1
|
Sprinzl M, Voertler CS. Allosteric Control of mRNA Decoding. Chembiochem 2005; 6:2143-5. [PMID: 16247832 DOI: 10.1002/cbic.200500299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mathias Sprinzl
- Laboratorium für Biochemie, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| | | |
Collapse
|
2
|
Kothe U, Wieden HJ, Mohr D, Rodnina MV. Interaction of helix D of elongation factor Tu with helices 4 and 5 of protein L7/12 on the ribosome. J Mol Biol 2004; 336:1011-21. [PMID: 15037065 DOI: 10.1016/j.jmb.2003.12.080] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 12/22/2003] [Accepted: 12/23/2003] [Indexed: 11/26/2022]
Abstract
Elongation factor Tu (EF-Tu) promotes binding of aminoacyl-tRNA to the A site of the ribosome. Here, we report the effects of mutations in helix D of EF-Tu and in the C-terminal domain of L7/12 on the kinetics of A-site binding. Reaction rates were measured by stopped-flow and quench-flow techniques. The rates of A-site binding were decreased by mutations at positions 144, 145, 148, and 152 in helix D of EF-Tu as well as at positions 65, 66, 69, 70, 73, and 84 in helices 4 and 5 of L7/12. The effect was due primarily to the lower association rate constant of ternary complex binding to the ribosome. These results suggest that helix D of EF-Tu is involved in an initial transient contact with helices 4 and 5 of L7/12 that promotes ternary complex binding to the ribosome. By analogy to the interaction of helix D of EF-Tu with the N-terminal domain of EF-Ts, the contact area is likely to consist of a hydrophobic patch flanked by two salt-bridges.
Collapse
Affiliation(s)
- Ute Kothe
- Institute of Physical Biochemistry, University of Witten/Herdecke, 58448 Witten, Germany
| | | | | | | |
Collapse
|
3
|
Rodnina MV, Wintermeyer W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu Rev Biochem 2002; 70:415-35. [PMID: 11395413 DOI: 10.1146/annurev.biochem.70.1.415] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ribosome discriminates between correct and incorrect aminoacyl-tRNAs (aa-tRNAs), or their complexes with elongation factor Tu (EF-Tu) and GTP, according to the match between anticodon and mRNA codon in the A site. Selection takes place at two stages, prior to GTP hydrolysis (initial selection) and after GTP hydrolysis but before peptide bond formation (proofreading). In part, discrimination results from different rejection rates that are due to different stabilities of the respective codon-anticodon complexes. An important additional contribution is provided by induced fit, in that only correct codon recognition leads to acceleration of rate-limiting rearrangements that precede chemical steps. Recent elucidation of ribosome structures and mutational analyses suggest which residues of the decoding center may be involved in signaling formation of the correct codon-anticodon duplex to the functional centers of the ribosome. In utilizing induced fit for substrate discrimination, the ribosome resembles other nucleic acid-programmed polymerases.
Collapse
Affiliation(s)
- M V Rodnina
- Institute of Physical Biochemistry, University of Witten/Herdecke, 58448 Witten, Germany.
| | | |
Collapse
|
4
|
Rodnina MV, Wintermeyer W. Ribosome fidelity: tRNA discrimination, proofreading and induced fit. Trends Biochem Sci 2001; 26:124-30. [PMID: 11166571 DOI: 10.1016/s0968-0004(00)01737-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ribosome selects aminoacyl-tRNAs with high fidelity. Kinetic studies reveal that codon-anticodon recognition both stabilizes aminoacyl-tRNA binding on the ribosome and accelerates reactions of the productive pathway, indicating an important contribution of induced fit to substrate selection. Similar mechanisms are used by other template-programmed enzymes, such as DNA and RNA polymerases.
