1
|
Coricello A, Nardone AJ, Lupia A, Gratteri C, Vos M, Chaptal V, Alcaro S, Zhu W, Takagi Y, Richards NGJ. 3D variability analysis reveals a hidden conformational change controlling ammonia transport in human asparagine synthetase. Nat Commun 2024; 15:10538. [PMID: 39627226 PMCID: PMC11615228 DOI: 10.1038/s41467-024-54912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Advances in X-ray crystallography and cryogenic electron microscopy (cryo-EM) offer the promise of elucidating functionally relevant conformational changes that are not easily studied by other biophysical methods. Here we show that 3D variability analysis (3DVA) of the cryo-EM map for wild-type (WT) human asparagine synthetase (ASNS) identifies a functional role for the Arg-142 side chain and test this hypothesis experimentally by characterizing the R142I variant in which Arg-142 is replaced by isoleucine. Support for Arg-142 playing a role in the intramolecular translocation of ammonia between the active site of the enzyme is provided by the glutamine-dependent synthetase activity of the R142 variant relative to WT ASNS, and MD simulations provide a possible molecular mechanism for these findings. Combining 3DVA with MD simulations is a generally applicable approach to generate testable hypotheses of how conformational changes in buried side chains might regulate function in enzymes.
Collapse
Affiliation(s)
- Adriana Coricello
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Alanya J Nardone
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Antonio Lupia
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
- Dipartimento di Scienze della vita e dell'ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Carmen Gratteri
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Resources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy.
- Net4Science Academic Spin-Off, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy.
| | - Wen Zhu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, USA.
| | - Yuichiro Takagi
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff, UK.
- Foundation for Applied Molecular Evolution, Alachua, FL, USA.
| |
Collapse
|
2
|
Coricello A, Nardone AJ, Lupia A, Gratteri C, Vos M, Chaptal V, Alcaro S, Zhu W, Takagi Y, Richards NGJ. 3D Variability Analysis Reveals a Hidden Conformational Change Controlling Ammonia Transport in Human Asparagine Synthetase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.16.541009. [PMID: 37292727 PMCID: PMC10245805 DOI: 10.1101/2023.05.16.541009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
How motions in enzymes might be linked to catalytic function is of considerable general interest. Advances in X-ray crystallography and cryogenic electron microscopy (cryo-EM) offer the promise of elucidating functionally relevant conformational changes that are not easily studied by other biophysical methods. Here we use 3D variability analysis (3DVA) of the cryo-EM map for wild-type (WT) human asparagine synthetase (ASNS) to identify a functional role for the Arg-142 side chain as a gate that mediates ammonia access to a catalytically relevant intramolecular tunnel. Our 3DVA-derived hypothesis is assessed experimentally, using the R142I variant in which Arg-142 is replaced by isoleucine, and by molecular dynamics (MD) simulations on independent, computational models of the WT human ASNS monomer and its catalytically relevant, ternary complex with β-aspartyl-AMP and MgPPi. Residue fluctuations in the MD trajectories for the human ASNS monomer are consistent with those determined for 3DVA-derived structures. These MD simulations also indicate that the gating function of Arg-142 is separate from the molecular events that form a continuous tunnel linking the two active sites. Experimental support for Arg-142 playing a role in intramolecular ammonia translocation is provided by the glutamine-dependent synthetase activity of the R142 variant relative to WT ASNS. MD simulations of computational models for the R142I variant and the R142I/β-aspartyl-AMP/MgPPi ternary complex provide a possible molecular basis for this observation. Overall, the combination of 3DVA with MD simulations is a generally applicable approach to generate testable hypotheses of how conformational changes in buried side chains might regulate function in enzymes.
Collapse
Affiliation(s)
- Adriana Coricello
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Present address: Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Alanya. J. Nardone
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Antonio Lupia
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Present address: Dipartimento di Scienze della vita e dell’ambiente, Università degli Studi di Cagliari, 09042 Cagliari, Italy
| | - Carmen Gratteri
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Resources et Recherches Technologiques, Institut Pasteur, 75015 Paris, France
| | - Vincent Chaptal
- Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, 69367 Lyon, France
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, 88100 Catanzaro, Italy
| | - Wen Zhu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Yuichiro Takagi
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nigel G. J. Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA
| |
Collapse
|
3
|
John T, Saffoon N, Walsby-Tickle J, Hester SS, Dingler FA, Millington CL, McCullagh JSO, Patel KJ, Hopkinson RJ, Schofield CJ. Aldehyde-mediated inhibition of asparagine biosynthesis has implications for diabetes and alcoholism. Chem Sci 2024; 15:2509-2517. [PMID: 38362406 PMCID: PMC10866355 DOI: 10.1039/d3sc06551k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/01/2024] [Indexed: 02/17/2024] Open
Abstract
Patients with alcoholism and type 2 diabetes manifest altered metabolism, including elevated aldehyde levels and unusually low asparagine levels. We show that asparagine synthetase B (ASNS), the only human asparagine-forming enzyme, is inhibited by disease-relevant reactive aldehydes, including formaldehyde and acetaldehyde. Cellular studies show non-cytotoxic amounts of reactive aldehydes induce a decrease in asparagine levels. Biochemical analyses reveal inhibition results from reaction of the aldehydes with the catalytically important N-terminal cysteine of ASNS. The combined cellular and biochemical results suggest a possible mechanism underlying the low asparagine levels in alcoholism and diabetes. The results will stimulate research on the biological consequences of the reactions of aldehydes with nucleophilic residues.
Collapse
Affiliation(s)
- Tobias John
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Nadia Saffoon
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - John Walsby-Tickle
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Svenja S Hester
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford Oxford UK
| | - Felix A Dingler
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital/Headley Way Oxford OX3 9DS UK
| | - Christopher L Millington
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital/Headley Way Oxford OX3 9DS UK
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital/Headley Way Oxford OX3 9DS UK
| | - Richard J Hopkinson
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building Lancaster Road Leicester LE1 7RH UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
4
|
Nagata R, Nishiyama M, Kuzuyama T. Substrate Recognition Mechanism of a Trichostatin A-Forming Hydroxyamidotransferase. Biochemistry 2023. [PMID: 37167424 DOI: 10.1021/acs.biochem.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The hydroxyamidotransferase TsnB9 catalyzes hydroxylamine transfer from l-glutamic acid γ-monohydroxamate to the carboxyl group of trichostatic acid to produce the terminal hydroxamic acid group of trichostatin A, which is a potent inhibitor of histone deacetylase (HDAC). The reaction catalyzed by TsnB9 is similar to that catalyzed by glutamine-dependent asparagine synthetase, but the trichostatic acid recognition mechanism remains unclear. Here, we determine the crystal structure of TsnB9 composed of the N-terminal glutaminase domain and the C-terminal synthetase domain. Two consecutive phenylalanine residues, which are not found in glutamine-dependent asparagine synthetase, in the N-terminal glutaminase domain structurally form the bottom of the hydrophobic pocket in the C-terminal synthetase domain. Mutational and computational analyses of TsnB9 suggest five aromatic residues, including the two consecutive phenylalanine residues, in the hydrophobic pocket are important for the recognition of the dimethylaniline moiety of trichostatic acid. These insights lead us to the discovery of hydroxyamidotransferase to produce terminal hydroxamic acid group-containing HDAC inhibitors different from trichostatin A.
Collapse
Affiliation(s)
- Ryuhei Nagata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Panwar P, Williams TJ, Allen MA, Cavicchioli R. Population structure of an Antarctic aquatic cyanobacterium. MICROBIOME 2022; 10:207. [PMID: 36457105 PMCID: PMC9716671 DOI: 10.1186/s40168-022-01404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ace Lake is a marine-derived, stratified lake in the Vestfold Hills of East Antarctica with an upper oxic and lower anoxic zone. Cyanobacteria are known to reside throughout the water column. A Synechococcus-like species becomes the most abundant member in the upper sunlit waters during summer while persisting annually even in the absence of sunlight and at depth in the anoxic zone. Here, we analysed ~ 300 Gb of Ace Lake metagenome data including 59 Synechococcus-like metagenome-assembled genomes (MAGs) to determine depth-related variation in cyanobacterial population structure. Metagenome data were also analysed to investigate viruses associated with this cyanobacterium and the host's capacity to defend against or evade viruses. RESULTS A single Synechococcus-like species was found to exist in Ace Lake, Candidatus Regnicoccus frigidus sp. nov., consisting of one phylotype more abundant in the oxic zone and a second phylotype prevalent in the oxic-anoxic interface and surrounding depths. An important aspect of genomic variation pertained to nitrogen utilisation, with the capacity to perform cyanide assimilation and asparagine synthesis reflecting the depth distribution of available sources of nitrogen. Both specialist (host specific) and generalist (broad host range) viruses were identified with a predicted ability to infect Ca. Regnicoccus frigidus. Host-virus interactions were characterised by a depth-dependent distribution of virus type (e.g. highest abundance of specialist viruses in the oxic zone) and host phylotype capacity to defend against (e.g. restriction-modification, retron and BREX systems) and evade viruses (cell surface proteins and cell wall biosynthesis and modification enzymes). CONCLUSION In Ace Lake, specific environmental factors such as the seasonal availability of sunlight affects microbial abundances and the associated processes that the microbial community performs. Here, we find that the population structure for Ca. Regnicoccus frigidus has evolved differently to the other dominant phototroph in the lake, Candidatus Chlorobium antarcticum. The geography (i.e. Antarctica), limnology (e.g. stratification) and abiotic (e.g. sunlight) and biotic (e.g. microbial interactions) factors determine the types of niches that develop in the lake. While the lake community has become increasingly well studied, metagenome-based studies are revealing that niche adaptation can take many paths; these paths need to be determined in order to make reasonable predictions about the consequences of future ecosystem perturbations. Video Abstract.
