1
|
Gupta M, Choudhary M, Singh A, Sheoran S, Kumar H, Singla D, Bohra A, Rakshit S. Meta-QTL analysis for mining of candidate genes and constitutive gene network development for viral disease resistance in maize ( Zea mays L.). Heliyon 2025; 11:e40984. [PMID: 39807520 PMCID: PMC11728939 DOI: 10.1016/j.heliyon.2024.e40984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Viral diseases severely impact maize yields, with occurrences of maize viruses reported worldwide. Deployment of genetic resistance in a plant breeding program is a sustainable solution to minimize yield loss to viral diseases. The meta-QTL (MQTL) has demonstrated to be a promising approach to pinpoint the most robust QTL(s)/candidate gene(s) in the form of an overlapping or common genomic region identified through leveraging on different research studies that independently report genomic regions significantly associated with the target traits. Here, we employed an MQTL approach by targeting 39 independent research investigations aimed at genetic dissection of the resistance in maize against 14 viral diseases. We could project 27 % (53) of the total 196 QTLs onto the maize genome. Our analysis found a robust set of 14 MQTLs on chromosomes 1, 3 and 10 that explain significant proportion of the variations for resistance against 11 viral diseases. Marker trait associations (MTAs) identified from genome-wide association studies (GWAS) provide evidence in support of the two MQTLs (MQTL3_2 and MQTL10_2) playing crucial roles in viral disease resistance (VDR) in maize. A total of 1,715 candidate genes underlie the identified MQTL regions, of which, we further examined the constitutively-expressed genes for their involvement in various metabolic pathways. The involvement of the identified genes in the antiviral resistance mechanism renders them a valuable genomic resource for allele mining and elucidating plant-virus interactions for maize research and breeding.
Collapse
Affiliation(s)
- Mamta Gupta
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab, 141 004, India
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab, 141 004, India
| | - Alla Singh
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab, 141 004, India
| | - Seema Sheoran
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab, 141 004, India
| | - Harish Kumar
- Punjab Agricultural University, Regional Research Station, Faridkot, Punjab, 151203, India
| | - Deepak Singla
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh, 208024, India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, Punjab, 141 004, India
| |
Collapse
|
2
|
Lobodin KV, Chetverina HV, Chetverin AB. Slippage at the initiation of RNA synthesis by Qβ replicase results in a periodic polyG pattern. FEBS Lett 2023; 597:458-471. [PMID: 36477752 DOI: 10.1002/1873-3468.14556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/16/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
The repetitive copying of template nucleotides due to transcriptional slippage has not been reported for RNA-directed RNA polymerases of positive-strand RNA phages. We unexpectedly observed that, with GTP as the only substrate, Qβ replicase, the RNA-directed RNA polymerase of bacteriophage Qβ, synthesizes by transcriptional slippage polyG strands, which on denaturing electrophoresis produce a ladder with at least three clusters of bolder bands. The ≈ 15-nt-long G15 , the major product of the shortest cluster, is tightly bound by the enzyme but can be released by the ribosomal protein S1, which, as a Qβ replicase subunit, normally promotes the release of a completed transcript. 7-deaza-GTP suppresses the polyG synthesis and abolishes the periodic pattern, suggesting that the N7 atom is needed for the initiation of RNA synthesis and the formation of the structure recognized by protein S1. The results provide new insights into the mechanism of RNA synthesis by the RNA-directed RNA polymerase of a single-stranded RNA phage.