Collapse
Affiliation(s)
- M V Rodnina
- Institutes of Physical Biochemistry and Molecular Biology, University of Witten/Herdecke, 58448, Witten, Germany.
| | | |
Collapse
|
5
|
Rodnina MV, Stark H, Savelsbergh A, Wieden HJ, Mohr D, Matassova NB, Peske F, Daviter T, Gualerzi CO, Wintermeyer W. GTPases mechanisms and functions of translation factors on the ribosome. Biol Chem 2000; 381:377-87. [PMID: 10937868 DOI: 10.1515/bc.2000.050] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The elongation factors (EF) Tu and G and initiation factor 2 (IF2) from bacteria are multidomain GTPases with essential functions in the elongation and initiation phases of translation. They bind to the same site on the ribosome where their low intrinsic GTPase activities are strongly stimulated. The factors differ fundamentally from each other, and from the majority of GTPases, in the mechanisms of GTPase control, the timing of Pi release, and the functional role of GTP hydrolysis. EF-Tu x GTP forms a ternary complex with aminoacyl-tRNA, which binds to the ribosome. Only when a matching codon is recognized, the GTPase of EF-Tu is stimulated, rapid GTP hydrolysis and Pi release take place, EF-Tu rearranges to the GDP form, and aminoacyl-tRNA is released into the peptidyltransferase center. In contrast, EF-G hydrolyzes GTP immediately upon binding to the ribosome, stimulated by ribosomal protein L7/12. Subsequent translocation is driven by the slow dissociation of Pi, suggesting a mechano-chemical function of EF-G. Accordingly, different conformations of EF-G on the ribosome are revealed by cryo-electron microscopy. GTP hydrolysis by IF2 is triggered upon formation of the 70S initiation complex, and the dissociation of Pi and/or IF2 follows a rearrangement of the ribosome into the elongation-competent state.
Collapse
Affiliation(s)
- M V Rodnina
- Institute of Molecular Biology, University of Witten/Herdecke, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- T S Leyh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
7
|
Cavieres JD, Buxbaum E, Ward DG, Walton TJ. K+ induces an acid-labile phosphoenzyme (or an occluded Pi form) in Na,K-ATPase. Ann N Y Acad Sci 1997; 834:381-5. [PMID: 9405830 DOI: 10.1111/j.1749-6632.1997.tb52277.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J D Cavieres
- Department of Cell Physiology & Pharmacology, Leicester University, UK
| | | | | | | |
Collapse
|
8
|
Oram M, Marko JF, Halford SE. Communications between distant sites on supercoiled DNA from non-exponential kinetics for DNA synapsis by resolvase. J Mol Biol 1997; 270:396-412. [PMID: 9237906 DOI: 10.1006/jmbi.1997.1109] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To determine how distant sites on supercoiled DNA communicate with each other, the mechanism of site-specific recombination by resolvase was analysed by using a rapid-reaction quench-flow device to study the kinetics of individual steps in the reaction pathway. Three sets of measurements revealed the rates for: (1) the initial binding of the protein to its target sites on the DNA; (2) the synapsis of the two DNA-protein complexes; (3) the overall process of recombination. The binding of the protein to the DNA was complete within 50 milliseconds while recombination required 500 seconds. Surprisingly, synapsis spanned this entire time range: some DNA molecules gave synaptic complexes within ten milliseconds after the initial binding, while others took over 100 seconds. The departure from exponential behaviour may be due to each molecule of DNA having to undergo different conformational fluctuations in order to juxtapose the recombinational sites. From polymer physics theory, the rate of synapsis ought to vary with either the size of the DNA molecule or the length of DNA between the recombinational sites, depending on the nature of the fluctuations, but plasmids of different sizes and with different spacings between the sites all gave the same rates for synapsis. This observation cannot be reconciled with current models for encounters of distant sites on supercoiled DNA. However, the superhelical axis in the DNA molecules used here will be branched at one or more positions and the encounters may arise from the motion of a single branch relative to the remainder of the chain. Alternatively, the non-exponential kinetics for synapsis may be due to multiple re-arrangements of non-productive complexes following DNA juxtaposition.