Collapse
Affiliation(s)
- Pratibha Panwar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
6
|
Safrhansova L, Hlozkova K, Starkova J. Targeting amino acid metabolism in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:37-79. [PMID: 36283767 DOI: 10.1016/bs.ircmb.2022.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolic rewiring is a characteristic hallmark of cancer cells. This phenomenon sustains uncontrolled proliferation and resistance to apoptosis by increasing nutrients and energy supply. However, reprogramming comes together with vulnerabilities that can be used against tumor and can be applied in targeted therapy. In the last years, the genetic background of tumors has been identified thoroughly and new therapies targeting those mutations tested. Nevertheless, we propose that targeting the phenotype of cancer cells could be another way of treatment aiming to avoid drug resistance and non-responsiveness of cancer patients. Amino acid metabolism is part of the altered processes in cancer cells. Amino acids are building blocks and also sensors of signaling pathways regulating main biological processes. In this comprehensive review, we described four amino acids (asparagine, arginine, methionine, and cysteine) which have been actively investigated as potential targets for anti-tumor therapy. Asparagine depletion is successfully used for decades in the treatment of acute lymphoblastic leukemia and there is a strong implication to apply it to other types of tumors. Arginine auxotrophic tumors are great candidates for arginine-starvation therapy. Higher requirement for essential amino acids such as methionine and cysteine point out promising targetable weaknesses of cancer cells.
Collapse
Affiliation(s)
- Lucie Safrhansova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Hlozkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Julia Starkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
7
|
Liu C, Tian S, Lv X, Pu Y, Peng H, Fan G, Ma X, Ma L, Sun X. Nicotiana benthamiana asparagine synthetase associates with IP-L and confers resistance against tobacco mosaic virus via the asparagine-induced salicylic acid signalling pathway. MOLECULAR PLANT PATHOLOGY 2022; 23:60-77. [PMID: 34617390 PMCID: PMC8659551 DOI: 10.1111/mpp.13143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
Asparagine synthetase is a key enzyme that catalyses the conversion of amide groups from glutamine or ammonium to aspartate, which leads to the generation of asparagine. However, the role of asparagine synthetase in plant immunity remains largely unknown. Here, we identified a Nicotiana benthamiana asparagine synthetase B (NbAS-B) that associates with tomato mosaic virus coat protein-interacting protein L (IP-L) using the yeast two-hybrid assay and examined its role in tobacco mosaic virus (TMV) resistance. The association of IP-L with NbAS-B was further confirmed by in vivo co-immunoprecipitation, luciferase complementation imaging, and bimolecular fluorescence complementation assays. IP-L and NbAS-B interact in the nucleus and cytosol and IP-L apparently stabilizes NbAS-B, thus enhancing its accumulation. The expressions of IP-L and NbAS-B are continuously induced on TMV-green fluorescent protein (GFP) infection. Co-silencing of IP-L and NbAS-B facilitates TMV-GFP infection. Overexpression of NbAS-B in tobacco reduces TMV-GFP infection by significantly improving the synthesis of asparagine. Furthermore, the external application of asparagine significantly inhibits the infection of TMV-GFP by activating the salicylic acid signalling pathway. These findings hold the potential for the future application of asparagine in the control of TMV.
Collapse
Affiliation(s)
- Changyun Liu
- College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Shaorui Tian
- College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Xing Lv
- College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Yundan Pu
- College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Haoran Peng
- College of Plant ProtectionSouthwest UniversityChongqingChina
- Plant Breeding and Genetic Resources, AgroscopeNyonSwitzerland
| | - Guangjin Fan
- College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Xiaozhou Ma
- College of Plant ProtectionSouthwest UniversityChongqingChina
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and RegulationCollege of HorticultureHebei Agricultural UniversityBaodingChina
| | - Xianchao Sun
- College of Plant ProtectionSouthwest UniversityChongqingChina
| |
Collapse
|
8
|
Surasiang T, Noree C. Effects of A6E Mutation on Protein Expression and Supramolecular Assembly of Yeast Asparagine Synthetase. BIOLOGY 2021; 10:biology10040294. [PMID: 33916846 PMCID: PMC8065433 DOI: 10.3390/biology10040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Certain mutations causing extremely low abundance of asparagine synthetase (the enzyme responsible for producing asparagine, one of the amino acids required for normal growth and development) have been identified in humans with neurological problems and small head and brain size. Currently, yeast is becoming more popular in modeling many human diseases. In this study, we incorporate a mutation, associated with human asparagine synthetase deficiency, into the yeast asparagine synthetase gene to demonstrate that this mutation can also show similar effects as those observed in humans, leading to very low abundance of yeast asparagine synthetase and slower yeast growth rate. This suggests that our yeast system can be alternatively used to initially screen for any drugs that can help rescue the protein levels of asparagine synthetase before applying them to further studies in mammals and humans. Furthermore, this mutation might specifically be introduced into the asparagine synthetase gene of the target cancer cells in order to suppress the overproduction of asparagine synthetase within these abnormal cells, therefore inhibiting the growth of cancer, which might be helpful for patients with blood cancer to prevent them developing any resistance to the conventional asparaginase treatment. Abstract Asparagine synthetase deficiency (ASD) has been found to be caused by certain mutations in the gene encoding human asparagine synthetase (ASNS). Among reported mutations, A6E mutation showed the greatest reduction in ASNS abundance. However, the effect of A6E mutation has not yet been tested with yeast asparagine synthetase (Asn1/2p). Here, we constructed a yeast strain by deleting ASN2 from its genome, introducing the A6E mutation codon to ASN1, along with GFP downstream of ASN1. Our mutant yeast construct showed a noticeable decrease of Asn1p(A6E)-GFP levels as compared to the control yeast expressing Asn1p(WT)-GFP. At the stationary phase, the A6E mutation also markedly lowered the assembly frequency of the enzyme. In contrast to Asn1p(WT)-GFP, Asn1p(A6E)-GFP was insensitive to changes in the intracellular energy levels upon treatment with sodium azide during the log phase or fresh glucose at the stationary phase. Our study has confirmed that the effect of A6E mutation on protein expression levels of asparagine synthetase is common in both unicellular and multicellular eukaryotes, suggesting that yeast could be a model of ASD. Furthermore, A6E mutation could be introduced to the ASNS gene of acute lymphoblastic leukemia patients to inhibit the upregulation of ASNS by cancer cells, reducing the risk of developing resistance to the asparaginase treatment.
Collapse
|
9
|
In-solution behavior and protective potential of asparagine synthetase A from Trypanosoma cruzi. Mol Biochem Parasitol 2019; 230:1-7. [PMID: 30885794 DOI: 10.1016/j.molbiopara.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 11/24/2022]
Abstract
l-Asparagine synthetase (AS) acts in asparagine formation and can be classified into two families: AS-A or AS-B. AS-A is mainly found in prokaryotes and can synthetize asparagine from ammonia. Distinct from other eukaryotes, Trypanosoma cruzi produces an AS-A. AS-A from Trypanosoma cruzi (Tc-AS-A) differs from prokaryotic AS-A due to its ability to catalyze asparagine synthesis using both glutamine and ammonia as nitrogen sources. Regarding these peculiarities, this work uses several biophysical techniques to provide data concerning the Tc-AS-A in-solution behavior. Tc-AS-A was produced as a recombinant and purified by three chromatography steps. Circular dichroism, dynamic light scattering, and analytical size exclusion chromatography showed that Tc-AS-A has the same fold and quaternary arrangement of prokaryotic AS-A. Despite the tendency of protein to aggregate, stable dimers were obtained when solubilization occurred at pH ≤ 7.0. We also demonstrate the protective efficacy against T. cruzi infection in mice immunized with Tc-AS-A. Our results indicate that immunization with Tc-AS-A might confer partial protection to infective forms of T. cruzi in this particular model.
Collapse
|
10
|
Noree C, Sirinonthanawech N, Wilhelm JE. Saccharomyces cerevisiae ASN1 and ASN2 are asparagine synthetase paralogs that have diverged in their ability to polymerize in response to nutrient stress. Sci Rep 2019; 9:278. [PMID: 30670751 PMCID: PMC6342913 DOI: 10.1038/s41598-018-36719-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/26/2018] [Indexed: 11/10/2022] Open
Abstract
Recent work has found that many metabolic enzymes have the ability to polymerize in response to metabolic changes or environmental stress. This ability to polymerize is well conserved for the few metabolic enzyme paralogs that have been studied in yeast. Here we describe the first set of paralogs, Asn1p and Asn2p, that have differential assembly behavior. Asn1p and Asn2p both co-assemble into filaments in response to nutrient limitation. However, the ability of Asn2p to form filaments is strictly dependent on the presence of Asn1p. Using mutations that block enzyme activity but have differential effects on Asn1p polymerization, we have found that Asn1p polymers are unlikely to have acquired a moonlighting function. Together these results provide a novel system for understanding the regulation and evolution of metabolic enzyme polymerization.