Collapse
Affiliation(s)
- Kirill V Lobodin
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Helena V Chetverina
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Russia
| | | |
Collapse
|
3
|
Chen X, He L, Xu M, Yang J, Li J, Zhang T, Liao Q, Zhang H, Yang J, Chen J. Binding between elongation factor 1A and the 3'-UTR of Chinese wheat mosaic virus is crucial for virus infection. MOLECULAR PLANT PATHOLOGY 2021; 22:1383-1398. [PMID: 34405507 PMCID: PMC8518580 DOI: 10.1111/mpp.13120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/06/2023]
Abstract
The Chinese wheat mosaic virus (CWMV) genome consists of two positive-strand RNAs that are required for CWMV replication and translation. The eukaryotic translation elongation factor (eEF1A) is crucial for the elongation of protein translation in eukaryotes. Here, we show that silencing eEF1A expression in Nicotiana benthamiana plants by performing virus-induced gene silencing can greatly reduce the accumulation of CWMV genomic RNAs, whereas overexpression of eEF1A in plants increases the accumulation of CWMV genomic RNAs. In vivo and in vitro assays showed that eEF1A does not interact with CWMV RNA-dependent RNA polymerase. Electrophoretic mobility shift assays revealed that eEF1A can specifically bind to the 3'-untranslated region (UTR) of CWMV genomic RNAs. By performing mutational analyses, we determined that the conserved region in the 3'-UTR of CWMV genomic RNAs is necessary for CWMV replication and translation, and that the sixth stem-loop (SL-6) in the 3'-UTR of CWMV genomic RNAs plays a key role in CWMV infection. We conclude that eEF1A is an essential host factor for CWMV infection. This finding should help us to develop new strategies for managing CWMV infections in host plants.
Collapse
Affiliation(s)
- Xuan Chen
- College of Plant ProtectionNorthwest Agriculture and Forestry UniversityYanglingChina
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant Virology of Ningbo UniversityNingboChina
- Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Long He
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant Virology of Ningbo UniversityNingboChina
| | - Miaoze Xu
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant Virology of Ningbo UniversityNingboChina
| | - Jin Yang
- College of Plant ProtectionNorthwest Agriculture and Forestry UniversityYanglingChina
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant Virology of Ningbo UniversityNingboChina
| | - Juan Li
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant Virology of Ningbo UniversityNingboChina
| | - Tianye Zhang
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant Virology of Ningbo UniversityNingboChina
| | - Qiansheng Liao
- College of Life ScienceZhejiang SCI‐Tech UniversityHangzhouChina
| | - Hengmu Zhang
- Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant Virology of Ningbo UniversityNingboChina
- Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jianping Chen
- College of Plant ProtectionNorthwest Agriculture and Forestry UniversityYanglingChina
- State Key Laboratory for Quality and Safety of Agro‐productsInstitute of Plant Virology of Ningbo UniversityNingboChina
- Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
4
|
Sunami T, Ichihashi N, Nishikawa T, Kazuta Y, Yomo T. Effect of Liposome Size on Internal RNA Replication Coupled with Replicase Translation. Chembiochem 2016; 17:1282-9. [DOI: 10.1002/cbic.201500662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Takeshi Sunami
- Institute for Academic Initiatives; Osaka University; 1-5 Yamadaoka Suita Osaka 565-0871 Japan
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| | - Norikazu Ichihashi
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 1-5 Yamadaoka Suita Osaka 565-0871 Japan
- Department of Bioinformatics Engineering; Graduate School of Information Science and Technology; Osaka University; 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| | - Takehiro Nishikawa
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yasuaki Kazuta
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| | - Tetsuya Yomo
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 1-5 Yamadaoka Suita Osaka 565-0871 Japan
- Department of Bioinformatics Engineering; Graduate School of Information Science and Technology; Osaka University; 1-5 Yamadaoka Suita Osaka 565-0871 Japan
- Graduate School of Frontier Biosciences; Osaka University; 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
5
|
How does the genome structure and lifestyle of a virus affect its population variation? Curr Opin Virol 2014; 9:39-44. [DOI: 10.1016/j.coviro.2014.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 11/20/2022]
|
6
|
Shimazu T, Barjau J, Sohtome Y, Sodeoka M, Shinkai Y. Selenium-based S-adenosylmethionine analog reveals the mammalian seven-beta-strand methyltransferase METTL10 to be an EF1A1 lysine methyltransferase. PLoS One 2014; 9:e105394. [PMID: 25144183 PMCID: PMC4140779 DOI: 10.1371/journal.pone.0105394] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/21/2014] [Indexed: 12/17/2022] Open
Abstract
Lysine methylation has been extensively studied in histones, where it has been shown to provide specific epigenetic marks for the regulation of gene expression; however, the molecular mechanism and physiological function of lysine methylation in proteins other than histones remains to be fully addressed. To better understand the substrate diversity of lysine methylation, S-adenosylmethionine (SAM) derivatives with alkyne-moieties have been synthesized. A selenium-based SAM analog, propargylic Se-adenosyl-l-selenomethionine (ProSeAM), has a wide spectrum of reactivity against various lysine methyltransferases (KMTs) with sufficient stability to support enzymatic reactions in vitro. By using ProSeAM as a chemical probe for lysine methylation, we identified substrates for two seven-beta-strand KMTs, METTL21A and METTL10, on a proteomic scale in mammalian cells. METTL21A has been characterized as a heat shock protein (HSP)-70 methyltransferase. Mammalian METTL10 remains functionally uncharacterized, although its ortholog in yeast, See1, has been shown to methylate the translation elongation factor eEF1A. By using ProSeAM-mediated alkylation followed by purification and quantitative MS analysis, we confirmed that METTL21A labels HSP70 family proteins. Furthermore, we demonstrated that METTL10 also methylates the eukaryotic elongation factor EF1A1 in mammalian cells. Subsequent biochemical characterization revealed that METTL10 specifically trimethylates EF1A1 at lysine 318 and that siRNA-mediated knockdown of METTL10 decreases EF1A1 methylation levels in vivo. Thus, our study emphasizes the utility of the synthetic cofactor ProSeAM as a chemical probe for the identification of non-histone substrates of KMTs.
