 10.1038/nmeth.4111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Fuchs AL, Neu A, Sprangers R. A general method for rapid and cost-efficient large-scale production of 5' capped RNA. RNA (NEW YORK, N.Y.) 2016; 22:1454-66. [PMID: 27368341 PMCID: PMC4986899 DOI: 10.1261/rna.056614.116] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/25/2016] [Indexed: 05/03/2023]
Abstract
The eukaryotic mRNA 5' cap structure is indispensible for pre-mRNA processing, mRNA export, translation initiation, and mRNA stability. Despite this importance, structural and biophysical studies that involve capped RNA are challenging and rare due to the lack of a general method to prepare mRNA in sufficient quantities. Here, we show that the vaccinia capping enzyme can be used to produce capped RNA in the amounts that are required for large-scale structural studies. We have therefore designed an efficient expression and purification protocol for the vaccinia capping enzyme. Using this approach, the reaction scale can be increased in a cost-efficient manner, where the yields of the capped RNA solely depend on the amount of available uncapped RNA target. Using a large number of RNA substrates, we show that the efficiency of the capping reaction is largely independent of the sequence, length, and secondary structure of the RNA, which makes our approach generally applicable. We demonstrate that the capped RNA can be directly used for quantitative biophysical studies, including fluorescence anisotropy and high-resolution NMR spectroscopy. In combination with (13)C-methyl-labeled S-adenosyl methionine, the methyl groups in the RNA can be labeled for methyl TROSY NMR spectroscopy. Finally, we show that our approach can produce both cap-0 and cap-1 RNA in high amounts. In summary, we here introduce a general and straightforward method that opens new means for structural and functional studies of proteins and enzymes in complex with capped RNA.
Collapse
Affiliation(s)
- Anna-Lisa Fuchs
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ancilla Neu
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Remco Sprangers
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Habjan M, Hubel P, Lacerda L, Benda C, Holze C, Eberl CH, Mann A, Kindler E, Gil-Cruz C, Ziebuhr J, Thiel V, Pichlmair A. Sequestration by IFIT1 impairs translation of 2'O-unmethylated capped RNA. PLoS Pathog 2013; 9:e1003663. [PMID: 24098121 PMCID: PMC3789756 DOI: 10.1371/journal.ppat.1003663] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/12/2013] [Indexed: 12/21/2022] Open
Abstract
Viruses that generate capped RNA lacking 2'O methylation on the first ribose are severely affected by the antiviral activity of Type I interferons. We used proteome-wide affinity purification coupled to mass spectrometry to identify human and mouse proteins specifically binding to capped RNA with different methylation states. This analysis, complemented with functional validation experiments, revealed that IFIT1 is the sole interferon-induced protein displaying higher affinity for unmethylated than for methylated capped RNA. IFIT1 tethers a species-specific protein complex consisting of other IFITs to RNA. Pulsed stable isotope labelling with amino acids in cell culture coupled to mass spectrometry as well as in vitro competition assays indicate that IFIT1 sequesters 2'O-unmethylated capped RNA and thereby impairs binding of eukaryotic translation initiation factors to 2'O-unmethylated RNA template, which results in inhibition of translation. The specificity of IFIT1 for 2'O-unmethylated RNA serves as potent antiviral mechanism against viruses lacking 2'O-methyltransferase activity and at the same time allows unperturbed progression of the antiviral program in infected cells.
Collapse
Affiliation(s)
- Matthias Habjan
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Livia Lacerda
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Christian Benda
- Department of Structural Cell Biology, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Cathleen Holze
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Christian H. Eberl
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Angelika Mann
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Eveline Kindler
- Institute of Immunobiology, Kantonspital St. Gallen, St. Gallen, Switzerland
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonspital St. Gallen, St. Gallen, Switzerland
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Volker Thiel
- Institute of Immunobiology, Kantonspital St. Gallen, St. Gallen, Switzerland
- Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| |
Collapse
|
10
|
Bélanger F, Stepinski J, Darzynkiewicz E, Pelletier J. Characterization of hMTr1, a human Cap1 2'-O-ribose methyltransferase. J Biol Chem 2010; 285:33037-33044. [PMID: 20713356 DOI: 10.1074/jbc.m110.155283] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular eukaryotic mRNAs are capped at their 5' ends with a 7-methylguanosine nucleotide, a structural feature that has been shown to be important for conferring mRNA stability, stimulating mRNA biogenesis (splicing, poly(A) addition, nucleocytoplasmic transport), and increasing translational efficiency. Whereas yeast mRNAs have no additional modifications to the cap, called cap0, higher eukaryotes are methylated at the 2'-O-ribose of the first or the first and second transcribed nucleotides, called cap1 and cap2, respectively. In the present study, we identify the methyltransferase responsible for cap1 formation in human cells, which we call hMTr1 (also known as FTSJD2 and ISG95). We show in vitro that hMTr1 catalyzes specific methylation of the 2'-O-ribose of the first nucleotide of a capped RNA transcript. Using siRNA-mediated knockdown of hMTr1 in HeLa cells, we demonstrate that hMTr1 is responsible for cap1 formation in vivo.