Collapse
Affiliation(s)
- Chalongrat Noree
- Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
| | - Naraporn Sirinonthanawech
- Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - James E Wilhelm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive (MC 0347), La Jolla, CA, 92093-0347, USA.
| |
Collapse
|
11
|
Design, synthesis, and evaluation of substituted nicotinamide adenine dinucleotide (NAD +) synthetase inhibitors as potential antitubercular agents. Bioorg Med Chem Lett 2017; 27:4426-4430. [PMID: 28827112 DOI: 10.1016/j.bmcl.2017.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 11/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) synthetase catalyzes the last step in NAD+ biosynthesis. Depletion of NAD+ is bactericidal for both active and dormant Mycobacterium tuberculosis (Mtb). By inhibiting NAD+ synthetase (NadE) from Mtb, we expect to eliminate NAD+ production which will result in cell death in both growing and nonreplicating Mtb. NadE inhibitors have been investigated against various pathogens, but few have been tested against Mtb. Here, we report on the expansion of a series of urea-sulfonamides, previously reported by Brouillette et al. Guided by docking studies, substituents on a terminal phenyl ring were varied to understand the structure-activity-relationships of substituents on this position. Compounds were tested as inhibitors of both recombinant Mtb NadE and Mtb whole cells. While the parent compound displayed very weak inhibition against Mtb NadE (IC50=1000µM), we observed up to a 10-fold enhancement in potency after optimization. Replacement of the 3,4-dichloro group on the phenyl ring of the parent compound with 4-nitro yielded 4f, the most potent compound of the series with an IC50 value of 90µM against Mtb NadE. Our modeling results show that these urea-sulfonamides potentially bind to the intramolecular ammonia tunnel, which transports ammonia from the glutaminase domain to the active site of the enzyme. This hypothesis is supported by data showing that, even when treated with potent inhibitors, NadE catalysis is restored when treated with exogenous ammonia. Most of these compounds also inhibited Mtb cell growth with MIC values of 19-100µg/mL. These results improve our understanding of the SAR of the urea-sulfonamides, their mechanism of binding to the enzyme, and of Mtb NadE as a potential antitubercular drug target.
Collapse
|
12
|
Xu H, Curtis TY, Powers SJ, Raffan S, Gao R, Huang J, Heiner M, Gilbert DR, Halford NG. Genomic, Biochemical, and Modeling Analyses of Asparagine Synthetases from Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:2237. [PMID: 29379512 PMCID: PMC5775275 DOI: 10.3389/fpls.2017.02237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/20/2017] [Indexed: 05/12/2023]
Abstract
Asparagine synthetase activity in cereals has become an important issue with the discovery that free asparagine concentration determines the potential for formation of acrylamide, a probably carcinogenic processing contaminant, in baked cereal products. Asparagine synthetase catalyses the ATP-dependent transfer of the amino group of glutamine to a molecule of aspartate to generate glutamate and asparagine. Here, asparagine synthetase-encoding polymerase chain reaction (PCR) products were amplified from wheat (Triticum aestivum) cv. Spark cDNA. The encoded proteins were assigned the names TaASN1, TaASN2, and TaASN3 on the basis of comparisons with other wheat and cereal asparagine synthetases. Although very similar to each other they differed slightly in size, with molecular masses of 65.49, 65.06, and 66.24 kDa, respectively. Chromosomal positions and scaffold references were established for TaASN1, TaASN2, and TaASN3, and a fourth, more recently identified gene, TaASN4. TaASN1, TaASN2, and TaASN4 were all found to be single copy genes, located on chromosomes 5, 3, and 4, respectively, of each genome (A, B, and D), although variety Chinese Spring lacked a TaASN2 gene in the B genome. Two copies of TaASN3 were found on chromosome 1 of each genome, and these were given the names TaASN3.1 and TaASN3.2. The TaASN1, TaASN2, and TaASN3 PCR products were heterologously expressed in Escherichia coli (TaASN4 was not investigated in this part of the study). Western blot analysis identified two monoclonal antibodies that recognized the three proteins, but did not distinguish between them, despite being raised to epitopes SKKPRMIEVAAP and GGSNKPGVMNTV in the variable C-terminal regions of the proteins. The heterologously expressed TaASN1 and TaASN2 proteins were found to be active asparagine synthetases, producing asparagine and glutamate from glutamine and aspartate. The asparagine synthetase reaction was modeled using SNOOPY® software and information from the BRENDA database to generate differential equations to describe the reaction stages, based on mass action kinetics. Experimental data from the reactions catalyzed by TaASN1 and TaASN2 were entered into the model using Copasi, enabling values to be determined for kinetic parameters. Both the reaction data and the modeling showed that the enzymes continued to produce glutamate even when the synthesis of asparagine had ceased due to a lack of aspartate.
Collapse
Affiliation(s)
- Hongwei Xu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Tanya Y. Curtis
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Stephen J. Powers
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Sarah Raffan
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Runhong Gao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Jianhua Huang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Nigel G. Halford, Jianhua Huang,
| | - Monika Heiner
- Department of Computer Science, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - David R. Gilbert
- Department of Computer Science, College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Nigel G. Halford
- Department of Plant Sciences, Rothamsted Research, Harpenden, United Kingdom
- *Correspondence: Nigel G. Halford, Jianhua Huang,
| |
Collapse
|
13
|
Mumm K, Ainsaar K, Kasvandik S, Tenson T, Hõrak R. Responses of Pseudomonas putida to Zinc Excess Determined at the Proteome Level: Pathways Dependent and Independent of ColRS. J Proteome Res 2016; 15:4349-4368. [DOI: 10.1021/acs.jproteome.6b00420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karl Mumm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Kadi Ainsaar
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Sergo Kasvandik
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Rita Hõrak
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| |
Collapse
|
14
|
An W, Guo F, Song Y, Gao N, Bai S, Dai J, Wei H, Zhang L, Yu D, Xia M, Yu Y, Qi M, Tian C, Chen H, Wu Z, Zhang T, Qiu D. Comparative genomics analyses on EPS biosynthesis genes required for floc formation of Zoogloea resiniphila and other activated sludge bacteria. WATER RESEARCH 2016; 102:494-504. [PMID: 27403872 DOI: 10.1016/j.watres.2016.06.058] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Activated sludge (AS) process has been widely utilized for municipal sewage and industrial wastewater treatment. Zoolgoea and its related floc-forming bacteria are required for formation of AS flocs which is the key to gravitational effluent-and-sludge separation and AS recycling. However, little is known about the genetics, biochemistry and physiology of Zoogloea and its related bacteria. This report deals with the comparative genomic analyses on two Zoogloea resiniphila draft genomes and the closely related proteobacterial species commonly found in AS. In particular, the metabolic processes involved in removal of organic matters, nitrogen and phosphorus were analyzed. Furthermore, it is revealed that a large gene cluster, encoding eight glycosyltransferases and other proteins involved in biosynthesis and export of extracellular polysaccharides (EPS), was required for floc formation. One of the two asparagine synthase paralogues, associated with this EPS biosynthesis gene cluster, was required for floc formation in Zoogloea. Similar EPS biosynthesis gene cluster(s) were identified in the genome of other AS proteobacteria including polyphosphate-accumulating Candidatus Accumulibacter phosphatis (CAP) and nitrifying Nitrosopira and Nitrosomonas bacteria, but the gene composition varies interspecifically and intraspecifically. Our results indicate that floc formation of desired AS bacteria, including CAP strains, facilitate their recruitment into AS and gradual enrichment via repeated AS settling and recycling processes.
Collapse
Affiliation(s)
- Weixing An
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Guo
- School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yulong Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Gao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Bai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Institute of Deep-sea Science and Technology, Chinese Academy of Sciences, Sanya 572000, China
| | - Jingcheng Dai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hehong Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dianzhen Yu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yu
- Institute for Genetics and Development, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Qi
- Institute for Genetics and Development, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyuan Tian
- School of Life Sciences and Technology, Hubei Engineering University, Xiaogan 43200, China
| | - Haofeng Chen
- Institute for Genetics and Development, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenbin Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
15
|
Faria J, Loureiro I, Santarém N, Macedo-Ribeiro S, Tavares J, Cordeiro-da-Silva A. Leishmania infantum Asparagine Synthetase A Is Dispensable for Parasites Survival and Infectivity. PLoS Negl Trop Dis 2016; 10:e0004365. [PMID: 26771178 PMCID: PMC4714757 DOI: 10.1371/journal.pntd.0004365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022] Open
Abstract
A growing interest in asparagine (Asn) metabolism has currently been observed in cancer and infection fields. Asparagine synthetase (AS) is responsible for the conversion of aspartate into Asn in an ATP-dependent manner, using ammonia or glutamine as a nitrogen source. There are two structurally distinct AS: the strictly ammonia dependent, type A, and the type B, which preferably uses glutamine. Absent in humans and present in trypanosomatids, AS-A was worthy of exploring as a potential drug target candidate. Appealingly, it was reported that AS-A was essential in Leishmania donovani, making it a promising drug target. In the work herein we demonstrate that Leishmania infantum AS-A, similarly to Trypanosoma spp. and L. donovani, is able to use both ammonia and glutamine as nitrogen donors. Moreover, we have successfully generated LiASA null mutants by targeted gene replacement in L. infantum, and these parasites do not display any significant growth or infectivity defect. Indeed, a severe impairment of in vitro growth was only observed when null mutants were cultured in asparagine limiting conditions. Altogether our results demonstrate that despite being important under asparagine limitation, LiAS-A is not essential for parasite survival, growth or infectivity in normal in vitro and in vivo conditions. Therefore we exclude AS-A as a suitable drug target against L. infantum parasites.
