1
|
Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N. Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. MOLECULAR PLANT 2009; 2:1154-80. [PMID: 19969518 DOI: 10.1093/mp/ssp088] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent advances in the proteomic field have allowed high-throughput experiments to be conducted on chloroplast samples. Many proteomic investigations have focused on either whole chloroplast or sub-plastidial fractions. To date, the Plant Protein Database (PPDB, Sun et al., 2009) presents the most exhaustive chloroplast proteome available online. However, the accurate localization of many proteins that were identified in different sub-plastidial compartments remains hypothetical. Ferro et al. (2009) went a step further into the knowledge of Arabidopsis thaliana chloroplast proteins with regards to their accurate localization within the chloroplast by using a semi-quantitative proteomic approach known as spectral counting. Their proteomic strategy was based on the accurate mass and time tags (AMT) database approach and they built up AT_CHLORO, a comprehensive chloroplast proteome database with sub-plastidial localization and curated information on envelope proteins. Comparing these two extensive databases, we focus here on about 100 enzymes involved in the synthesis of chloroplast-specific isoprenoids. Well known pathways (i.e. compartmentation of the methyl erythritol phosphate biosynthetic pathway, of tetrapyrroles and chlorophyll biosynthesis and breakdown within chloroplasts) validate the spectral counting-based strategy. The same strategy was then used to identify the precise localization of the biosynthesis of carotenoids and prenylquinones within chloroplasts (i.e. in envelope membranes, stroma, and/or thylakoids) that remains unclear until now.
Collapse
Affiliation(s)
- Jacques Joyard
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168, CEA, CNRS, INRA, Université Joseph Fourier, iRTSV, CEA-Grenoble, 38054 Grenoble-cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
2
|
Masoumi A, Heinemann IU, Rohde M, Koch M, Jahn M, Jahn D. Complex formation between protoporphyrinogen IX oxidase and ferrochelatase during haem biosynthesis in Thermosynechococcus elongatus. MICROBIOLOGY-SGM 2009; 154:3707-3714. [PMID: 19047738 DOI: 10.1099/mic.0.2008/018705-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During haem and chlorophyll biosynthesis, flavin-dependent protoporphyrinogen IX oxidase catalyses the six-electron oxidation of protoporphyrinogen IX to form protoporphyrin IX. In the following step, iron is inserted into protoporphyrin IX by ferrochelatase. Based on the solved crystal structures of these enzymes, an in silico model for a complex between these two enzymes was proposed to protect the highly photoreactive intermediate protoporphyrin IX. The existence of this complex was verified by two independent techniques. First, co-immunoprecipitation experiments using antibodies directed against recombinantly produced and purified Thermosynechococcus elongatus protoporphyrinogen IX oxidase and ferrochelatase demonstrated their physical interaction. Secondly, protein complex formation was visualized by in vivo immunogold labelling and electron microscopy with T. elongatus cells. Finally, oxygen-dependent coproporphyrinogen III oxidase, which catalyses the formation of protoporphyrinogen IX, was not found to be part of this complex when analysed with the same methodology.