Collapse
Affiliation(s)
| | - Joaquin Barjau
- Synthetic Organic Chemistry Laboratory, RIKEN, Wako, Japan
| | | | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN, Wako, Japan
| | | |
Collapse
|
7
|
The unexpected roles of eukaryotic translation elongation factors in RNA virus replication and pathogenesis. Microbiol Mol Biol Rev 2014; 77:253-66. [PMID: 23699257 DOI: 10.1128/mmbr.00059-12] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prokaryotic translation elongation factors were identified as essential cofactors for RNA-dependent RNA polymerase activity of the bacteriophage Qβ more than 40 years ago. A growing body of evidence now shows that eukaryotic translation elongation factors (eEFs), predominantly eEF1A, acting in partially characterized complexes sometimes involving additional eEFs, facilitate virus replication. The functions of eEF1A as a protein chaperone and an RNA- and actin-binding protein enable its "moonlighting" roles as a virus replication cofactor. A diverse group of viruses, from human immunodeficiency type 1 and West Nile virus to tomato bushy stunt virus, have adapted to use eEFs as cofactors for viral transcription, translation, assembly, and pathogenesis. Here we review the mechanisms used by viral pathogens to usurp these abundant cellular proteins for their replication.
Collapse
|
8
|
Li Z, Gonzalez PA, Sasvari Z, Kinzy TG, Nagy PD. Methylation of translation elongation factor 1A by the METTL10-like See1 methyltransferase facilitates tombusvirus replication in yeast and plants. Virology 2014; 448:43-54. [PMID: 24314635 DOI: 10.1016/j.virol.2013.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 11/17/2022]
Abstract
Replication of tombusviruses and other plus-strand RNA viruses depends on several host factors that are recruited into viral replicase complexes. Previous studies have shown that eukaryotic translation elongation factor 1A (eEF1A) is one of the resident host proteins in the highly purified tombusvirus replicase complex. In this paper, we show that methylation of eEF1A by the METTL10-like See1p methyltransferase is required for tombusvirus and unrelated nodavirus RNA replication in yeast model host. Similar to the effect of SEE1 deletion, yeast expressing only a mutant form of eEF1A lacking the 4 known lysines subjected to methylation supported reduced TBSV accumulation. We show that the half-life of several viral replication proteins is decreased in see1Δ yeast or when a mutated eEF1A was expressed as a sole source for eEF1A. Silencing of the plant ortholog of See1 methyltransferase also decreased tombusvirus RNA accumulation in Nicotiana benthamiana.