Collapse
Affiliation(s)
- M Oram
- Department of Biochemistry, University of Bristol, UK
| | | | | |
Collapse
|
9
|
Guo S, Ma N, Ives DH. cis-Active Ras G2-like sequence implicated in the heterotropic activation of the deoxyadenosine kinase of Lactobacillus acidophilus R-26. J Biol Chem 1997; 272:6890-7. [PMID: 9054375 DOI: 10.1074/jbc.272.11.6890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deoxyadenosine kinase (dAK) forms a heterodimer with either deoxyguanosine kinase (dGK) or deoxycytidine kinase (dCK), and is heterotropically activated 3-5 times by dGuo or dCyd. Expressed alone, dAK is inactive and exhibits no response to dGuo or dCyd; activity and heterotropic response are fully restored upon reassociation with dGK or dCK. However, turnover of independently expressed dGK or dCK is nearly maximal, being further activated only 50-100% upon reassociation with dAK. In neither case is the heterotropic activation due to ligand-induced heterodimer formation. A proline/alanine substitution within a dAK segment homologous to loop G2 of Ras proteins yielded a heterodimer with dAK permanently cis-activated 2-fold, with a corresponding reduction in heterotropic activation by dGuo. A chimeric dAK, with 25% of its C terminus substituted by the homologous sequence from dGK, was inactive alone, and its characteristics were unchanged in the reconstituted heterodimer. Superimposing the Pro/Ala substitution on this chimera also reduced heterotropic activation by half. Cross-linking the dimer by 1,5-difluoro-2,4-dinitrobenzene was inhibited by ATP, dATP, dGTP, and dAdo, suggesting the proximity of the active site(s) to the interface. These data suggest that dAK depends on dGK or dCK in a manner resembling the reliance of Ras upon GTPase activating protein.
Collapse
Affiliation(s)
- S Guo
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | |
Collapse
|
10
|
Rodnina MV, Fricke R, Wintermeyer W. Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. Biochemistry 1994; 33:12267-75. [PMID: 7918447 DOI: 10.1021/bi00206a033] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Conformational transitions of Phe-tRNA(Phe) that take place during elongation factor Tu (EF-Tu)-dependent binding to the A site of Escherichia coli ribosomes were followed by transient fluorescence measurements. The fluorescence signal of proflavin replacing dihydrouracil at position 16 or 17 in yeast tRNA(Phe) was utilized to monitor changes of the conformation of the D loop. The ternary complex EF-Tu.GTP.Phe-TRNA(Phe)(Pf16/17) was purified by gel filtration. Upon binding of the complex to the A site of poly(U)-programmed, P-site-blocked ribosomes, the fluorescence changes in several steps. First, the rapid formation of an initial complex gives rise to a small fluorescence increase. Subsequent codon-anticodon recognition leads to a conformational rearrangement of the D loop of the tRNA that is reflected in a major fluorescence increase. Fluorescence-quenching data indicate an unfolding of the D loop in this state. The latter conformational state is short-lived, and the aminoacyl-tRNA refolds during the following rearrangement that occurs after GTP hydrolysis and accompanies the release of the aminoacyl-tRNA from EF-Tu.GDP and/or its accommodation in the A site. Further experiments show that the status of the P site influences the binding to the A site in that the two rearrangement steps are slowed down when the P site is unoccupied and even more so when it is occupied with the near-cognate tRNA(Leu2). In contrast, the occupancy of the E site has no influence on A-site binding, and vice versa, thus excluding any coupling between the two sites.
Collapse
Affiliation(s)
- M V Rodnina
- Institut für Molekularbiologie, Universität Witten/Herdecke, Germany
| | | | | |
Collapse
|
11
|
Markby DW, Onrust R, Bourne HR. Separate GTP binding and GTPase activating domains of a G alpha subunit. Science 1993; 262:1895-901. [PMID: 8266082 DOI: 10.1126/science.8266082] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Most members of the guanosine triphosphatase (GTPase) superfamily hydrolyze guanosine triphosphate (GTP) quite slowly unless stimulated by a GTPase activating protein or GAP. The alpha subunits (G alpha) of the heterotrimeric G proteins hydrolyze GTP much more rapidly and contain an approximately 120-residue insert not found in other GTPases. Interactions between a G alpha insert domain and a G alpha GTP-binding core domain, both expressed as recombinant proteins, show that the insert acts biochemically as a GAP. The results suggest a general mechanism for GAP-dependent hydrolysis of GTP by other GTPases.
Collapse
Affiliation(s)
- D W Markby
- Department of Pharmcology, University of California, San Francisco 94143
| | | | | |
Collapse
|
12
|
Berchtold H, Reshetnikova L, Reiser CO, Schirmer NK, Sprinzl M, Hilgenfeld R. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 1993; 365:126-32. [PMID: 8371755 DOI: 10.1038/365126a0] [Citation(s) in RCA: 442] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The crystal structure of intact elongation factor Tu (EF-Tu) from Thermus thermophilus has been determined and refined at an effective resolution of 1.7 A, with incorporation of data extending to 1.45 A. The effector region, including interaction sites for the ribosome and for transfer RNA, is well defined. Molecular mechanisms are proposed for transduction and amplification of the signal induced by GTP binding as well as for the intrinsic and effector-enhanced GTPase activity of EF-Tu. Comparison of the structure with that of EF-Tu-GDP reveals major mutual rearrangements of the three domains of the molecule.