Collapse
Affiliation(s)
- Ava Masoumi
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Ilka Ursula Heinemann
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Manfred Rohde
- Division of Microbiology, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Michael Koch
- Laboratoire de Biologie et de Génomique Structurales, IGBMC, Parc d'Innovation, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch Cedex, France
| | - Martina Jahn
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | - Dieter Jahn
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
| |
Collapse
|
3
|
Petersen BL, Møller MG, Jensen PE, Henningsen KW. Identification of the Xan-g Gene and Expression of the Mg-chelatase Encoding Genes Xan-f, -g and -h in Mutant and Wild Type Barley (Hordeum Vulgare L.). Hereditas 2004. [DOI: 10.1111/j.1601-5223.1999.00165.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
4
|
Ferro M, Salvi D, Brugière S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N. Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana. Mol Cell Proteomics 2003; 2:325-45. [PMID: 12766230 DOI: 10.1074/mcp.m300030-mcp200] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of chloroplasts and the integration of their function within a plant cell rely on the presence of a complex biochemical machinery located within their limiting envelope membranes. To provide the most exhaustive view of the protein repertoire of chloroplast envelope membranes, we analyzed this membrane system using proteomics. To this purpose, we first developed a procedure to prepare highly purified envelope membranes from Arabidopsis chloroplasts. We then extracted envelope proteins using different methods, i.e. chloroform/methanol extraction and alkaline or saline treatments, in order to retrieve as many proteins as possible, from the most to least hydrophobic ones. Liquid chromatography tandem mass spectrometry analyses were then performed on each envelope membrane subfraction, leading to the identification of more than 100 proteins. About 80% of the identified proteins are known to be, or are very likely, located in the chloroplast envelope. The validation of localization in the envelope of two phosphate transporters exemplifies the need for a combination of strategies to perform the most exhaustive identification of genuine chloroplast envelope proteins. Interestingly, some of the identified proteins are found to be Nalpha-acetylated, which indicates the accurate location of the N terminus of the corresponding mature protein. With regard to function, more than 50% of the identified proteins have functions known or very likely to be associated with the chloroplast envelope. These proteins are a) involved in ion and metabolite transport, b) components of the protein import machinery, and c) involved in chloroplast lipid metabolism. Some soluble proteins, like proteases, proteins involved in carbon metabolism, or proteins involved in responses to oxidative stress, were associated with envelope membranes. Almost one-third of the proteins we identified have no known function. The present work helps understanding chloroplast envelope metabolism at the molecular level and provides a new overview of the biochemical machinery of the chloroplast envelope membranes.
Collapse
Affiliation(s)
- Myriam Ferro
- Laboratoire de Chimie des Protéines, ERM-0201 INSERM/CEA, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cornah JE, Terry MJ, Smith AG. Green or red: what stops the traffic in the tetrapyrrole pathway? TRENDS IN PLANT SCIENCE 2003; 8:224-30. [PMID: 12758040 DOI: 10.1016/s1360-1385(03)00064-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Regulation of tetrapyrrole biosynthesis is crucial to plant metabolism. The two pivotal control points are formation of the initial precursor, 5-aminolaevulinic acid (ALA), and the metal-ion insertion step: chelation of Fe(2+) into protoporphyrin IX leads to haem and phytochromobilin, whereas insertion of Mg(2+) is the first step to chlorophyll. Recent studies with mutants and transgenic plants have demonstrated that perturbation of the branch point affects ALA formation. Moreover, one of the signals that controls the expression of genes for nuclear-encoded chloroplast proteins has been shown to be Mg-protoporphyrin-IX. Here, we discuss the regulation of branch-point flux and the relative contributions of the haem and chlorophyll branches to the regulation of ALA synthesis and thus to flow through the tetrapyrrole pathway.
Collapse
Affiliation(s)
- Johanna E Cornah
- Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, Scotland, UK EH9 3JR
| | | | | |
Collapse
|
6
|
O'Brian MR, Thöny-Meyer L. Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes. Adv Microb Physiol 2002; 46:257-318. [PMID: 12073655 DOI: 10.1016/s0065-2911(02)46006-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Haems are involved in many cellular processes in prokaryotes and eukaryotes. The biosynthetic pathway leading to haem formation is, with few exceptions, well-conserved, and is controlled in accordance with cellular function. Here, we review the biosynthesis of haem and its regulation in prokaryotes. In addition, we focus on a modification of haem for cytochrome c biogenesis, a complex process that entails both transport between cellular compartments and a specific thioether linkage between the haem moiety and the apoprotein. Finally, a whole genome analysis from 63 prokaryotes indicates intriguing exceptions to the universality of the haem biosynthetic pathway and helps define new frontiers for future study.