Collapse
Affiliation(s)
- Joana Faria
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Inês Loureiro
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Nuno Santarém
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Protein Crystallography Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Joana Tavares
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
Levefaudes M, Patin D, de Sousa-d'Auria C, Chami M, Blanot D, Hervé M, Arthur M, Houssin C, Mengin-Lecreulx D. Diaminopimelic Acid Amidation in Corynebacteriales: NEW INSIGHTS INTO THE ROLE OF LtsA IN PEPTIDOGLYCAN MODIFICATION. J Biol Chem 2015; 290:13079-94. [PMID: 25847251 DOI: 10.1074/jbc.m115.642843] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 11/06/2022] Open
Abstract
A gene named ltsA was earlier identified in Rhodococcus and Corynebacterium species while screening for mutations leading to increased cell susceptibility to lysozyme. The encoded protein belonged to a huge family of glutamine amidotransferases whose members catalyze amide nitrogen transfer from glutamine to various specific acceptor substrates. We here describe detailed physiological and biochemical investigations demonstrating the specific role of LtsA protein from Corynebacterium glutamicum (LtsACg) in the modification by amidation of cell wall peptidoglycan diaminopimelic acid (DAP) residues. A morphologically altered but viable ΔltsA mutant was generated, which displays a high susceptibility to lysozyme and β-lactam antibiotics. Analysis of its peptidoglycan structure revealed a total loss of DAP amidation, a modification that was found in 80% of DAP residues in the wild-type polymer. The cell peptidoglycan content and cross-linking were otherwise not modified in the mutant. Heterologous expression of LtsACg in Escherichia coli yielded a massive and toxic incorporation of amidated DAP into the peptidoglycan that ultimately led to cell lysis. In vitro assays confirmed the amidotransferase activity of LtsACg and showed that this enzyme used the peptidoglycan lipid intermediates I and II but not, or only marginally, the UDP-MurNAc pentapeptide nucleotide precursor as acceptor substrates. As is generally the case for glutamine amidotransferases, either glutamine or NH4(+) could serve as the donor substrate for LtsACg. The enzyme did not amidate tripeptide- and tetrapeptide-truncated versions of lipid I, indicating a strict specificity for a pentapeptide chain length.
Collapse
Affiliation(s)
- Marjorie Levefaudes
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Delphine Patin
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Célia de Sousa-d'Auria
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Mohamed Chami
- the Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel, Switzerland
| | - Didier Blanot
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Mireille Hervé
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Michel Arthur
- INSERM, UMR S1138, Centre de Recherche des Cordeliers, Equipe 12, F-75006 Paris, France, the Sorbonne Universités, UPMC Université Paris 06, UMR S1138, Centre de Recherche des Cordeliers, F-75006 Paris, France, and the Université Paris-Descartes, Sorbonne Paris Cité, UMR S1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Christine Houssin
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France,
| | - Dominique Mengin-Lecreulx
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France,
| |
Collapse
|
17
|
Cao C, Chen JL, Yang Y, Huang F, Otting G, Su XC. Selective (15)N-labeling of the side-chain amide groups of asparagine and glutamine for applications in paramagnetic NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2014; 59:251-61. [PMID: 25002097 DOI: 10.1007/s10858-014-9844-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/01/2014] [Indexed: 05/24/2023]
Abstract
The side-chain amide groups of asparagine and glutamine play important roles in stabilizing the structural fold of proteins, participating in hydrogen-bonding networks and protein interactions. Selective (15)N-labeling of side-chain amides, however, can be a challenge due to enzyme-catalyzed exchange of amide groups during protein synthesis. In the present study, we developed an efficient way of selectively labeling the side chains of asparagine, or asparagine and glutamine residues with (15)NH2. Using the biosynthesis pathway of tryptophan, a protocol was also established for simultaneous selective (15)N-labeling of the side-chain NH groups of asparagine, glutamine, and tryptophan. In combination with site-specific tagging of the target protein with a lanthanide ion, we show that selective detection of (15)N-labeled side-chains of asparagine and glutamine allows determination of magnetic susceptibility anisotropy tensors based exclusively on pseudocontact shifts of amide side-chain protons.
Collapse
Affiliation(s)
- Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | | | | | | | | | | |
Collapse
|
18
|
Loureiro I, Faria J, Clayton C, Ribeiro SM, Roy N, Santarém N, Tavares J, Cordeiro-da-Silva A. Knockdown of asparagine synthetase A renders Trypanosoma brucei auxotrophic to asparagine. PLoS Negl Trop Dis 2013; 7:e2578. [PMID: 24340117 PMCID: PMC3854871 DOI: 10.1371/journal.pntd.0002578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/25/2013] [Indexed: 11/29/2022] Open
Abstract
Asparagine synthetase (AS) catalyzes the ATP-dependent conversion of aspartate into asparagine using ammonia or glutamine as nitrogen source. There are two distinct types of AS, asparagine synthetase A (AS-A), known as strictly ammonia-dependent, and asparagine synthetase B (AS-B), which can use either ammonia or glutamine. The absence of AS-A in humans, and its presence in trypanosomes, suggested AS-A as a potential drug target that deserved further investigation. We report the presence of functional AS-A in Trypanosoma cruzi (TcAS-A) and Trypanosoma brucei (TbAS-A): the purified enzymes convert L-aspartate into L-asparagine in the presence of ATP, ammonia and Mg2+. TcAS-A and TbAS-A use preferentially ammonia as a nitrogen donor, but surprisingly, can also use glutamine, a characteristic so far never described for any AS-A. TbAS-A knockdown by RNAi didn't affect in vitro growth of bloodstream forms of the parasite. However, growth was significantly impaired when TbAS-A knockdown parasites were cultured in medium with reduced levels of asparagine. As expected, mice infections with induced and non-induced T. brucei RNAi clones were similar to those from wild-type parasites. However, when induced T. brucei RNAi clones were injected in mice undergoing asparaginase treatment, which depletes blood asparagine, the mice exhibited lower parasitemia and a prolonged survival in comparison to similarly-treated mice infected with control parasites. Our results show that TbAS-A can be important under in vivo conditions when asparagine is limiting, but is unlikely to be suitable as a drug target. The amino acid asparagine is important not only for protein biosynthesis, but also for nitrogen homeostasis. Asparagine synthetase catalyzes the synthesis of this amino acid. There are two forms of asparagine synthetase, A and B. The presence of type A in trypanosomes, and its absence in humans, makes this protein a potential drug target. Trypanosomes are responsible for serious parasitic diseases that rely on limited drug therapeutic options for control. In our study we present a functional characterization of trypanosomes asparagine synthetase A. We describe that Trypanosoma brucei and Trypanosoma cruzi type A enzymes are able to use either ammonia or glutamine as a nitrogen donor, within the conversion of aspartate into asparagine. Furthermore, we show that asparagine synthetase A knockdown renders Trypanosoma brucei auxotrophic to asparagine. Overall, this study demonstrates that interfering with asparagine metabolism represents a way to control parasite growth and infectivity.
Collapse
Affiliation(s)
- Inês Loureiro
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Joana Faria
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sandra Macedo Ribeiro
- Protein Crystallography Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Nilanjan Roy
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, New Vallabh Vidyanagar, Gujarat, India
| | - Nuno Santarém
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Joana Tavares
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- * E-mail: (JT); (ACdS)
| | - Anabela Cordeiro-da-Silva
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
- * E-mail: (JT); (ACdS)
| |
Collapse
|
19
|
Lindemann C, Lupilova N, Müller A, Warscheid B, Meyer HE, Kuhlmann K, Eisenacher M, Leichert LI. Redox proteomics uncovers peroxynitrite-sensitive proteins that help Escherichia coli to overcome nitrosative stress. J Biol Chem 2013; 288:19698-714. [PMID: 23696645 DOI: 10.1074/jbc.m113.457556] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peroxynitrite is a highly reactive chemical species with antibacterial properties that are synthesized in immune cells. In a proteomic approach, we identified specific target proteins of peroxynitrite-induced modifications in Escherichia coli. Although peroxynitrite caused a fairly indiscriminate nitration of tyrosine residues, reversible modifications of protein thiols were highly specific. We used a quantitative redox proteomic method based on isotope-coded affinity tag chemistry and identified four proteins consistently thiol-modified in cells treated with peroxynitrite as follows: AsnB, FrmA, MaeB, and RidA. All four were required for peroxynitrite stress tolerance in vivo. Three of the identified proteins were modified at highly conserved cysteines, and MaeB and FrmA are known to be directly involved in the oxidative and nitrosative stress response in E. coli. In in vitro studies, we could show that the activity of RidA, a recently discovered enamine/imine deaminase, is regulated in a specific manner by the modification of its single conserved cysteine. Mutation of this cysteine 107 to serine generated a constitutively active protein that was not susceptible to peroxynitrite.
Collapse
Affiliation(s)
- Claudia Lindemann
- Medical Proteome Center, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Gowri VS, Ghosh I, Sharma A, Madhubala R. Unusual domain architecture of aminoacyl tRNA synthetases and their paralogs from Leishmania major. BMC Genomics 2012; 13:621. [PMID: 23151081 PMCID: PMC3532385 DOI: 10.1186/1471-2164-13-621] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/30/2012] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Leishmania major, a protozoan parasite, is the causative agent of cutaneous leishmaniasis. Due to the development of resistance against the currently available anti-leishmanial drugs, there is a growing need for specific inhibitors and novel drug targets. In this regards, aminoacyl tRNA synthetases, the linchpins of protein synthesis, have received recent attention among the kinetoplastid research community. This is the first comprehensive survey of the aminoacyl tRNA synthetases, their paralogs and other associated proteins from L. major. RESULTS A total of 26 aminoacyl tRNA synthetases were identified using various computational and bioinformatics tools. Phylogenetic analysis and domain architectures of the L. major aminoacyl tRNA synthetases suggest a probable archaeal/eukaryotic origin. Presence of additional domains or N- or C-terminal extensions in 11 aminoacyl tRNA synthetases from L. major suggests possibilities such as additional tRNA binding or oligomerization or editing activity. Five freestanding editing domains were identified in L. major. Domain assignment revealed a novel asparagine tRNA synthetase paralog, asparagine synthetase A which has been so far reported from prokaryotes and archaea. CONCLUSIONS A comprehensive bioinformatic analysis revealed 26 aminoacyl tRNA synthetases and five freestanding editing domains in L. major. Identification of two EMAP (endothelial monocyte-activating polypeptide) II-like proteins similar to human EMAP II-like proteins suggests their participation in multisynthetase complex formation. While the phylogeny of tRNA synthetases suggests a probable archaeal/eukaryotic origin, phylogeny of asparagine synthetase A strongly suggests a bacterial origin. The unique features identified in this work provide rationale for designing inhibitors against parasite aminoacyl tRNA synthetases and their paralogs.