Collapse
Affiliation(s)
- François Bélanger
- From the Departments of Biochemistry and Oncology and The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Janusz Stepinski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Jerry Pelletier
- From the Departments of Biochemistry and Oncology and The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
11
|
Narayan P, Rottman FM. Methylation of mRNA. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 65:255-85. [PMID: 1315118 DOI: 10.1002/9780470123119.ch7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- P Narayan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, Ohio
| | | |
Collapse
|
12
|
Cohen LS, Mikhli C, Jiao X, Kiledjian M, Kunkel G, Davis RE. Dcp2 Decaps m2,2,7GpppN-capped RNAs, and its activity is sequence and context dependent. Mol Cell Biol 2005; 25:8779-91. [PMID: 16199859 PMCID: PMC1265788 DOI: 10.1128/mcb.25.20.8779-8791.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrolysis of the mRNA cap plays a pivotal role in initiating and completing mRNA turnover. In nematodes, mRNA metabolism and cap-interacting proteins must deal with two populations of mRNAs, spliced leader trans-spliced mRNAs with a trimethylguanosine cap and non-trans-spliced mRNAs with a monomethylguanosine cap. We describe here the characterization of nematode Dcp1 and Dcp2 proteins. Dcp1 was inactive in vitro on both free cap and capped RNA and did not significantly enhance Dcp2 activity. Nematode Dcp2 is an RNA-decapping protein that does not bind cap and is not inhibited by cap analogs but is effectively inhibited by competing RNA irrespective of RNA sequence and cap. Nematode Dcp2 activity is influenced by both 5' end sequence and its context. The trans-spliced leader sequence on mRNAs reduces Dcp2 activity approximately 10-fold, suggesting that 5'-to-3' turnover of trans-spliced RNAs may be regulated. Nematode Dcp2 decaps both m(7)GpppG- and m(2,2,7)GpppG-capped RNAs. Surprisingly, both budding yeast and human Dcp2 are also active on m(2,2,7)GpppG-capped RNAs. Overall, the data suggest that Dcp2 activity can be influenced by both sequence and context and that Dcp2 may contribute to gene regulation in multiple RNA pathways, including monomethyl- and trimethylguanosine-capped RNAs.
Collapse
Affiliation(s)
- Leah S Cohen
- Department of Biology, City University of New York Graduate Center, CSI, Staten Island, 10314, USA
| | | | | | | | | | | |
Collapse
|
13
|
The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b106365] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Cohen LS, Mikhli C, Friedman C, Jankowska-Anyszka M, Stepinski J, Darzynkiewicz E, Davis RE. Nematode m7GpppG and m3(2,2,7)GpppG decapping: activities in Ascaris embryos and characterization of C. elegans scavenger DcpS. RNA (NEW YORK, N.Y.) 2004; 10:1609-24. [PMID: 15383679 PMCID: PMC1370647 DOI: 10.1261/rna.7690504] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 06/24/2004] [Indexed: 05/19/2023]
Abstract
A spliced leader contributes the mature 5'ends of many mRNAs in trans-splicing organisms. Trans-spliced metazoan mRNAs acquire an m3(2,2,7)GpppN cap from the added spliced leader exon. The presence of these caps, along with the typical m7GpppN cap on non-trans-spliced mRNAs, requires that cellular mRNA cap-binding proteins and mRNA metabolism deal with different cap structures. We have developed and used an in vitro system to examine mRNA degradation and decapping activities in nematode embryo extracts. The predominant pathway of mRNA decay is a 3' to 5' pathway with exoribonuclease degradation of the RNA followed by hydrolysis of resulting mRNA cap by a scavenger (DcpS-like) decapping activity. Direct decapping of mRNA by a Dcp1/Dcp2-like activity does occur, but is approximately 15-fold less active than the 3' to 5' pathway. The DcpS-like activity in nematode embryo extracts hydrolyzes both m7GpppG and m3(2,2,7)GpppG dinucleoside triphosphates. The Dcp1/Dcp2-like activity in extracts also hydrolyzes these two cap structures at the 5' ends of RNAs. Interestingly, recombinant nematode DcpS differs from its human ortholog in its substrate length requirement and in its capacity to hydrolyze m3(2,2,7)GpppG.