Collapse
Affiliation(s)
- Mark R O'Brian
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | |
Collapse
|
7
|
Suzuki T, Masuda T, Singh DP, Tan FC, Tsuchiya T, Shimada H, Ohta H, Smith AG, Takamiya KI. Two types of ferrochelatase in photosynthetic and nonphotosynthetic tissues of cucumber: their difference in phylogeny, gene expression, and localization. J Biol Chem 2002; 277:4731-7. [PMID: 11675381 DOI: 10.1074/jbc.m105613200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ferrochelatase catalyzes the insertion of Fe(2+) into protoporphyrin IX to generate protoheme. In higher plants, there is evidence for two isoforms of this enzyme that fulfill different roles. Here, we describe the isolation of a second ferrochelatase cDNA from cucumber (CsFeC2) that was less similar to a previously isolated isoform (CsFeC1) than it was to some ferrochelatases from other higher plants. In in vitro import experiments, the two cucumber isoforms showed characteristics similar to their respective ferrochelatase counterparts of Arabidopsis thaliana. The C-terminal region of CsFeC2 but not CsFeC1 contained a conserved motif found in light-harvesting chlorophyll proteins, and CsFeC2 belonged to a phylogenetic group of plant ferrochelatases containing this conserved motif. We demonstrate that CsFeC2 was localized predominantly in thylakoid membranes as an intrinsic protein, and forming complexes probably with the C-terminal conserved motif, but a minor portion was also detected in envelope membranes. CsFeC2 mRNA was detected in all tissues and was light-responsive in cotyledons, whereas CsFeC1 mRNA was detected in nonphotosynthetic tissues and was not light-responsive. Interestingly, tissue-, light-, and cycloheximide-dependent expressions of the two isoforms of ferrochelatase were similar to those of two glutamyl-tRNA reductase isoforms involved in the early step of tetrapyrrole biosynthesis, suggesting the existence of distinctly controlled tetrapyrrole biosynthetic pathways in photosynthetic and nonphotosynthetic tissues.
Collapse
Affiliation(s)
- Takuo Suzuki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Papenbrock J, Mishra S, Mock HP, Kruse E, Schmidt EK, Petersmann A, Braun HP, Grimm B. Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:41-50. [PMID: 11696185 DOI: 10.1046/j.1365-313x.2001.01126.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Protoporphyrin IX is the last common intermediate of tetrapyrrole biosynthesis. The chelation of a Mg2+ ion by magnesium chelatase and of a ferrous ion by ferrochelatase directs protoporphyrin IX towards the formation of chlorophyll and heme, respectively. A full length cDNA clone encoding a ferrochelatase was identified from a Nicotiana tabacum cDNA library. The encoded protein consists of 497 amino acid residues with a molecular weight of 55.4 kDa. In vitro import of the protein into chloroplasts and its location in stroma and thylakoids confirm its close relationship to the previously described Arabidopsis thaliana plastid-located ferrochelatase (FeChII). A 1700-bp tobacco FeCh cDNA sequence was expressed in Nicotiana tabacum cv. Samsun NN under the control of the CaMV 35S promoter in antisense orientation allowing investigation into the consequences of selective reduction of the plastidic ferrochelatase activity for protoporphyrin IX channeling in chloroplasts and for interactions between plastidic and mitochondrial heme synthesis. Leaves of several transformants showed a reduced chlorophyll content and, during development, a light intensity-dependent formation of necrotic leaf lesions. In comparison with wild-type plants the total ferrochelatase activity was decreased in transgenic lines leading to an accumulation of photosensitizing protoporphyrin IX. Ferrochelatase activity was reduced only in plastids but not in mitochondria of transgenic plants. By means of the specifically diminished ferrochelatase activity consequences of the selective inhibition of protoheme formation for the intracellular supply of heme can be investigated in the future.