Collapse
Affiliation(s)
- V S Gowri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
21
|
Ikeuchi H, Ahn YM, Otokawa T, Watanabe B, Hegazy L, Hiratake J, Richards NGJ. A sulfoximine-based inhibitor of human asparagine synthetase kills L-asparaginase-resistant leukemia cells. Bioorg Med Chem 2012; 20:5915-27. [PMID: 22951255 DOI: 10.1016/j.bmc.2012.07.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 11/27/2022]
Abstract
An adenylated sulfoximine transition-state analogue 1, which inhibits human asparagine synthetase (hASNS) with nanomolar potency, has been reported to suppress the proliferation of an l-asparagine amidohydrolase (ASNase)-resistant MOLT-4 leukemia cell line (MOLT-4R) when l-asparagine is depleted in the medium. We now report the synthesis and biological activity of two new sulfoximine analogues of 1 that have been studied as part of systematic efforts to identify compounds with improved cell permeability and/or metabolic stability. One of these new analogues, an amino sulfoximine 5 having no net charge at cellular pH, is a better hASNS inhibitor (K(I)(∗)=8 nM) than 1 and suppresses proliferation of MOLT-4R cells at 10-fold lower concentration (IC(50)=0.1mM). More importantly, and in contrast to the lead compound 1, the presence of sulfoximine 5 at concentrations above 0.25 mM causes the death of MOLT-4R cells even when ASNase is absent in the culture medium. The amino sulfoximine 5 exhibits different dose-response behavior when incubated with an ASNase-sensitive MOLT-4 cell line (MOLT-4S), supporting the hypothesis that sulfoximine 5 exerts its effect by inhibiting hASNS in the cell. Our work provides further evidence for the idea that hASNS represents a chemotherapeutic target for the treatment of leukemia, and perhaps other cancers, including those of the prostate.
Collapse
Affiliation(s)
- Hideyuki Ikeuchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Brown AM, Hoopes SL, White RH, Sarisky CA. Purine biosynthesis in archaea: variations on a theme. Biol Direct 2011; 6:63. [PMID: 22168471 PMCID: PMC3261824 DOI: 10.1186/1745-6150-6-63] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 12/14/2011] [Indexed: 11/10/2022] Open
Abstract
Background The ability to perform de novo biosynthesis of purines is present in organisms in all three domains of life, reflecting the essentiality of these molecules to life. Although the pathway is quite similar in eukaryotes and bacteria, the archaeal pathway is more variable. A careful manual curation of genes in this pathway demonstrates the value of manual curation in archaea, even in pathways that have been well-studied in other domains. Results We searched the Integrated Microbial Genome system (IMG) for the 17 distinct genes involved in the 11 steps of de novo purine biosynthesis in 65 sequenced archaea, finding 738 predicted proteins with sequence similarity to known purine biosynthesis enzymes. Each sequence was manually inspected for the presence of active site residues and other residues known or suspected to be required for function. Many apparently purine-biosynthesizing archaea lack evidence for a single enzyme, either glycinamide ribonucleotide formyltransferase or inosine monophosphate cyclohydrolase, suggesting that there are at least two more gene variants in the purine biosynthetic pathway to discover. Variations in domain arrangement of formylglycinamidine ribonucleotide synthetase and substantial problems in aminoimidazole carboxamide ribonucleotide formyltransferase and inosine monophosphate cyclohydrolase assignments were also identified. Manual curation revealed some overly specific annotations in the IMG gene product name, with predicted proteins without essential active site residues assigned product names implying enzymatic activity (21 proteins, 2.8% of proteins inspected) or Enzyme Commission (E. C.) numbers (57 proteins, 7.7%). There were also 57 proteins (7.7%) assigned overly generic names and 78 proteins (10.6%) without E.C. numbers as part of the assigned name when a specific enzyme name and E. C. number were well-justified. Conclusions The patchy distribution of purine biosynthetic genes in archaea is consistent with a pathway that has been shaped by horizontal gene transfer, duplication, and gene loss. Our results indicate that manual curation can improve upon automated annotation for a small number of automatically-annotated proteins and can reveal a need to identify further pathway components even in well-studied pathways. Reviewers This article was reviewed by Dr. Céline Brochier-Armanet, Dr Kira S Makarova (nominated by Dr. Eugene Koonin), and Dr. Michael Galperin.
Collapse
Affiliation(s)
- Anne M Brown
- Department of Chemistry, Roanoke College, Salem, VA 24153, USA
| | | | | | | |
Collapse
|
23
|
Bhat JY, Venkatachala R, Singh K, Gupta K, Sarma SP, Balaram H. Ammonia Channeling in Plasmodium falciparum GMP Synthetase: Investigation by NMR Spectroscopy and Biochemical Assays. Biochemistry 2011; 50:3346-56. [DOI: 10.1021/bi1017057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Javaid Yousuf Bhat
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Roopa Venkatachala
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Kavita Singh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Kallol Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Siddhartha P. Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
24
|
Meyer ME, Gutierrez JA, Raushel FM, Richards NGJ. A conserved glutamate controls the commitment to acyl-adenylate formation in asparagine synthetase. Biochemistry 2010; 49:9391-401. [PMID: 20853825 PMCID: PMC2975022 DOI: 10.1021/bi1010688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Inhibitor docking studies have implicated a conserved glutamate residue (Glu-348) as a general base in the synthetase active site of the enzyme asparagine synthetase B from Escherichia coli (AS-B). We now report steady-state kinetic, isotope transfer, and positional isotope exchange experiments for a series of site-directed AS-B mutants in which Glu-348 is substituted by conservative amino acid replacements. We find that formation of the β-aspartyl-AMP intermediate, and therefore the eventual production of asparagine, is dependent on the presence of a carboxylate side chain at this position in the synthetase active site. In addition, Glu-348 may also play a role in mediating the conformational changes needed to (i) coordinate, albeit weakly, the glutaminase and synthetase activities of the enzyme and (ii) establish the structural integrity of the intramolecular tunnel along which ammonia is translocated. The importance of Glu-348 in mediating acyl-adenylate formation contrasts with the functional role of the cognate residues in β-lactam synthetase (BLS) and carbapenem synthetase (CPS) (Tyr-348 and Tyr-345, respectively), which both likely evolved from asparagine synthetase. Given the similarity of the chemistry catalyzed by AS-B, BLS, and CPS, our work highlights the difficulty of predicting the functional outcome of single site mutations on enzymes that catalyze almost identical chemical transformations.
Collapse
Affiliation(s)
- Megan E. Meyer
- Department of Chemistry, P.O. Box 117200, University of Florida, Gainesville, FL 32611
| | - Jemy A. Gutierrez
- Department of Chemistry, P.O. Box 117200, University of Florida, Gainesville, FL 32611
| | - Frank M. Raushel
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, TX 77843
| | - Nigel G. J. Richards
- Department of Chemistry, P.O. Box 117200, University of Florida, Gainesville, FL 32611
| |
Collapse
|
25
|
Zhao Y, Qian G, Yin F, Fan J, Zhai Z, Liu C, Hu B, Liu F. Proteomic analysis of the regulatory function of DSF-dependent quorum sensing in Xanthomonas oryzae pv. oryzicola. Microb Pathog 2010; 50:48-55. [PMID: 20946946 DOI: 10.1016/j.micpath.2010.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/27/2010] [Accepted: 09/10/2010] [Indexed: 11/28/2022]
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc), which caused bacterial leaf streak in rice, is a bacterial pathogen limited to the apoplast of the mesophyll tissue. The rpfF that encodes diffusible signal factor (DSF) synthase, played a key role in the virulence of many plant pathogenic bacteria. In this study, the rpf gene cluster was cloned, and the rpfF was deleted in Xoc. It was observed that the rpfF mutant lost the ability to produce DSF molecular, and exhibited a significant reduction of virulence in rice compared to the wild-type strain. Furthermore, the mutation of rpfF impaired EPS production, and led to Xoc cell aggregation. To analyze the differences of proteome expression between Xoc wild type and rpfF mutant, a comparative proteome analysis was performed by two-dimensional gel electrophoresis (2-DE). The results clearly revealed that 48 protein spots were differentially expressed above the threshold ratio of 1.5. Among them, 18 proteins were identified by MS, which were involved in nitrogen transfer, protein folding, elimination of superoxide radicals and flagellar formation. Our results indicated that DSF might play an important role in virulence and growth of Xoc by mediating expression of proteins.
Collapse
Affiliation(s)
- Yancun Zhao
- Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Chinese Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Oxytetracycline (OTC) is a broad-spectrum antibiotic that acts by inhibiting protein synthesis in bacteria. It is an important member of the bacterial aromatic polyketide family, which is a structurally diverse class of natural products. OTC is synthesized by a type II polyketide synthase that generates the poly-beta-ketone backbone through successive decarboxylative condensation of malonyl-CoA extender units, followed by modifications by cyclases, oxygenases, transferases, and additional tailoring enzymes. Genetic and biochemical studies have illuminated most of the steps involved in the biosynthesis of OTC, which is detailed here as a representative case study in type II polyketide biosynthesis.