Collapse
Affiliation(s)
- Leah S Cohen
- Department of Biology, City univiersity of new york, Graduate Center, Staten Island, 10314, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|
16
|
Pillutla RC, Yue Z, Maldonado E, Shatkin AJ. Recombinant human mRNA cap methyltransferase binds capping enzyme/RNA polymerase IIo complexes. J Biol Chem 1998; 273:21443-6. [PMID: 9705270 DOI: 10.1074/jbc.273.34.21443] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanine N-7 methylation is an essential step in the formation of the m7GpppN cap structure that is characteristic of eukaryotic mRNA 5' ends. The terminal 7-methylguanosine is recognized by cap-binding proteins that facilitate key events in gene expression including mRNA processing, transport, and translation. Here we describe the cloning, primary structure, and properties of human RNA (guanine-7-)methyltransferase. Sequence alignment of the 476-amino acid human protein with the corresponding yeast ABD1 enzyme demonstrated the presence of several conserved motifs known to be required for methyltransferase activity. We also identified a Drosophila open reading frame that encodes a putative RNA (guanine-7-)methyltransferase and contains these motifs. Recombinant human methyltransferase transferred a methyl group from S-adenosylmethionine to GpppG 5'ends, which are formed on RNA polymerase II transcripts by the sequential action of RNA 5'-triphosphatase and guanylyltransferase activities in the bifunctional mammalian capping enzyme. Binding studies demonstrated that the human cap methyltransferase associated with recombinant capping enzyme. Consistent with selective capping of RNA polymerase II transcripts, methyltransferase also formed ternary complexes with capping enzyme and the elongating form of RNA polymerase II.
Collapse
Affiliation(s)
- R C Pillutla
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854-5638, USA
| | | | | | | |
Collapse
|
17
|
Iizuka N, Chen C, Yang Q, Johannes G, Sarnow P. Cap-independent translation and internal initiation of translation in eukaryotic cellular mRNA molecules. Curr Top Microbiol Immunol 1995; 203:155-77. [PMID: 7555089 DOI: 10.1007/978-3-642-79663-0_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- N Iizuka
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
18
|
Zollner A, Rödel G, Haid A. Expression of the Saccharomyces cerevisiae CYT2 gene, encoding cytochrome c1 heme lyase. Curr Genet 1994; 25:291-8. [PMID: 8082171 DOI: 10.1007/bf00351480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this paper we examine the expression of the Saccharomyces cerevisiae CYT2 gene, which encodes cytochrome c1 heme lyase. This enzyme is required for covalent attachment of heme to apocytochrome c1, a subunit of the mitochondrial respiratory chain. Transcription of the 1-kb CYT2 mRNA initiates at four prominent sites at a distance of 52-225 bp in front of the AUG start codon. The level of CYT2 mRNA is not influenced by the presence or absence of oxygen or of heme, but it is subject to carbon-source control. The concentration of the CYT2 mRNA is significantly reduced in glucose-grown cells as compared to cells grown under non-repressing conditions. Neither the HAPp activator proteins nor MIG1p, a repressor protein involved in glucose repression, seem to mediate this effect.
Collapse
Affiliation(s)
- A Zollner
- Institut für Genetik und Mikrobiologie, Universität München, Germany
| | | | | |
Collapse
|
19
|
Rottman FM, Bokar JA, Narayan P, Shambaugh ME, Ludwiczak R. N6-adenosine methylation in mRNA: substrate specificity and enzyme complexity. Biochimie 1994; 76:1109-14. [PMID: 7748945 DOI: 10.1016/0300-9084(94)90038-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The N6-methylation of internal adenosine residues is a common post-transcriptional modification of eukaryotic pre-mRNA sequences. An in vitro methylation system which retains the precise selectivity of in vivo methylation sites has been used to further define the nature of RNA site recognition. In addition to short consensus sequences, other structural features or context effects contribute to the selection of methylation sites in pre-mRNAs. Partial purification of the mRNA N6-adenosine methyltransferase revealed unexpected levels of complexity. The methyltransferase is composed of three separate components with molecular masses of 30, 200 and 875 kDa, respectively. These components are readily separated under non-denaturing conditions and each is required for mRNA methylation activity.
Collapse
Affiliation(s)
- F M Rottman
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
20
|
Gerstel B, Tuite MF, McCarthy JE. The effects of 5'-capping, 3'-polyadenylation and leader composition upon the translation and stability of mRNA in a cell-free extract derived from the yeast Saccharomyces cerevisiae. Mol Microbiol 1992; 6:2339-48. [PMID: 1406273 DOI: 10.1111/j.1365-2958.1992.tb01409.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new modular expression system was developed to direct the in vitro synthesis of defined transcripts that were used as templates for translation in yeast cell-free extracts. The system was used to examine the influence of 5'-capping, 3'-polyadenylation and leader sequence upon the translation and stability of the synthetic Tn9 cat (chloramphenicol acetyl transferase), yeast PGK (phosphoglycerate kinase) and yeast HSP26 (heat-shock protein 26) mRNAs. The addition of a methylated cap (m7Gppp) or of a poly(A) tail enhanced translation and stabilized the mRNA. The dependence of translation upon capping was reduced in the presence of the HSP26 leader sequence. This may indicate the existence of a translational mechanism that enhances cap-independent translation. The enhancement of the translation and stability of mRNA was relatively insensitive to changes in the position of the poly(A) tail relative to the reading frame.