Collapse
MESH Headings
- Cloning, Molecular
- Ferrochelatase/biosynthesis
- Ferrochelatase/genetics
- Ferrochelatase/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Heme/metabolism
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Light
- Mitochondria/enzymology
- Necrosis
- Phenotype
- Phylogeny
- Plants, Genetically Modified
- Plastids/enzymology
- Plastids/genetics
- Plastids/metabolism
- Plastids/radiation effects
- Protoporphyrins/metabolism
- RNA, Antisense/biosynthesis
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Nicotiana/cytology
- Nicotiana/enzymology
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- J Papenbrock
- Institut fur Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse 3, 06466 Gatersleben, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Watanabe N, Che FS, Iwano M, Takayama S, Yoshida S, Isogai A. Dual targeting of spinach protoporphyrinogen oxidase II to mitochondria and chloroplasts by alternative use of two in-frame initiation codons. J Biol Chem 2001; 276:20474-81. [PMID: 11274159 DOI: 10.1074/jbc.m101140200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protoporphyrinogen oxidase (Protox) is the final enzyme in the common pathway of chlorophyll and heme biosynthesis. Two Protox isoenzymes have been described in tobacco, a plastidic and a mitochondrial form. We isolated and sequenced spinach Protox cDNA, which encodes a homolog of tobacco mitochondrial Protox (Protox II). Alignment of the deduced amino acid sequence between Protox II and other tobacco mitochondrial Protox homologs revealed a 26-amino acid N-terminal extension unique to the spinach enzyme. Immunoblot analysis of spinach leaf extract detected two proteins with apparent molecular masses of 57 and 55 kDa in chloroplasts and mitochondria, respectively. In vitro translation experiments indicated that two translation products (59 and 55 kDa) are produced from Protox II mRNA, using two in-frame initiation codons. Transport experiments using green fluorescent protein-fused Protox II suggested that the larger and smaller translation products (Protox IIL and IIS) target exclusively to chloroplasts and mitochondria, respectively.
Collapse
Affiliation(s)
- N Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Che FS, Watanabe N, Iwano M, Inokuchi H, Takayama S, Yoshida S, Isogai A. Molecular characterization and subcellular localization of protoporphyrinogen oxidase in spinach chloroplasts. PLANT PHYSIOLOGY 2000; 124:59-70. [PMID: 10982422 PMCID: PMC59122 DOI: 10.1104/pp.124.1.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2000] [Accepted: 04/27/2000] [Indexed: 05/23/2023]
Abstract
Protoporphyrinogen oxidase (Protox) is the last common enzyme in the biosynthesis of chlorophylls and heme. In plants, there are two isoenzymes of Protox, one located in plastids and other in the mitochondria. We cloned the cDNA of spinach (Spinacia oleracea) plastidal Protox and purified plastidal Protox protein from spinach chloroplasts. Sequence analysis of the cDNA indicated that the plastid Protox of spinach is composed of 562 amino acids containing the glycine-rich motif GxGxxG previously proposed to be a dinucleotide binding site of many flavin-containing proteins. The cDNA of plastidal Protox complemented a Protox mutation in Escherichia coli. N-terminal sequence analysis of the purified enzyme revealed that the plastidal Protox precursor is processed at the N-terminal site of serine-49. The predicted transit peptide (methionine-1 to cysteine-48) was sufficient for the transport of precursors into the plastid because green fluorescent protein fused with the predicted transit peptide was transported to the chloroplast. Immunocytochemical analysis using electron microscopy showed that plastidal Protox is preferentially associated with the stromal side of the thylakoid membrane, and a small portion of the enzyme is located on the stromal side of the chloroplast inner envelope membrane.