Collapse
Affiliation(s)
- H Berchtold
- Central Research G 865A, Hoechst Aktiengesellschaft, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Harrington KM, Nazarenko IA, Dix DB, Thompson RC, Uhlenbeck OC. In vitro analysis of translational rate and accuracy with an unmodified tRNA. Biochemistry 1993; 32:7617-22. [PMID: 7688564 DOI: 10.1021/bi00081a003] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Escherichia coli tRNA(Phe) transcript lacking all the modified nucleosides was investigated in an in vitro translation system. To estimate the affinity of tRNA toward EF-Tu, Kd and K-1 were measured by the nuclease protection assay, and it was shown that the absence of modifications decreases ternary complex stability less than 2-fold. The activity of unmodified Phe-tRNA(Phe) on E. coli ribosomes was compared to modified Phe-tRNA(Phe) using the framework of the kinetic proofreading mechanism (Thompson & Dix, 1982) with both cognate and noncognate codons. Values of the individual rate constants in the elongation process showed that the modifications increased the accuracy of translation by (1) decreasing the rate of dipeptide synthesis and (2) increasing the rate of rejection with noncognate codons.
Collapse
Affiliation(s)
- K M Harrington
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| | | | | | | | | |
Collapse
|
14
|
Bilgin N, Claesens F, Pahverk H, Ehrenberg M. Kinetic properties of Escherichia coli ribosomes with altered forms of S12. J Mol Biol 1992; 224:1011-27. [PMID: 1569565 DOI: 10.1016/0022-2836(92)90466-w] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
E. coli ribosomes with alterations in S12 leading to streptomycin resistance (SmR), dependence (SmD) and pseudodependence (SmP) were studied with the quench-flow technique. Kinetic changes at the various steps of the elongation cycle were identified. The rate of hydrolysis of GTP in the ternary complex in the ribosomal A-site is decreased drastically in SmD and moderately in SmP in relation to wild-type ribosomes. Addition of streptomycin restores much of the wild-type behaviour. The SmD, SmP and SmR ribosomes have an enhanced GTP-hydrolysis idling reaction on EF-Tu, which is correlated with how aggressive proofreaders these ribosomes are in steady-state assays. We use our in vitro findings to discuss the in vivo physiology of these mutants as well as mechanistic features of E. coli translation.
Collapse
Affiliation(s)
- N Bilgin
- University of Uppsala, Department of Molecular Biology, Sweden
| | | | | | | |
Collapse
|
15
|
Abrahams JP, Acampo JJ, Kraal B, Bosch L. The influence of tRNA located at the P-site on the turnover of EF-Tu.GTP on ribosomes. Biochimie 1991; 73:1089-92. [PMID: 1742352 DOI: 10.1016/0300-9084(91)90150-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The turnover of EF-Tu.GTP on poly-U programmed ribosomes was measured both in the presence and in the absence of N-acetylated Phe-tRNA(Phe) at the P-site. The reaction was uncoupled from protein synthesis by omitting Phe-tRNA(Phe) at the A-site. In this reaction, the ribosome can be considered as an enzyme catalysing the transition of EF-Tu.GTP to EF-Tu.GTP. A constant EF-Tu.GTP concentration is maintained by regenerating GDP to GTP at the expense of phosphoenolpyruvate by pyruvate kinase. The rate constants are determined using a procedure which corrects for the reduction in specific activity of GTP due to regeneration of the nucleotide. Ribosomes with an occupied P-site are more efficient in stimulating the GTPase of EF-Tu.GTP than ribosomes with an empty P-site. The data suggest that this is mainly caused by an increased affinity of EF-Tu.GTP for ribosomes with a filled P-site rather than by an enhanced reactivity of the GTPase centre.