Collapse
Affiliation(s)
- Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, United States
| | | | | | | | | |
Collapse
|
9
|
Deryusheva EI, Selivanova OM, Serdyuk IN. Loops and repeats in proteins as footprints of molecular evolution. BIOCHEMISTRY (MOSCOW) 2013; 77:1487-99. [DOI: 10.1134/s000629791213007x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Synergistic roles of eukaryotic translation elongation factors 1Bγ and 1A in stimulation of tombusvirus minus-strand synthesis. PLoS Pathog 2011; 7:e1002438. [PMID: 22194687 PMCID: PMC3240602 DOI: 10.1371/journal.ppat.1002438] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/31/2011] [Indexed: 12/26/2022] Open
Abstract
Host factors are recruited into viral replicase complexes to aid replication of plus-strand RNA viruses. In this paper, we show that deletion of eukaryotic translation elongation factor 1Bgamma (eEF1Bγ) reduces Tomato bushy stunt virus (TBSV) replication in yeast host. Also, knock down of eEF1Bγ level in plant host decreases TBSV accumulation. eEF1Bγ binds to the viral RNA and is one of the resident host proteins in the tombusvirus replicase complex. Additional in vitro assays with whole cell extracts prepared from yeast strains lacking eEF1Bγ demonstrated its role in minus-strand synthesis by opening of the structured 3′ end of the viral RNA and reducing the possibility of re-utilization of (+)-strand templates for repeated (-)-strand synthesis within the replicase. We also show that eEF1Bγ plays a synergistic role with eukaryotic translation elongation factor 1A in tombusvirus replication, possibly via stimulation of the proper positioning of the viral RNA-dependent RNA polymerase over the promoter region in the viral RNA template.These roles for translation factors during TBSV replication are separate from their canonical roles in host and viral protein translation. RNA viruses recruit numerous host proteins to facilitate their replication and spread. Among the identified host proteins are RNA-binding proteins (RBPs), such as ribosomal proteins, translation factors and RNA-modifying enzymes. In this paper, the authors show that deletion of eukaryotic translation elongation factor 1Bgamma (eEF1Bγ) reduces Tomato bushy stunt virus (TBSV) replication in a yeast model host. Knock down of eEF1Bγ level in plant host also decreases TBSV accumulation. Moreover, the authors demonstrate that eEF1Bγ binds to the viral RNA and is present in the tombusvirus replicase complex. Functional studies revealed that eEF1Bγ promotes minus-strand synthesis by serving as an RNA chaperone. The authors also show that eEF1Bγ and eukaryotic translation elongation factor 1A, another host factor, function together to promote tombusvirus replication.
Collapse
|
11
|
Li Z, Pogany J, Tupman S, Esposito AM, Kinzy TG, Nagy PD. Translation elongation factor 1A facilitates the assembly of the tombusvirus replicase and stimulates minus-strand synthesis. PLoS Pathog 2010; 6:e1001175. [PMID: 21079685 PMCID: PMC2973826 DOI: 10.1371/journal.ppat.1001175] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 10/01/2010] [Indexed: 11/18/2022] Open
Abstract
Replication of plus-strand RNA viruses depends on host factors that are recruited into viral replicase complexes. Previous studies showed that eukaryotic translation elongation factor (eEF1A) is one of the resident host proteins in the highly purified tombusvirus replicase complex. Using a random library of eEF1A mutants, we identified one mutant that decreased and three mutants that increased Tomato bushy stunt virus (TBSV) replication in a yeast model host. Additional in vitro assays with whole cell extracts prepared from yeast strains expressing the eEF1A mutants demonstrated several functions for eEF1A in TBSV replication: facilitating the recruitment of the viral RNA template into the replicase complex; the assembly of the viral replicase complex; and enhancement of the minus-strand synthesis by promoting the initiation step. These roles for eEF1A are separate from its canonical role in host and viral protein translation, emphasizing critical functions for this abundant cellular protein during TBSV replication. Plus-stranded RNA viruses are important pathogens of plants, animals and humans. They replicate in the infected cells by assembling viral replicase complexes consisting of viral- and host-coded proteins. In this paper, we show that the eukaryotic translation elongation factor (eEF1A), which is one of the resident host proteins in the highly purified tombusvirus replicase complex, is important for Tomato bushy stunt virus (TBSV) replication in a yeast model host. Based on a random library of eEF1A mutants, we identified eEF1A mutants that either decreased or increased TBSV replication. In vitro studies revealed that eEF1A facilitated the recruitment of the viral RNA template for replication and the assembly of the viral replicase complex, as well as eEF1A enhanced viral RNA synthesis in vitro. Altogether, this study demonstrates that eEF1A has several functions during TBSV replication.