Collapse
Affiliation(s)
- B Gerstel
- Department of Gene Expression, Gesellschaft für Biotechnologische Forschung (GBF), Braunschweig, Germany
| | | | | |
Collapse
|
21
|
Tuck MT. The formation of internal 6-methyladenine residues in eucaryotic messenger RNA. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:379-86. [PMID: 1551452 DOI: 10.1016/0020-711x(92)90028-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The formation of internal 6-methyladenine (m6A) residues in eucaryotic messenger RNA (mRNA) is a postsynthetic modification in which S-adenosyl-L-methionine (SAM) serves as the methyl donor. 2. Of the methyl groups incorporated into mature mRNA 30-50% occur in m6A residues. 3. Although most cellular and certain viral mRNAs contain at least one m6A residue, some transcripts such as those coding for histone and globin are completely lacking in this modification. 4. 6-Methyladenine residues have also been localized to heterogeneous nuclear RNA (HnRNA), and for the most part these residues are conserved during mRNA processing. 5. In all known cases, the m6A residues are also found in a strict consensus sequence, Gm6AC or Am6AC, within the transcript. 6. Although the biological significance of internal adenine methylation in eucaryotic mRNA remains unclear, a great deal of research has indicated that this modification may be required for mRNA transport to the cytoplasm, the selection of splice sites or other RNA processing reactions.
Collapse
Affiliation(s)
- M T Tuck
- Department of Chemistry, Ohio University, Athens 45701
| |
Collapse
|
22
|
Kumagai H, Kon R, Hoshino T, Aramaki T, Nishikawa M, Hirose S, Igarashi K. Purification and properties of a decapping enzyme from rat liver cytosol. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1119:45-51. [PMID: 1540634 DOI: 10.1016/0167-4838(92)90232-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A decapping enzyme has been purified about 2400-fold from rat liver cytosol. The decapping enzyme was shown to be fairly homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme had an apparent molecular weight of 110,000 and consisted of two equal subunits. The enzyme hydrolyzed m7Guo5'PPP5'Ado to m7GMP and ADP. Analysis of the products produced from radioactively capped oligonucleotides and intact mRNA having 3H-cap suggests that the enzyme can hydrolyze capped mono- to pentanucleotides (m7Guo5'PPP5'N (where N = 1-5 nucleotides)) but not intact mRNA. The existence of methyl group at the N7 position of guanosine moiety of cap structure was necessary for the action of the decapping enzyme. This was confirmed by the comparison of the rates of hydrolysis of m7Guo5'PPP5'Ado by the enzyme in the presence of various nucleotides. The activity of enzyme was slightly stimulated by Na+, K+, NH4+, Ca2+ and polyamines. Mg2+ and Mn2+ were without effect on the enzyme activity.
Collapse
Affiliation(s)
- H Kumagai
- Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Brevet A, Chen J, Fromant M, Blanquet S, Plateau P. Isolation and characterization of a dinucleoside triphosphatase from Saccharomyces cerevisiae. J Bacteriol 1991; 173:5275-9. [PMID: 1653209 PMCID: PMC208236 DOI: 10.1128/jb.173.17.5275-5279.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An enzyme able to cleave dinucleoside triphosphates has been purified 3,750-fold from Saccharomyces cerevisiae. Contrary to the enzymes previously shown to catabolize Ap4A in yeast, this enzyme is a hydrolase rather than a phosphorylase. The dinucleoside triphosphatase molecular ratio estimated by gel filtration is 55,000. Dinucleoside triphosphatase activity is strongly stimulated by the presence of divalent cations. Mn2+ displays the strongest stimulating effect, followed by Mg2+, Co2+, Cd2+, and Ca2+. The Km value for Ap3A is 5.4 microM (50 mM Tris-HCl [pH 7.8], 5 mM MgCl2, and 0.1 mM EDTA; 37 degrees C). Dinucleoside polyphosphates are substrates of this enzyme, provided that they contain more than two phosphates and that at least one of the two bases is a purine (Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, m7Gp3A, m7Gp3G, Ap4A, Ap4G, Ap4C, Ap4U, Gp4G, and Ap5A are substrates; AMP, ADP, ATP, Ap2A, and Cp4U are not). Among the products, a nucleoside monophosphate is always formed. The specificity of cleavage of methylated dinucleoside triphosphates and the molecular weight of dinucleoside triphosphatase indicate that this enzyme is different from the mRNA decapping enzyme previously characterized (A. Stevens, Mol. Cell. Biol. 8:2005-2010, 1988).
Collapse
Affiliation(s)
- A Brevet
- Laboratoire de Biochemie, Unité de Recherche associée 240 du Centre National de la Recherche Scientifique, Palaiseau, France
| | | | | | | | | |
Collapse
|
24
|
|
25
|
|
26
|
Linder P, Prat A. Baker's yeast, the new work horse in protein synthesis studies: analyzing eukaryotic translation initiation. Bioessays 1990; 12:519-26. [PMID: 2085318 DOI: 10.1002/bies.950121103] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The possibility of combining powerful genetic methods with biochemical analysis has made baker's yeast Saccharomyces cerevisiae the organism of choice to study the complex process of translation initiation in eukaryotes. Several new initiation factor genes and interactions between components of the translational machinery that were not predicted by current models have been revealed by genetic analysis of extragenic suppressors of translational initiation mutants. In addition, a yeast cell-free translation system has been developed that allows in vivo phenotypes to be correlated with in vitro biochemical activities. We summarize here the current view of yeast translational initiation obtained by these approaches.