Collapse
Affiliation(s)
- F S Che
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama Ikoma, Nara 630-0101, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Papenbrock J, Mock HP, Tanaka R, Kruse E, Grimm B. Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. PLANT PHYSIOLOGY 2000; 122:1161-9. [PMID: 10759511 PMCID: PMC58950 DOI: 10.1104/pp.122.4.1161] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/1999] [Accepted: 12/27/1999] [Indexed: 05/18/2023]
Abstract
Magnesium-protoporphyrin IX chelatase (Mg-chelatase) is located at the branchpoint of tetrapyrrole biosynthesis, at which point protoporphyrin IX is distributed for the synthesis of chlorophyll and heme. We investigated the regulatory contribution of Mg-chelatase to the flow of metabolites. In plants, the enzyme complex consists of three subunits, designated CHL D, CHL I, and CHL H. Transgenic tobacco (Nicotiana tabacum) plants expressing antisense RNA for the Mg-chelatase subunit CHL H were analyzed to elucidate further the role of Mg-chelatase in the distribution of protoporphyrin IX into the branched tetrapyrrolic pathway. The transgenic plants displayed a reduced growth rate and chlorophyll deficiency. Both phenotypical properties were correlated with lower Mg-chelatase activity. Unexpectedly, less protoporphyrin IX and heme accumulated, and a decrease in 5-aminolevulinate (ALA)-synthesizing capacity and ALA dehydratase activity paralleled the progressive reduction in Mg-chelatase activity in the transformants compared with control plants. The reduced activities of the early enzymatic steps corresponded with lower levels of transcripts encoding glutamyl-tRNA reductase and ALA-dehydratase. The decreased expression and activities of early enzymes in the pathway could be explained by a feedback-controlled mechanism in response to lower Mg-chelatase activity. We discuss intercompartmental signaling that synchronizes the activities of the first steps in tetrapyrrolic metabolism with the late steps for the synthesis of end products.
Collapse
Affiliation(s)
- J Papenbrock
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse 3, 06466 Gatersleben, Germany
| | | | | | | | | |
Collapse
|
12
|
Roper JM, Smith AG. Molecular localisation of ferrochelatase in higher plant chloroplasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:32-7. [PMID: 9210462 DOI: 10.1111/j.1432-1033.1997.t01-1-00032.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Within the chloroplast of higher plants, a crucial branchpoint of the tetrapyrrole synthesis pathway is the chelation of either Fe2+ to make haem, or Mg2+ for chlorophyll, catalysed by ferrochelatase or magnesium chelatase, respectively. One model that has been proposed for the control of this branchpoint, based on biochemical studies, is that the two enzymes are spatially separated within the chloroplast, ferrochelatase being exclusively in the thylakoids, while magnesium chelatase is associated with the envelope [Matringe, M., Camadro, J.-M., Joyard, J. & Douce, R. (1994) J. Biol. Chem. 269, 15010-15015]. We have used a sensitive molecular method to investigate this possibility. Radiolabelled precursor proteins for ferrochelatase from Arabidopsis have been imported into isolated chloroplasts. Their distribution in the different subchloroplastic fractions have then been determined, and compared with that for light-harvesting chlorophyll protein, which is exclusively thylakoidal, and the envelope-located phosphate translocator. Clear evidence for the specific association of ferrochelatase protein with both thylakoid and envelope membranes has been obtained, thus suggesting strongly that the control of the branchpoint cannot be by spatial separation of the two chelatases.
Collapse
Affiliation(s)
- J M Roper
- Department of Plant Sciences, University of Cambridge, England, UK
| | | |
Collapse
|
13
|
Reinbothe S, Reinbothe C. The regulation of enzymes involved in chlorophyll biosynthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:323-43. [PMID: 8647070 DOI: 10.1111/j.1432-1033.1996.00323.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
All living organisms contain tetrapyrroles. In plants, chlorophyll (chlorophyll a plus chlorophyll b) is the most abundant and probably most important tetrapyrrole. It is involved in light absorption and energy transduction during photosynthesis. Chlorophyll is synthesized from the intact carbon skeleton of glutamate via the C5 pathway. This pathway takes place in the chloroplast. It is the aim of this review to summarize the current knowledge on the biochemistry and molecular biology of the C5-pathway enzymes, their regulated expression in response to light, and the impact of chlorophyll biosynthesis on chloroplast development. Particular emphasis will be placed on the key regulatory steps of chlorophyll biosynthesis in higher plants, such as 5-aminolevulinic acid formation, the production of Mg(2+)-protoporphyrin IX, and light-dependent protochlorophyllide reduction.
Collapse
Affiliation(s)
- S Reinbothe
- Department of Genetics, Swiss Federal Institute of Technology Zurich (ETH), Switzerland
| | | |
Collapse
|