Collapse
Affiliation(s)
- Lauren B. Pickens
- From the Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
| | - Yi Tang
- From the Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095
| |
Collapse
|
27
|
Osmotically induced synthesis of the dipeptide N-acetylglutaminylglutamine amide is mediated by a new pathway conserved among bacteria. Proc Natl Acad Sci U S A 2010; 107:12652-7. [PMID: 20571117 DOI: 10.1073/pnas.1003063107] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dipeptide N-acetylglutaminylglutamine amide (NAGGN) was discovered in the bacterium Sinorhizobium meliloti grown at high osmolarity, and subsequently shown to be synthesized and accumulated by a few osmotically challenged bacteria. However, its biosynthetic pathway remained unknown. Recently, two genes, which putatively encode a glutamine amidotransferase and an acetyltransferase and are up-regulated by osmotic stress, were identified in Pseudomonas aeruginosa. In this work, a locus carrying the orthologous genes in S. meliloti, asnO and ngg, was identified, and the genetic and molecular characterization of the NAGGN biosynthetic pathway is reported. By using NMR experiments, it was found that strains inactivated in asnO and ngg were unable to produce the dipeptide. Such inability has a deleterious effect on S. meliloti growth at high osmolarity, demonstrating the key role of NAGGN biosynthesis in cell osmoprotection. beta-Glucuronidase activity from transcriptional fusion revealed strong induction of asnO expression in cells grown in increased NaCl concentration, in good agreement with the NAGGN accumulation. The asnO-ngg cluster encodes a unique enzymatic machinery mediating nonribosomal peptide synthesis. This pathway first involves Ngg, a bifunctional enzyme that catalyzes the formation of the intermediate N-acetylglutaminylglutamine, and second AsnO, required for subsequent addition of an amide group and the conversion of N-acetylglutaminylglutamine into NAGGN. Interestingly, a strong conservation of the asnO-ngg cluster is observed in a large number of bacteria with different lifestyles, such as marine, symbiotic, and pathogenic bacteria, highlighting the ecological importance of NAGGN synthesis capability in osmoprotection and also potentially in bacteria host-cell interactions.
Collapse
|
28
|
Pickens LB, Kim W, Wang P, Zhou H, Watanabe K, Gomi S, Tang Y. Biochemical analysis of the biosynthetic pathway of an anticancer tetracycline SF2575. J Am Chem Soc 2010; 131:17677-89. [PMID: 19908837 DOI: 10.1021/ja907852c] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SF2575 1 is a tetracycline polyketide produced by Streptomyces sp. SF2575 and displays exceptionally potent anticancer activity toward a broad range of cancer cell lines. The structure of SF2575 is characterized by a highly substituted tetracycline aglycon. The modifications include methylation of the C-6 and C-12a hydroxyl groups, acylation of the 4-(S)-hydroxyl with salicylic acid, C-glycosylation of the C-9 of the D-ring with D-olivose and further acylation of the C4'-hydroxyl of D-olivose with the unusual angelic acid. Understanding the biosynthesis of SF2575 can therefore expand the repertoire of enzymes that can modify tetracyclines, and facilitate engineered biosynthesis of SF2575 analogues. In this study, we identified, sequenced, and functionally analyzed the ssf biosynthetic gene cluster which contains 40 putative open reading frames. Genes encoding enzymes that can assemble the tetracycline aglycon, as well as installing these unique structural features, are found in the gene cluster. Biosynthetic intermediates were isolated from the SF2575 culture extract to suggest the order of pendant-group addition is C-9 glycosylation, C-4 salicylation, and O-4' angelylcylation. Using in vitro assays, two enzymes that are responsible for C-4 acylation of salicylic acid were identified. These enzymes include an ATP-dependent salicylyl-CoA ligase SsfL1 and a putative GDSL family acyltransferase SsfX3, both of which were shown to have relaxed substrate specificity toward substituted benzoic acids. Since the salicylic acid moiety is critically important for the anticancer properties of SF2575, verification of the activities of SsfL1 and SsfX3 sets the stage for biosynthetic modification of the C-4 group toward structure-activity relationship studies of SF2575. Using heterologous biosynthesis in Streptomyces lividans, we also determined that biosynthesis of the SF2575 tetracycline aglycon 8 parallels that of oxytetracycline 4 and diverges after the assembly of 4-keto-anhydrotetracycline 51. The minimal ssf polyketide synthase together with the amidotransferase SsfD produced the amidated decaketide backbone that is required for the formation of 2-naphthacenecarboxamide skeleton. Additional enzymes, such as cyclases C-6 methyltransferase and C-4/C-12a dihydroxylase, were functionally reconstituted.
Collapse
Affiliation(s)
- Lauren B Pickens
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Ikeuchi H, Meyer ME, Ding Y, Hiratake J, Richards NG. A critical electrostatic interaction mediates inhibitor recognition by human asparagine synthetase. Bioorg Med Chem 2009; 17:6641-50. [DOI: 10.1016/j.bmc.2009.07.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/26/2009] [Accepted: 07/28/2009] [Indexed: 12/01/2022]
|
30
|
Raber ML, Arnett SO, Townsend CA. A conserved tyrosyl-glutamyl catalytic dyad in evolutionarily linked enzymes: carbapenam synthetase and beta-lactam synthetase. Biochemistry 2009; 48:4959-71. [PMID: 19371088 DOI: 10.1021/bi900432n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Beta-lactam-synthesizing enzymes carbapenam synthetase (CPS) and beta-lactam synthetase (beta-LS) are evolutionarily linked to a common ancestor, asparagine synthetase B (AS-B). These three relatives catalyze substrate acyl-adenylation and nucleophilic acyl substitution by either an external (AS-B) or internal (CPS, beta-LS) nitrogen source. Unlike AS-B, crystal structures of CPS and beta-LS revealed a putative Tyr-Glu dyad (CPS, Y345/E380; beta-LS, Y348/E382) proposed to deprotonate the respective internal nucleophile. CPS and beta-LS site-directed mutagenesis (Y345/8A, Y345/8F, E380/2D, E380/2Q, E380A) resulted in the reduction of their catalytic efficiency, with Y345A, E380A, and E382Q producing undetectable amounts of beta-lactam product. However, [(32)P]PP(i)-ATP exchange assays demonstrated Y345A and E380A undergo the first half-reaction, with the remaining active mutants showing decreased forward commitment to beta-lactam cyclization. pH-rate profiles of CPS and beta-LS supported the importance of a Tyr-Glu dyad in beta-lactam formation and suggested its reverse protonation in beta-LS. The kinetics of CPS double-site mutants reinforced the synergism of Tyr-Glu in catalysis. Furthermore, significant solvent isotope effects on k(cat) ((D)k(cat)) for Y345F (1.9) and Y348F (1.7) maintained the assignment of Y345/8 in proton transfer. A proton inventory on Y348F determined its (D)(k(cat)/K(m)) = 0.2 to arise from multiple reactant-state fractionation factors, presumably from water molecule(s) replacing the missing Tyr hydroxyl. The role of a CPS and beta-LS Tyr-Glu catalytic dyad was solidified by a significant decrease in mutant k(cat) viscosity dependence with respect to the wild-type enzymes. The evolutionary relation and potential for engineered biosynthesis were demonstrated by beta-LS acting as a carbapenam synthetase.
Collapse
Affiliation(s)
- Mary L Raber
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
31
|
Zhan J, Qiao K, Tang Y. Investigation of Tailoring Modifications in Pradimicin Biosynthesis. Chembiochem 2009; 10:1447-52. [DOI: 10.1002/cbic.200900082] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Bai L, Jiang R, Shan J, Guo L, Zhang Y, Zhang R, Li Y. Purification, characterization and functional analysis of asparagines synthetase encoding by ste10 gene in Ebosin biosynthesis of Streptomyces sp. 139. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Gutierrez JA, Pan YX, Koroniak L, Hiratake J, Kilberg MS, Richards NG. An inhibitor of human asparagine synthetase suppresses proliferation of an L-asparaginase-resistant leukemia cell line. ACTA ACUST UNITED AC 2007; 13:1339-47. [PMID: 17185229 PMCID: PMC3608209 DOI: 10.1016/j.chembiol.2006.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 10/05/2006] [Accepted: 10/17/2006] [Indexed: 11/17/2022]
Abstract
Drug resistance in lymphoblastic and myeloblastic leukemia cells is poorly understood, with several lines of evidence suggesting that resistance can be correlated with upregulation of human asparagine synthetase (hASNS) expression, although this hypothesis is controversial. New tools are needed to investigate this clinically important question, including potent hASNS inhibitors. In vitro experiments show an adenylated sulfoximine to be a slow-onset, tight-binding inhibitor of hASNS with nanomolar affinity. This binding affinity represents a 10-fold improvement over that reported for the only other well-characterized hASNS inhibitor. The adenylated sulfoximine has a cytostatic effect on L-asparaginase-resistant MOLT-4 cells cultured in the presence of L-asparaginase, an enzyme that depletes L-asparagine in the growth medium. These observations represent direct evidence that potent hASNS inhibitors may prove to be effective agents for the clinical treatment of acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Jemy A. Gutierrez
- Department of Chemistry, University of Florida, Gainesville, Florida 32611
| | - Yuan-Xiang Pan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Lukasz Koroniak
- Department of Chemistry, University of Florida, Gainesville, Florida 32611
| | - Jun Hiratake
- Institute for Chemical Research, Kyoto University, Ugi, Kyoto 611-0011, Japan
| | - Michael S. Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
- University of Florida, Shands Cancer, Center Gainesville, Florida 32610
| | - Nigel G.J. Richards
- Department of Chemistry, University of Florida, Gainesville, Florida 32611
- University of Florida, Shands Cancer, Center Gainesville, Florida 32610
- Correspondence:
| |
Collapse
|
34
|
Zhang W, Ames BD, Tsai SC, Tang Y. Engineered biosynthesis of a novel amidated polyketide, using the malonamyl-specific initiation module from the oxytetracycline polyketide synthase. Appl Environ Microbiol 2006; 72:2573-80. [PMID: 16597959 PMCID: PMC1449064 DOI: 10.1128/aem.72.4.2573-2580.2006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tetracyclines are aromatic polyketides biosynthesized by bacterial type II polyketide synthases (PKSs). Understanding the biochemistry of tetracycline PKSs is an important step toward the rational and combinatorial manipulation of tetracycline biosynthesis. To this end, we have sequenced the gene cluster of oxytetracycline (oxy and otc genes) PKS genes from Streptomyces rimosus. Sequence analysis revealed a total of 21 genes between the otrA and otrB resistance genes. We hypothesized that an amidotransferase, OxyD, synthesizes the malonamate starter unit that is a universal building block for tetracycline compounds. In vivo reconstitution using strain CH999 revealed that the minimal PKS and OxyD are necessary and sufficient for the biosynthesis of amidated polyketides. A novel alkaloid (WJ35, or compound 2) was synthesized as the major product when the oxy-encoded minimal PKS, the C-9 ketoreductase (OxyJ), and OxyD were coexpressed in CH999. WJ35 is an isoquinolone compound derived from an amidated decaketide backbone and cyclized with novel regioselectivity. The expression of OxyD with a heterologous minimal PKS did not afford similarly amidated polyketides, suggesting that the oxy-encoded minimal PKS possesses novel starter unit specificity.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095
| | | | | | | |
Collapse
|
35
|
Ren H, Liu J. AsnB is involved in natural resistance of Mycobacterium smegmatis to multiple drugs. Antimicrob Agents Chemother 2006; 50:250-5. [PMID: 16377694 PMCID: PMC1346815 DOI: 10.1128/aac.50.1.250-255.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacteria are naturally resistant to most common antibiotics and chemotherapeutic agents. The underlying molecular mechanisms are not fully understood. In this paper, we describe a hypersensitive mutant of Mycobacterium smegmatis, MS 2-39, which was isolated by screening for transposon insertion mutants of M. smegmatis mc2155 that exhibit increased sensitivity to rifampin, erythromycin, or novobiocin. The mutant MS 2-39 exhibited increased sensitivity to all three of the above mentioned antibiotics as well as fusidic acid, but its sensitivity to other antibiotics, including isoniazid, ethambutol, streptomycin, chloramphenicol, norfloxacin, tetracycline, and beta-lactams, remained unchanged. Uptake experiment with hydrophobic agents and cell wall lipid analysis suggest that the mutant cell wall is normal. The transposon insertion was localized within the asnB gene, which is predicted to encode a glutamine-dependent asparagine synthetase. Transformation of the mutant with wild-type asnB of mc2155 or asnB of Mycobacterium tuberculosis complemented the drug sensitivity phenotype. These results suggest that AsnB plays a role in the natural resistance of mycobacteria.