Collapse
Affiliation(s)
- P Linder
- Department of Microbiology, Biozentrum, Basel, Switzerland
| | | |
Collapse
|
27
|
Müller PP, Trachsel H. Translation and regulation of translation in the yeast Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 191:257-61. [PMID: 2200670 DOI: 10.1111/j.1432-1033.1990.tb19118.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent years the yeast Saccharomyces cerevisiae has become a model system for studies of eukaryotic translation and translation regulation. Analysis of mRNA structure, translation initiation factor sequences and the translation initiation pathway indicate, that translation in S. cerevisiae is very similar to translation in higher eukaryotes. The availability of powerful genetic techniques lead to the dissection in yeast of individual steps in the translation pathway, the detection of biochemical interactions between components involved in translation and the unravelling of complex regulation phenomena.
Collapse
Affiliation(s)
- P P Müller
- Institut für Biochemie und Molekularbiologie, Universität Bern, Switzerland
| | | |
Collapse
|
28
|
Affiliation(s)
- A J Brown
- Biotechnology Unit, Institute of Genetics, University of Glasgow, U.K
| |
Collapse
|
29
|
Brown AJ, Purvis IJ, Santiago TC, Bettany AJ, Loughlin L, Moore J. Messenger RNA degradation in Saccharomyces cerevisiae. Gene X 1988; 72:151-60. [PMID: 3072247 DOI: 10.1016/0378-1119(88)90137-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The analysis of 17 functional mRNAs and two recombinant mRNAs in the yeast Saccharomyces cerevisiae suggests that the length of an mRNA influences its half-life in this organism. The mRNAs are clearly divisible into two populations when their lengths and half-lives are compared. Differences in ribosome loading amongst the mRNAs cannot account for this division into relatively stable and unstable populations. Also, specific mRNAs seem to be destabilized to differing extents when their translation is disrupted by N-terminus-proximal stop codons. The analysis of a mutant mRNA, generated by the fusion of the yeast PYK1 and URA3 genes, suggests that a destabilizing element exists within the URA3 sequence. The presence of such elements within relatively unstable mRNAs might account for the division between the yeast mRNA populations. On the basis of these, and other previously published observations, a model is proposed for a general pathway of mRNA degradation in yeast. This model may be relevant to other eukaryotic systems. Also, only a minor extension to the model is required to explain how the stability of some eukaryotic mRNAs might be regulated.
Collapse
Affiliation(s)
- A J Brown
- Institute of Genetics, University of Glasgow, U.K
| | | | | | | | | | | |
Collapse
|
30
|
Piper PW, Curran B, Davies W, Hirst K, Seward K. Saccharomyces cerevisiae mRNA populations of different intrinsic stability in unstressed and heat shocked cells display almost constant m7GpppA:m7GpppG 5'-cap structure ratios. FEBS Lett 1987; 220:177-80. [PMID: 3301410 DOI: 10.1016/0014-5793(87)80898-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The half-lives of mRNAs in yeast vary from about 1 to over 100 min. While mRNA stabilities must strongly influence overall gene expression in this organism, very little is known about how they are determined. Labellings of yeast cells were conducted to investigate whether the 5'-cap structures of yeast mRNAs might influence their stability. Variation of the pulse-labelling period from 7.5 min to 120 min did not have any major influence on the relative labelling of m7GpppA (A cap) and m7GpppG (G cap) in total polyadenylated RNA. Whether an mRNA has the A cap or the G cap does not therefore have a marked effect on its stability. During the heat shock response the relative labelling of A caps to G caps in total polyadenylated RNA also does not fluctuate appreciably. This indicates that cap structure alone does not determine the destabilisation of non-heat shock mRNAs and stabilisation of heat shock mRNAs during this stress response.
Collapse
|
31
|
Showman RM, Leaf DS, Anstrom JA, Raff RA. Translation of maternal histone mRNAs in sea urchin embryos: a test of control by 5' cap methylation. Dev Biol 1987; 121:284-7. [PMID: 3106120 DOI: 10.1016/0012-1606(87)90161-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent results have demonstrated the occurrence of mRNA cap methylation in the sea urchin embryo following fertilization. It has been suggested that this methylation event is responsible for the translational activation of maternal histone mRNAs in these embryos. We have used aphidicolin, an effective inhibitor of both DNA synthesis and cap methylation in cleavage stage sea urchin embryos, to examine the relationship between cap methylation and translation. At 5 micrograms/ml, a dose which rapidly abolishes DNA replication and blocks cleavage, we note no effect on recruitment or translation of maternal alpha-subtype histone mRNAs. This suggests that a postfertilization cap methylation event is not critical to the process of regulation of the translation of stored alpha-subtype histone mRNAs.