Collapse
Affiliation(s)
- Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Steven Tupman
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Anthony M. Esposito
- Department of Molecular Genetics, Microbiology, and Immunology, UMDNJ Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Terri Goss Kinzy
- Department of Molecular Genetics, Microbiology, and Immunology, UMDNJ Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
12
|
Nagy PD, Pogany J. Global genomics and proteomics approaches to identify host factors as targets to induce resistance against Tomato bushy stunt virus. Adv Virus Res 2010; 76:123-77. [PMID: 20965073 PMCID: PMC7173251 DOI: 10.1016/s0065-3527(10)76004-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The success of RNA viruses as pathogens of plants, animals, and humans depends on their ability to reprogram the host cell metabolism to support the viral infection cycle and to suppress host defense mechanisms. Plus-strand (+)RNA viruses have limited coding potential necessitating that they co-opt an unknown number of host factors to facilitate their replication in host cells. Global genomics and proteomics approaches performed with Tomato bushy stunt virus (TBSV) and yeast (Saccharomyces cerevisiae) as a model host have led to the identification of 250 host factors affecting TBSV RNA replication and recombination or bound to the viral replicase, replication proteins, or the viral RNA. The roles of a dozen host factors involved in various steps of the replication process have been validated in yeast as well as a plant host. Altogether, the large number of host factors identified and the great variety of cellular functions performed by these factors indicate the existence of a truly complex interaction between TBSV and the host cell. This review summarizes the advantages of using a simple plant virus and yeast as a model host to advance our understanding of virus–host interactions at the molecular and cellular levels. The knowledge of host factors gained can potentially be used to inhibit virus replication via gene silencing, expression of dominant negative mutants, or design of specific chemical inhibitors leading to novel specific or broad-range resistance and antiviral tools against (+)RNA plant viruses.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA.
| | | |
Collapse
|
13
|
Li Z, Pogany J, Panavas T, Xu K, Esposito AM, Kinzy TG, Nagy PD. Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor. Virology 2009; 385:245-60. [PMID: 19131084 DOI: 10.1016/j.virol.2008.11.041] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/01/2008] [Accepted: 11/25/2008] [Indexed: 11/30/2022]
Abstract
Host RNA-binding proteins are likely to play multiple, integral roles during replication of plus-strand RNA viruses. To identify host proteins that bind to viral RNAs, we took a global approach based on the yeast proteome microarray, which contains 4080 purified yeast proteins. The biotin-labeled RNA probes included two distantly related RNA viruses, namely Tomato bushy stunt virus (TBSV) and Brome mosaic virus (BMV). Altogether, we have identified 57 yeast proteins that bound to TBSV RNA and/or BMV RNA. Among the identified host proteins, eleven bound to TBSV RNA and seven bound to BMV RNA with high selectivity, whereas the remaining 39 host proteins bound to both viral RNAs. The interaction between the TBSV replicon RNA and five of the identified host proteins was confirmed via gel-mobility shift and co-purification experiments from yeast. Over-expression of the host proteins in yeast, a model host for TBSV, revealed 4 host proteins that enhanced TBSV replication as well as 14 proteins that inhibited replication. Detailed analysis of one of the identified yeast proteins binding to TBSV RNA, namely translation elongation factor eEF1A, revealed that it is present in the highly purified tombusvirus replicase complex. We also demonstrate binding of eEF1A to the p33 replication protein and a known cis-acting element at the 3' end of TBSV RNA. Using a functional mutant of eEF1A, we provide evidence on the involvement of eEF1A in TBSV replication.
Collapse
Affiliation(s)
- Zhenghe Li
- Department of Plant Pathology, University of Kentucky, Lexington, 40546, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Functional circularity of legitimate Qbeta replicase templates. J Mol Biol 2008; 379:414-27. [PMID: 18466922 PMCID: PMC7173182 DOI: 10.1016/j.jmb.2008.03.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 03/12/2008] [Accepted: 03/31/2008] [Indexed: 11/21/2022]
Abstract
Qbeta replicase (RNA-directed RNA polymerase of bacteriophage Qbeta) exponentially amplifies certain RNAs in vitro. Previous studies have shown that Qbeta replicase can initiate and elongate on a variety of RNAs; however, only a minute fraction of them are recognized as 'legitimate' templates. Guanosine 5'-triphosphate (GTP)-dependent initiation on a legitimate template generates a stable replicative complex capable of elongation in the presence of aurintricarboxylic acid, a powerful inhibitor of RNA-protein interactions. On the contrary, initiation on an illegitimate template is GTP independent and does not result in the aurintricarboxylic-acid-resistant replicative complex. This article demonstrates that the 3' and 5' termini of a legitimate template cooperate during and after the initiation step. Breach of the cooperation by dividing the template into fragments or by introducing point mutations at the 5' terminus reduces the rate and the yield of initiation, increases the GTP requirement, decreases the overall rate of template copying, and destabilizes the postinitiation replicative complex. These results revive the old idea of a functional circularity of legitimate Qbeta replicase templates and complement the increasing body of evidence that functional circularity may be a common property of RNA templates directing the synthesis of either RNA or protein molecules.