Collapse
Affiliation(s)
- Huiping Ren
- 4382 Medical Sciences Building, Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | |
Collapse
|
36
|
Abstract
Modern clinical treatments of childhood acute lymphoblastic leukemia (ALL) employ enzyme-based methods for depletion of blood asparagine in combination with standard chemotherapeutic agents. Significant side effects can arise in these protocols and, in many cases, patients develop drug-resistant forms of the disease that may be correlated with up-regulation of the enzyme glutamine-dependent asparagine synthetase (ASNS). Though the precise molecular mechanisms that result in the appearance of drug resistance are the subject of active study, potent ASNS inhibitors may have clinical utility in treating asparaginase-resistant forms of childhood ALL. This review provides an overview of recent developments in our understanding of (a) the structure and catalytic mechanism of ASNS, and (b) the role that ASNS may play in the onset of drug-resistant childhood ALL. In addition, the first successful, mechanism-based efforts to prepare and characterize nanomolar ASNS inhibitors are discussed, together with the implications of these studies for future efforts to develop useful drugs.
Collapse
Affiliation(s)
| | - Michael S. Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32611;
| |
Collapse
|
37
|
Ciustea M, Gutierrez JA, Abbatiello SE, Eyler JR, Richards NGJ. Efficient expression, purification, and characterization of C-terminally tagged, recombinant human asparagine synthetase. Arch Biochem Biophys 2005; 440:18-27. [PMID: 16023613 DOI: 10.1016/j.abb.2005.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 05/13/2005] [Accepted: 05/13/2005] [Indexed: 11/17/2022]
Abstract
Several lines of evidence suggest that up-regulation of asparagine synthetase (AS) in human T-cells results in metabolic changes that underpin the appearance of asparaginase-resistant forms of acute lymphoblastic leukemia (ALL). Inhibitors of human AS therefore have potential as agents for treating leukemia and tools for investigating the cellular basis of AS expression and drug-resistance. A critical problem in developing and characterizing potent inhibitors has been a lack of routine access to sufficient quantities of purified, reproducibly active human AS. We now report an efficient protocol for preparing multi-milligram quantities of C-terminally tagged, wild type human AS in a baculovirus-based expression system. The recombinant enzyme is correctly processed and exhibits high catalytic activity. Not only do these studies offer the possibility for investigating the kinetic behavior of biochemically interesting mammalian AS mutants, but such ready access to large amounts of enzyme also represents a major step in the development and characterization of inhibitors that might have clinical utility in treating asparaginase-resistant ALL.
Collapse
Affiliation(s)
- Mihai Ciustea
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | | | | | | | | |
Collapse
|
38
|
Reitzer L. Biosynthesis of Glutamate, Aspartate, Asparagine, L-Alanine, and D-Alanine. EcoSal Plus 2004; 1. [PMID: 26443364 DOI: 10.1128/ecosalplus.3.6.1.3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Indexed: 06/05/2023]
Abstract
Glutamate, aspartate, asparagine, L-alanine, and D-alanine are derived from intermediates of central metabolism, mostly the citric acid cycle, in one or two steps. While the pathways are short, the importance and complexity of the functions of these amino acids befit their proximity to central metabolism. Inorganic nitrogen (ammonia) is assimilated into glutamate, which is the major intracellular nitrogen donor. Glutamate is a precursor for arginine, glutamine, proline, and the polyamines. Glutamate degradation is also important for survival in acidic environments, and changes in glutamate concentration accompany changes in osmolarity. Aspartate is a precursor for asparagine, isoleucine, methionine, lysine, threonine, pyrimidines, NAD, and pantothenate; a nitrogen donor for arginine and purine synthesis; and an important metabolic effector controlling the interconversion of C3 and C4 intermediates and the activity of the DcuS-DcuR two-component system. Finally, L- and D-alanine are components of the peptide of peptidoglycan, and L-alanine is an effector of the leucine responsive regulatory protein and an inhibitor of glutamine synthetase (GS). This review summarizes the genes and enzymes of glutamate, aspartate, asparagine, L-alanine, and D-alanine synthesis and the regulators and environmental factors that control the expression of these genes. Glutamate dehydrogenase (GDH) deficient strains of E. coli, K. aerogenes, and S. enterica serovar Typhimurium grow normally in glucose containing (energy-rich) minimal medium but are at a competitive disadvantage in energy limited medium. Glutamate, aspartate, asparagine, L-alanine, and D-alanine have multiple transport systems.
Collapse
|
39
|
Fresquet V, Thoden JB, Holden HM, Raushel FM. Kinetic mechanism of asparagine synthetase from Vibrio cholerae. Bioorg Chem 2004; 32:63-75. [PMID: 14990305 DOI: 10.1016/j.bioorg.2003.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Indexed: 11/17/2022]
Abstract
Asparagine synthetase B (AsnB) catalyzes the formation of asparagine in an ATP-dependent reaction using glutamine or ammonia as a nitrogen source. To obtain a better understanding of the catalytic mechanism of this enzyme, we report the cloning, expression, and kinetic analysis of the glutamine- and ammonia-dependent activities of AsnB from Vibrio cholerae. Initial velocity, product inhibition, and dead-end inhibition studies were utilized in the construction of a model for the kinetic mechanism of the ammonia- and glutamine-dependent activities. The reaction sequence begins with the ordered addition of ATP and aspartate. Pyrophosphate is released, followed by the addition of ammonia and the release of asparagine and AMP. Glutamine is simultaneously hydrolyzed at a second site and the ammonia intermediate diffuses through an interdomain protein tunnel from the site of production to the site of utilization. The data were also consistent with the dead-end binding of asparagine to the glutamine binding site and PP(i) with free enzyme. The rate of hydrolysis of glutamine is largely independent of the activation of aspartate and thus the reaction rates at the two active sites are essentially uncoupled from one another.
Collapse
Affiliation(s)
- Vicente Fresquet
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77843-3012, USA
| | | | | | | |
Collapse
|
40
|
Tesson AR, Soper TS, Ciustea M, Richards NGJ. Revisiting the steady state kinetic mechanism of glutamine-dependent asparagine synthetase from Escherichia coli. Arch Biochem Biophys 2003; 413:23-31. [PMID: 12706338 DOI: 10.1016/s0003-9861(03)00118-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli asparagine synthetase B (AS-B) catalyzes the formation of asparagine from aspartate in an ATP-dependent reaction for which glutamine is the in vivo nitrogen source. In an effort to reconcile several different kinetic models that have been proposed for glutamine-dependent asparagine synthetases, we have used numerical methods to investigate the kinetic mechanism of AS-B. Our simulations demonstrate that literature proposals cannot reproduce the glutamine dependence of the glutamate/asparagine stoichiometry observed for AS-B, and we have therefore developed a new kinetic model that describes the behavior of AS-B more completely. The key difference between this new model and the literature proposals is the inclusion of an E.ATP.Asp.Gln quaternary complex that can either proceed to form asparagine or release ammonia through nonproductive glutamine hydrolysis. The implication of this model is that the two active sites in AS-B become coordinated only after formation of a beta-aspartyl-AMP intermediate in the synthetase site of the enzyme. The coupling of glutaminase and synthetase activities in AS is therefore different from that observed in all other well-characterized glutamine-dependent amidotransferases.