Collapse
|
32
|
Hussain I, Leibowitz MJ. Translation of homologous and heterologous messenger RNAs in a yeast cell-free system. Gene X 1986; 46:13-23. [PMID: 2433189 DOI: 10.1016/0378-1119(86)90162-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A stable mRNA-dependent cell-free translation system from Saccharomyces cerevisiae, prepared by a modification of the method of Hofbauer et al. [Eur. J. Biochem. 122 (1982) 199-203] was active in translation of exogenous homologous and heterologous mRNAs. Optimal translational activity required the addition of polyamines and yeast tRNA. The m transcript of the M segment of double-stranded RNA, synthesized in vitro using the killer virus-associated RNA polymerase, directed the synthesis of preprotoxin polypeptide (M-p32), which was immunologically identified using antitoxin antibody. Sindbis virus capsid protein and rabbit globin were also translated from their mRNAs. Translation was inhibited by puromycin, sparsomycin and anisomycin. Analogues of the 5'-terminal caps present on most eukaryotic mRNA molecules inhibited translation of added mRNAs, including capped mRNAs and the uncapped killer virus mRNA.
Collapse
|
33
|
Altmann M, Edery I, Sonenberg N, Trachsel H. Purification and characterization of protein synthesis initiation factor eIF-4E from the yeast Saccharomyces cerevisiae. Biochemistry 1985; 24:6085-9. [PMID: 3910088 DOI: 10.1021/bi00343a009] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A 24 000-dalton protein [yeast eukaryotic initiation factor 4E (eIF-4E)] was purified from yeast Saccharomyces cerevisiae postribosomal supernatant by m7GDP-agarose affinity chromatography. The protein behaves very similarly to mammalian protein synthesis initiation factor eIF-4E with respect to binding to and elution from m7GDP-agarose columns and cross-linking to oxidized reovirus mRNA cap structures. Yeast eIF-4E is required for translation as shown by the strong and specific inhibition of cell-free translation in a yeast extract by a monoclonal antibody directed against yeast eIF-4E.
Collapse
|
34
|
Locht C, Delcour J. In vitro methylation of undermethylated yeast poly(A)-rich RNA using mRNA(guanine-7-)-methyltransferase purified from wheat germ or yeast. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 152:247-51. [PMID: 2414101 DOI: 10.1111/j.1432-1033.1985.tb09190.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
By crossing two strains of Saccharomyces cerevisiae deficient for each of the two methionine adenosyltransferase isoenzymes (ATP: L-methionine S-adenosyltransferase EC 2.5.1.6) respectively, we have constructed a strain strictly auxotrophic for S-adenosylmethionine and used it as a source of undermethylated mRNA suitable for in vitro transmethylation studies. RNA has been phenol-extracted from yeast cells shifted down to S-adenosylmethionine-free medium for 90 min and poly(A)-rich RNA has been prepared by oligo(dT)-cellulose chromatography. Upon incubation in vitro in the presence of methyl-labeled S-adenosylmethionine and mRNA (guanine-7-)-methyltransferase purified from wheat germ or yeast, undermethylated poly(A)-rich RNA became significantly labeled as compared to non-starved cells from the same strain, or from a wild-type control. Cap structures were resolved by paper chromatography afer T2 and P1 RNase digestion, and shown to be a mixture of m7G5'ppp5'G and m7G5'ppp5'A, irrespective of the enzyme source, in agreement with earlier in vivo studies in yeast mRNA capping and methylation.
Collapse
|
35
|
Abstract
An endoribonuclease with pyrimidine cleavage site specificity was isolated from Saccharomyces cerevisiae. The enzyme had a pH optimum of 6 to 7 and did not require a divalent cation. It was inhibited by 5 X 10(-5) M ethidium bromide, although it appeared to be single strand specific. The enzyme gave a limited cleavage of yeast mRNA and rRNA, yielding products that were terminated with pyrimidine nucleoside 2',3'-cyclic phosphate. The bonds between pyrimidine and A residues constituted more than 90% of the scission sites when the average product size was 50 nucleotides. Homopolyribonucleotides were cleaved poorly. Poly(A,U) was cleaved rapidly, and analysis of the products of poly(A,U) hydrolysis showed a very stringent cleavage of U-A bonds.