Collapse
|
15
|
Abstract
The flavivirus genome is a capped, positive-sense RNA approximately 10.5 kb in length. It contains a single long open reading frame (ORF), flanked by a 5´ noncoding regions (NCR), which is about 100 nucleotides in length, and a 3´ NCR ranging in size from about 400 to 800 nucleotides in length. The conserved structural and nucleotide sequence elements of these NCRs and their function in RNA replication and translation are the subjects of this chapter. The 5´ and 3´ NCRs play a role in the initiation of negative-strand synthesis on virus RNA released from entering virions, switching from negative-strand synthesis to synthesis of progeny plus strand RNA at late times after infection, and possibly in the initiation of translation and in the packaging of virus plus strand RNA into particles. The presence of conserved and nonconserved complementary nucleotide sequences near the 5´ and 3´ termini of flavivirus genomes suggests that ‘‘panhandle’’ or circular RNA structures are formed transiently by hydrogen bonding at some stage during RNA replication.
Collapse
Affiliation(s)
- Lewis Markoff
- Laboratory of Vector-Borne Virus Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
De BP, Banerjee AK. Role of host proteins in gene expression of nonsegmented negative strand RNA viruses. Adv Virus Res 1997; 48:169-204. [PMID: 9233433 DOI: 10.1016/s0065-3527(08)60288-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- B P De
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195, USA
| | | |
Collapse
|
17
|
Pulikowska J, Wojtaszek P, Korcz A, Michalski Z, Candresse T, Twardowski T. Immunochemical properties of elongation factors 1 of plant origin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 171:131-6. [PMID: 3123226 DOI: 10.1111/j.1432-1033.1988.tb13768.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Elongation factors 1 (EF-1) have been isolated from different plants: wheat, yellow lupine, blue lupine, Chinese cabbage and Norway maple. Antibodies for EF-1 from yellow lupine have been obtained in rabbits; antibodies for wheat EF-1 were elicited in mice. The immunological properties of EF-1 were assayed by the following methods: western blotting, double immunodiffusion and rocket immunoelectrophoresis. Our results suggest that one antigenic site is similar for all plant elongation binding factors tested. This epitope probably overlaps the centre of biological activity of EF-1, as was shown for wheat EF-1. The hypothesis concerning the potential presence of plant EF-1 as a subunit of turnip yellow mosaic virus RNA replicase (similar to prokaryotic EF-Tu in the Q beta RNA replicase system) has also been tested using immunotechniques as well as tests of biological activity, but has not been confirmed.
Collapse
Affiliation(s)
- J Pulikowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
|
20
|
Studies on the mechanism of DNA polymerase alpha. Nascent chain elongation, steady state kinetics, and the initiation phase of DNA synthesis. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69081-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Biebricher CK, Eigen M, Luce R. Kinetic analysis of template-instructed and de novo RNA synthesis by Q beta replicase. J Mol Biol 1981; 148:391-410. [PMID: 6273581 DOI: 10.1016/0022-2836(81)90183-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
|
23
|
Blumenthal T. Interaction of Qluta RNA replicase with guanine nucleotides. Different modes of inhibition and inactivation. BIOCHIMICA ET BIOPHYSICA ACTA 1977; 478:201-8. [PMID: 332232 DOI: 10.1016/0005-2787(77)90183-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Carmichael GG, Landers TA, Weber K. Immunochemical analysis of the functions of the subunits of phage Qbeta ribonucleic acid replicase. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(17)33551-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Brown S, Blumenthal T. Function and structure in ribonucleic acid phage Qbeta ribonucleic acid replicase. Effect of inhibitors of EF-Tu on ribonucleic acid synthesis and renaturation of active enzyme. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(17)33552-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|