Collapse
Affiliation(s)
- J P Abrahams
- Department of Biochemistry, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
16
|
Ehrenberg M, Rojas AM, Weiser J, Kurland CG. How many EF-Tu molecules participate in aminoacyl-tRNA binding and peptide bond formation in Escherichia coli translation? J Mol Biol 1990; 211:739-49. [PMID: 2179565 DOI: 10.1016/0022-2836(90)90074-v] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have observed that two EF-Tu.GTP cycles are required to make one peptide bond during steady-state translation in an accurate and fast poly(U) translation system prepared from Escherichia coli. We have also found that there are two complexes of EF-Tu.GTP bound to one molecule of aminoacyl-tRNA under our experimental conditions. We suggest, on the basis of these data, that aminoacyl-tRNA enters the ribosomal A-site in a pentameric complex together with two EF-Tu and two GTP molecules. When the tRNA is delivered to the ribosome two GTP molecules are hydrolyzed. It is possible that the functional role of such an EF-Tu dimer is related to the function of the two L7/L12 dimers in the large ribosomal subunit.
Collapse
Affiliation(s)
- M Ehrenberg
- Department of Molecular Biology, BMC, Uppsala University, Sweden
| | | | | | | |
Collapse
|
17
|
|
18
|
|
19
|
|
20
|
Anderson RP, Menninger JR. Tests of the ribosome editor hypothesis. III. A mutant Escherichia coli with a defective ribosome editor. MOLECULAR & GENERAL GENETICS : MGG 1987; 209:313-8. [PMID: 3118146 DOI: 10.1007/bf00329659] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Peptidyl-tRNA dissociates from the ribosomes of Escherichia coli during protein biosynthesis. The ribosome editor hypothesis states that incorrect peptidyl-tRNAs dissociate preferentially. Editing would therefore prevent the completion of proteins containing misincorporated amino acids. We have isolated a mutant strain of E. coli that dissociates some peptidyl-tRNAs at a fivefold lower rate than its parent strain, and that synthesizes significantly more erroneous complete proteins. This strain is also partially resistant to the antibiotic erythromycin, which in wild-type E. coli stimulates the dissociation of peptidyl-tRNA from ribosomes. The data suggest that in this mutant all peptidyl-tRNAs are bound to the ribosome more tightly than normally during protein synthesis. Because of the inverse correlation between the accuracy of synthesis of complete proteins and the rate of dissociation of peptidyl-tRNA from the ribosome, we propose that the mutant contains a defective ribosomal editor.
Collapse
Affiliation(s)
- R P Anderson
- Department of Biology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
21
|
|
22
|
Thompson RC, Dix DB, Karim AM. The reaction of ribosomes with elongation factor Tu.GTP complexes. Aminoacyl-tRNA-independent reactions in the elongation cycle determine the accuracy of protein synthesis. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)89185-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
White DC, Zimmerman RW, Trentham DR. The ATPase kinetics of insect fibrillar flight muscle myosin subfragment-1. J Muscle Res Cell Motil 1986; 7:179-92. [PMID: 2940261 DOI: 10.1007/bf01753419] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Myosin subfragment-1 (S1) has been prepared from the fibrillar flight muscles of the giant water bug Lethocerus by chymotryptic digestion of myofibrillar suspensions in the absence of magnesium ions. The S1 obtained has a single light chain and a heavy chain with molecular weights of about 18 kDa and 90 kDa respectively. The kinetics of the elementary steps of the magnesium-dependent ATPase of insect S1 and rabbit S1 are similar, both with ATP and with ATP analogues as substrates. However, the presence of variable amounts of inactive protein within our preparation means that several rate constants cannot be obtained with as much precision in the case of insect S1. The most striking differences between the rabbit and insect S1 are values for the Vmax and the Km of actin during actin-activation of the MgATPase activity, which are up to an order of magnitude lower and greater in the insect than in the rabbit, respectively. The mechanical properties of strain activation and of capacity to do extended oscillatory work are unique to insect fibrillar flight muscle and distinguish it from vertebrate striated muscle. It is likely that these properties reflect differences in the organization of actin and myosin within the respective filament lattices rather than intrinsic differences in the ATPase mechanisms of the isolated myosin molecules from the two types of muscle.
Collapse
|
24
|
Karim AM, Thompson RC. Guanosine 5'-O-(3-thiotriphosphate) as an analog of GTP in protein biosynthesis. The effects of temperature and polycations on the accuracy of initial recognition of aminoacyl-tRNA ternary complexes by ribosomes. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)35774-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|