Collapse
|
36
|
Abstract
Polyadenylated [poly(A)+] RNA molecules have been isolated from Methanococcus vannielii by oligodeoxythymidylate-cellulose affinity chromatography at 4 degrees C. Approximately 16% of the label in RNA isolated from cultures allowed to incorporate [3H]uridine for 3 min at 37 degrees C was poly(A)+ RNA. In contrast, less than 1% of the radioactivity in RNA labeled over a period of several generations was contained in poly(A)+ RNA molecules. Electrophoretic separation of poly(A)+ RNA molecules showed a heterogeneous population with mobilities indicative of sizes ranging from 900 to 3,000 bases in length. The population of poly(A)+ RNA molecules was found to have a half-life in vivo of approximately 12 min. Polyadenylate [poly(A)] tracts were isolated by digestion with RNase A and RNase T1 after 3' end labeling of the poly(A)+ RNA with RNA ligase. These radioactively labeled poly(A) oligonucleotides were shown by electrophoresis through DNA sequencing gels to average 10 bases in length, with major components of 5, 9, 10, 11, and 12 bases. The lengths of these poly(A) sequences are in agreement with estimates obtained from RNase A and RNase T1 digestions of [3H]adenine-labeled poly(A)+ RNA molecules. Poly(A)+ RNA molecules from M. vannielii were labeled at their 5' termini with T4 polynucleotide kinase after dephosphorylation with calf intestine alkaline phosphatase. Pretreatment of the RNA molecules with tobacco acid pyrophosphatase did not increase the amount of phosphate incorporated into poly(A)+ RNA molecules by polynucleotide kinase, indicating that the poly(A)+ RNA molecules did not have modified bases (caps) at their 5' termini. The relatively short poly(A) tracts, the lack of 5' cap structures, and the instability of the poly(A)+ RNA molecules isolated from M. vannielii indicate that these archaebacterial poly(A)+ RNAs more closely resemble eubacterial mRNAs than eucaryotic mRNAs.
Collapse
|
37
|
Handa H, Mizumoto K, Oda K, Okamoto T, Fukasawa T. Transcription of the human adenovirus E1a gene in Saccharomyces cerevisiae. Gene 1985; 33:159-68. [PMID: 3888782 DOI: 10.1016/0378-1119(85)90090-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The early region 1a (E1a) and its flanking sequences of human adenovirus type 5 (Ad5) have been cloned in the yeast-Escherichia coli shuttle vector YEp13 and transferred into the yeast Saccharomyces cerevisiae. The E1a-specific RNAs were produced in the transformed yeast cells. The 5' ends of these transcripts were capped but were lacking 10 to 45 nucleotides from the 5' end of the proper E1a mRNA. These transcripts terminated approx. 1000 nucleotides downstream from the proper 3' end. No splicing of the E1a-specific RNA could be detected in the yeast cells.
Collapse
|
38
|
Wise JA, Tollervey D, Maloney D, Swerdlow H, Dunn EJ, Guthrie C. Yeast contains small nuclear RNAs encoded by single copy genes. Cell 1983; 35:743-51. [PMID: 6197183 DOI: 10.1016/0092-8674(83)90107-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have identified a group of RNA molecules in Saccharomyces cerevisiae that appears to be equivalent to the U class of small nuclear RNAs previously described in other eucaryotes, resembling them in size, metabolic stability, 5' cap structure, presence of modified bases, and nuclear localization. However, the yeast snRNAs differ from their counterparts in several potentially important ways. First, they are present in very low abundance, less than 200 copies per cell, as compared to 10(5)-10(6) for mammalian U1-U6. Second, there appear to be more species in yeast than in any cell type previously examined. Finally, we have cloned five yeast snRNA genes, and find that each is present in a single copy per haploid genome, whereas all previously characterized snRNAs are encoded by multiple (5 to 100) gene copies. The presence of single copy genes in yeast will greatly facilitate the genetic analysis of snRNA function.
Collapse
|
39
|
Locht C, Beaudart JL, Delcour J. Partial purification and characterization of mRNA (guanine-7-) methyltransferase from the yeast Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 134:117-21. [PMID: 6345158 DOI: 10.1111/j.1432-1033.1983.tb07539.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As a tool for the study of the capping-methylation process of yeast mRNA, we developed a procedure for the purification of the mRNA (guanine-7-)methyltransferase using the commercial cap analog guanosine(5')triphospho(5')guanosine as a substrate and radioactive S-adenosylmethionine (AdoMet) as the methyl group donor. The osmotic-sensitive yeast strain VY 1160 was used as the enzyme source. Little methyltransferase activity was detectable in a crude lysate obtained after osmotic shock. We showed that this was due to the presence of a low-molecular-weight inhibitor which could easily be eliminated by Sephadex G-25 gel filtration. The 10000 X g supernatant from the crude lysate was submitted to DEAE-cellulose and DNA-agarose chromatography. The resulting preparation was enriched about 450-fold in specific activity. Under standard assay conditions, the incorporation rate remained constant for at least 6 h at 30 degrees C. Transmethylation was not stimulated by KCl nor NaCl. Divalent cations were strong inhibitors. The partially purified enzyme was able to methylate undermethylated poly(A)-rich mRNA isolated from an AdoMet auxotrophic yeast strain briefly exposed to AdoMet-free medium.