Collapse
Affiliation(s)
- Alan R Tesson
- Department of Chemistry, University of Florida, Gainesville 32611, USA
| | | | | | | |
Collapse
|
41
|
Schnizer HG, Boehlein SK, Stewart JD, Richards NGJ, Schuster SM. gamma-Glutamyl thioester intermediate in glutaminase reaction catalyzed by Escherichia coli asparagine synthetase B. Methods Enzymol 2003; 354:260-71. [PMID: 12418233 DOI: 10.1016/s0076-6879(02)54022-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Holly G Schnizer
- Department of Biochemistry, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
The purpose of this appendix is to provide a brief review of issues important in the design of initial-rate assay methods.
Collapse
Affiliation(s)
- R D Allison
- University of Florida, Gainesville, Florida, USA
| |
Collapse
|
43
|
Allison RD. Kinetic assay methods. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2001; Chapter 3:Unit 3.5. [PMID: 18429170 DOI: 10.1002/0471140864.ps0305s05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The purpose of this unit is to provide a brief review of issues important in the design of initial-rate assay methods. General aspects of kinetic assay design are discussed, including enzyme and substrate purity, concentration and stability. Also covered are issues such as continuous versus stop-time assay formats, coupled enzyme assays, binding studies, and presentation of initial-rate data.
Collapse
Affiliation(s)
- R D Allison
- University of Florida, Gainesville, Florida, USA
| |
Collapse
|
44
|
Hirasawa T, Wachi M, Nagai K. A mutation in the Corynebacterium glutamicum ltsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production. J Bacteriol 2000; 182:2696-701. [PMID: 10781535 PMCID: PMC101969 DOI: 10.1128/jb.182.10.2696-2701.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1999] [Accepted: 02/11/2000] [Indexed: 11/20/2022] Open
Abstract
The Corynebacterium glutamicum mutant KY9714, originally isolated as a lysozyme-sensitive mutant, does not grow at 37 degrees C. Complementation tests and DNA sequencing analysis revealed that a mutation in a single gene of 1,920 bp, ltsA (lysozyme and temperature sensitive), was responsible for its lysozyme sensitivity and temperature sensitivity. The ltsA gene encodes a protein homologous to the glutamine-dependent asparagine synthetases of various organisms, but it could not rescue the asparagine auxotrophy of an Escherichia coli asnA asnB double mutant. Replacement of the N-terminal Cys residue (which is conserved in glutamine-dependent amidotransferases and is essential for enzyme activity) by an Ala residue resulted in the loss of complementation in C. glutamicum. The mutant ltsA gene has an amber mutation, and the disruption of the ltsA gene caused lysozyme and temperature sensitivity similar to that in the KY9714 mutant. L-Glutamate production was induced by elevating growth temperature in the disruptant. These results indicate that the ltsA gene encodes a novel glutamine-dependent amidotransferase that is involved in the mechanisms of formation of rigid cell wall structure and in the L-glutamate production of C. glutamicum.
Collapse
Affiliation(s)
- T Hirasawa
- Department of Bioengineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
45
|
Boehlein SK, Stewart JD, Walworth ES, Thirumoorthy R, Richards NG, Schuster SM. Kinetic mechanism of Escherichia coli asparagine synthetase B. Biochemistry 1998; 37:13230-8. [PMID: 9748330 DOI: 10.1021/bi981058h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Escherichia coli asparagine synthetase B (AS-B) catalyzes the synthesis of asparagine from aspartate, glutamine, and ATP. A combination of kinetic, isotopic-labeling, and stoichiometry studies have been performed to define the nature of nitrogen transfer mediated by AS-B. The results of initial rate studies were consistent with initial binding and hydrolysis of glutamine to glutamate plus enzyme-bound ammonia. The initial velocity results were equally consistent with initial binding of ATP and aspartate prior to glutamine binding. However, product inhibition studies were only consistent with the latter pathway. Moreover, isotope-trapping studies confirmed that the enzyme-ATP-aspartate complex was kinetically competent. Studies using 18O-labeled aspartate were consistent with formation of a beta-aspartyl-AMP intermediate, and stoichiometry studies revealed that 1 equiv of this intermediate formed on the enzyme in the absence of a nitrogen source. Taken together, our results are most consistent with initial formation of beta -aspartyl-AMP intermediate prior to glutamine binding. This sequence leaves open many possibilities for the chemical mechanism of nitrogen transfer.
Collapse
Affiliation(s)
- S K Boehlein
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville 32610, USA
| | | | | | | | | | | |
Collapse
|
46
|
Richards NG, Schuster SM. Mechanistic issues in asparagine synthetase catalysis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1998; 72:145-98. [PMID: 9559053 DOI: 10.1002/9780470123188.ch5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The enzymatic synthesis of asparagine is an ATP-dependent process that utilizes the nitrogen atom derived from either glutamine or ammonia. Despite a long history of kinetic and mechanistic investigation, there is no universally accepted catalytic mechanism for this seemingly straightforward carboxyl group activating enzyme, especially as regards those steps immediately preceding amide bond formation. This chapter considers four issues dealing with the mechanism: (a) the structural organization of the active site(s) partaking in glutamine utilization and aspartate activation; (b) the relationship of asparagine synthetase to other amidotransferases; (c) the way in which ATP is used to activate the beta-carboxyl group; and (d) the detailed mechanism by which nitrogen is transferred.
Collapse
Affiliation(s)
- N G Richards
- Department of Chemistry, University of Florida, Gainesville 32611, USA
| | | |
Collapse
|
47
|
Zalkin H, Smith JL. Enzymes utilizing glutamine as an amide donor. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1998; 72:87-144. [PMID: 9559052 DOI: 10.1002/9780470123188.ch4] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amide nitrogen from glutamine is a major source of nitrogen atoms incorporated biosynthetically into other amino acids, purine and pyrimidine bases, amino-sugars, and coenzymes. A family comprised of at least sixteen amidotransferases are known to catalyze amide nitrogen transfer from glutamine to their acceptor substrates. Recent fine structural advances, largely as a result of X-ray crystallography, now provide structure-based mechanisms that help to explain fundamental aspects of the catalytic and regulatory interactions of several of these aminotransferases. This chapter provides an overview of this recent progress made on the characterization of amidotransferase structure and mechanism.
Collapse
|
48
|
Boehlein SK, Walworth ES, Richards NG, Schuster SM. Mutagenesis and chemical rescue indicate residues involved in beta-aspartyl-AMP formation by Escherichia coli asparagine synthetase B. J Biol Chem 1997; 272:12384-92. [PMID: 9139684 DOI: 10.1074/jbc.272.19.12384] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Site-directed mutagenesis and kinetic studies have been employed to identify amino acid residues involved in aspartate binding and transition state stabilization during the formation of beta-aspartyl-AMP in the reaction mechanism of Escherichia coli asparagine synthetase B (AS-B). Three conserved amino acids in the segment defined by residues 317-330 appear particularly crucial for enzymatic activity. For example, when Arg-325 is replaced by alanine or lysine, the resulting mutant enzymes possess no detectable asparagine synthetase activity. The catalytic activity of the R325A AS-B mutant can, however, be restored to about 1/6 of that of wild-type AS-B by the addition of guanidinium HCl (GdmHCl). Detailed kinetic analysis of the rescued activity suggests that Arg-325 is involved in stabilization of a pentacovalent intermediate leading to the formation beta-aspartyl-AMP. This rescue experiment is the second example in which the function of a critical arginine residue that has been substituted by mutagenesis is restored by GdmHCl. Mutation of Thr-322 and Thr-323 also produces enzymes with altered kinetic properties, suggesting that these threonines are involved in aspartate binding and/or stabilization of intermediates en route to beta-aspartyl-AMP. These experiments are the first to identify residues outside of the N-terminal glutamine amide transfer domain that have any functional role in asparagine synthesis.
Collapse
Affiliation(s)
- S K Boehlein
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
49
|
Isupov MN, Obmolova G, Butterworth S, Badet-Denisot MA, Badet B, Polikarpov I, Littlechild JA, Teplyakov A. Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 A crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase. Structure 1996; 4:801-10. [PMID: 8805567 DOI: 10.1016/s0969-2126(96)00087-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Amidotransferases use the amide nitrogen of glutamine in a number of important biosynthetic reactions. They are composed of a glutaminase domain, which catalyzes the hydrolysis of glutamine to glutamate and ammonia, and a synthetase domain, catalyzing amination of the substrate. To gain insight into the mechanism of nitrogen transfer, we examined the structure of the glutaminase domain of glucosamine 6-phosphate synthase (GLMS). RESULTS The crystal structures of the enzyme complexed with glutamate and with a competitive inhibitor, Glu-hydroxamate, have been determined to 1.8 A resolution. The protein fold has structural homology to other members of the superfamily of N-terminal nucleophile (Ntn) hydrolases, being a sandwich of antiparallel beta sheets surrounded by two layers of alpha helices. CONCLUSIONS The structural homology between the glutaminase domain of GLMS and that of PRPP amidotransferase (the only other Ntn amidotransferase whose structure is known) indicates that they may have diverged from a common ancestor. Cys1 is the catalytic nucleophile in GLMS, and the nucleophilic character of its thiol group appears to be increased through general base activation by its own alpha-amino group. Cys1 can adopt two conformations, one active and one inactive; glutamine binding locks the residue in a predetermined conformation. We propose that when a nitrogen acceptor is present Cys1 is kept in the active conformation, explaining the phenomenon of substrate-induced activation of the enzyme, and that Arg26 is central in this coupling.
Collapse
Affiliation(s)
- M N Isupov
- Department of Chemistry and Biological Sciences, University of Exeter, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Boehlein SK, Richards NG, Walworth ES, Schuster SM. Arginine 30 and asparagine 74 have functional roles in the glutamine dependent activities of Escherichia coli asparagine synthetase B. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47088-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|