Collapse
|
40
|
Russell DW, Smith M, Williamson VM, Young ET. Nucleotide sequence of the yeast alcohol dehydrogenase II gene. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32979-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Stevens A. A yeast endoribonuclease stimulated by Novikoff hepatoma small nuclear RNAs U1 and U2. Biochem Biophys Res Commun 1982; 107:642-8. [PMID: 6181789 DOI: 10.1016/0006-291x(82)91539-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Abstract
The presence and identity of 5'-terminal cap structures in rat brain polysomal mRNA were investigated by radiolabeling the mRNA by periodate oxidation and [3H]sodium borohydride reduction or by beta-elimination of 5'-terminal nucleoside and incorporation of 32P in the presence of polynucleotide kinase. The labeled mRNAs were digested with nucleases and the cap structures were isolated and identified by chromatographic and electrophoretic procedures The results showed that rat brain mRNAs contained cap 1 and cap 2 structures and no caps of the zero type. The proportion of cap 2 was higher than that of cap 1. Both caps had 7-methylguanosine (m7G) as the 5'-terminal nucleoside, which was linked to the next nucleoside by an inverted triphosphate bridge, as in other eukaryotic mRNAs. The most prominent nucleoside in the 5'-penultimate position was 6-methyl-2'-O-methyladenosine [m6A(m)] followed by 2'-O-methyladenosine [A(m)], which together contributed to nearly 70% of both cap 1 and cap 2 structures. 2'-O-Methylguanosine [G(m)] accounted for approximately 18%, the rest being made up of 2'-O-methylcytidine [C(m)] and 2'-O-methyluridine [U(m)].
Collapse
|
43
|
|
44
|
Harper JF, Clancy MJ, Magee PT. Properties of polyadenylate-associated ribonucleic acid from Saccharomyces cerevisiae ascospores. J Bacteriol 1980; 143:958-65. [PMID: 7009568 PMCID: PMC294400 DOI: 10.1128/jb.143.2.958-965.1980] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bulk ribonucleic acid (RNA) was isolated from mechanically disrupted ascospores of Saccharomyces cerevisiae. After two passes over an oligo (dT10) cellulose column, the portion which bound, called poly(A)(+), was characterized. It is heterodisperse in size with a mean molecular weight of approximately 4 X 10(5), but contains some species as large as 7 X 10(5). The base composition is similar to vegetative poly(A)(+) RNA. The polyadenylate segment is also heterogenous in size, ranging from 90 to 20 bases in length, with a peak at approximately 60 nucleotides in length. Pulse-labeling of asci with [3H-methyl]methionine yields two "caps," 7-methyl guanosine-5'-triphosphoryl-5'-adenosine (or guanosine) identical to that found in vegetative poly(A)(+) RNA. The poly(A)(+) RNA in spores is found in polyribosomes which are, on the average, smaller than vegetative ones. Long-term labeling studies indicate that the fraction of poly(A)(+) RNA in spores is similar to that in vegetative cells.
Collapse
|
45
|
Nichols JL, Welder L. The modified nucleotide constituents of human prostatic cancer cell (MA-160) poly(A)-containing RNA. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 608:1-18. [PMID: 6248114 DOI: 10.1016/0005-2787(80)90128-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cytoplasmic poly A(+) RNA from human prostatic cancer cells grown in the presence of 32P was isolated by affinity chromatography on columns of oligo(dT)-cellulose. The RNA was digested with RNAase T2 and the products of digestion were fractionated by two-dimensional electrophoresis. The resulting autoradiograms revealed the presence of many different cap groups as well as two internal modified nucleotide components. 19 different type 1 and type 2 'cap' groups were identified. The internal modified nucleotides were N6-methyl adenosine and a 2'-O-methyl nucleotide possessing an unusual modified base.
Collapse
|
46
|
|
47
|
Haugland RA, Cline MG. Post-transcriptional modifications of oat coleoptile ribonucleic acids. 5'-Terminal capping and methylation of internal nucleosides in poly(A)-rich RNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1980; 104:271-7. [PMID: 6154573 DOI: 10.1111/j.1432-1033.1980.tb04425.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Evidence is presented for the occurrence of 5'-terminal capping structures in poly(A)-rich RNAs from oat coleoptile tissue. Similar to the cap structures in mRNA from other eukaryotic organisms, the 5' terminus of these oat coleoptile RNA molecules consists of 7-methylguanosine joined 5' to 5' with the adjacent (penultimate) nucleoside by means of three phosphate groups in two pyrophosphate linkages. The penultimate nucleoside contains primarily purine bases, but small amounts of pyrimidines (cytidine) are also detectable. Some monophosphorylated 5'-termini were also detected, however, they appear to occur as a result of RNA degradation. In addition to the 5 cap, oat RNA molecules are also post-transcriptionally modified with a low frequency of N6-methylations of internal adenosines.
Collapse
|
48
|
|
49
|
|
50
|
Abstract
Poly(A)-containing RNA was isolated from maize embryos by chromatography on columns of oligo(dT)-cellulose and exhaustively digested with ribonucleases T2, T1, and A. Fractionation of the digests by two-dimensional electrophoresis revealed the presence of three 7-methylguanosine-terminated 'cap structures' of the type m7GpppNp.
Collapse
|