1
|
Carmel Ezra S, Tuller T. Modeling the effect of rRNA-mRNA interactions and mRNA folding on mRNA translation in chloroplasts. Comput Struct Biotechnol J 2022; 20:2521-2538. [PMID: 35685358 PMCID: PMC9157439 DOI: 10.1016/j.csbj.2022.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 11/15/2022] Open
Abstract
The process of translation initiation in prokaryotes is mediated by the hybridization of the 16S rRNA of the small ribosomal subunit with the mRNA in a short region called the ribosomal binding site. However, translation initiation in chloroplasts, which have evolved from an ancestral bacterium, is not well understood. Some studies suggest that in many cases it differs from translation initiation in bacteria and involves various novel interactions of the mRNA structures with intracellular factors; however currently, there is no generic quantitative model related to these aspects in chloroplasts. We developed a novel computational pipeline and models that can be used for understanding and modeling translation regulation in chloroplasts. We demonstrate that local folding and co-folding energy of the rRNA and the mRNA correlates with codon usage estimators of expression levels (r = -0.63) and infer predictive models that connect these energies and codon usage to protein levels (with correlation up to 0.71). In addition, we demonstrate that the ends of the transcripts in chloroplasts are populated with various structural elements that may be functional. Furthermore, we report a database of 166 novel structures in the chloroplast transcripts that are predicted to be functional. We believe that the models reported here improve existing understandings of genomic evolution and the biophysics of translation in chloroplasts; as such, they can aid gene expression engineering in chloroplasts for various biotechnological objectives.
Collapse
Affiliation(s)
- Stav Carmel Ezra
- Department of Biomedical Engineering, Tel Aviv University, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Israel
| |
Collapse
|
2
|
Zicker AA, Kadakia CS, Herrin DL. Distinct roles for the 5' and 3' untranslated regions in the degradation and accumulation of chloroplast tufA mRNA: identification of an early intermediate in the in vivo degradation pathway. PLANT MOLECULAR BIOLOGY 2007; 63:689-702. [PMID: 17180456 DOI: 10.1007/s11103-006-9117-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 11/13/2006] [Indexed: 05/13/2023]
Abstract
Elongation factor Tu in Chlamydomonas reinhardtii is a chloroplast-encoded gene (tufA) whose 1.7-kb mRNA has a relatively short half-life. In the presence of chloramphenicol (CAP), which freezes translating chloroplast ribosomes, a 1.5-kb tufA RNA becomes prominent. Rifampicin-chase analysis indicates that the 1.5-kb RNA is a degradation intermediate, and mapping studies show that it is missing 176-180 nucleotides from the 5' end of tufA. The 5' terminus of the intermediate maps to a section of the untranslated region (UTR) predicted to be highly structured and to encode a small ORF. The intermediate could be detected in older cultures in the absence of CAP, indicating that it is not an artifact of drug treatment. Also, it did not overaccumulate in the chloroplast ribosome-deficient mutant, ac20 cr1, indicating its stabilization is specific to elongation-arrested ribosomes. To determine if the 5' UTR of tufA is destabilizing, the corresponding region of the atpA-aadA-rbcL gene was replaced with the tufA sequence, and introduced into the chloroplast genome; the 3' UTR was also substituted for comparison. Analysis of these transformants showed that the transcripts containing the tufA 3'-UTR accumulate to significantly lower levels. Data from constructs based on the vital reporter, Renilla luciferase, confirmed the importance of the tufA 3'-UTR in determining RNA levels, and suggested that the 5' UTR of tufA affects translation efficiency. These data indicate that the in vivo degradation of tufA mRNA begins in the 5' UTR, and is promoted by translation. The data also suggest, however, that the level of the mature RNA is determined more by the 3' UTR than the 5' UTR.
Collapse
Affiliation(s)
- Alicia A Zicker
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, School of Biological Sciences, University of Texas at Austin, 1 University Station A6700, Austin, TX 78712, USA
| | | | | |
Collapse
|
3
|
Translation and translational regulation in chloroplasts. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0234] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Kramzar LM, Mueller T, Erickson B, Higgs DC. Regulatory sequences of orthologous petD chloroplast mRNAs are highly specific among Chlamydomonas species. PLANT MOLECULAR BIOLOGY 2006; 60:405-22. [PMID: 16514563 DOI: 10.1007/s11103-005-4477-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2005] [Accepted: 10/24/2005] [Indexed: 05/06/2023]
Abstract
The 5' untranslated regions (UTR) of chloroplast mRNAs often contain regulatory sequences that control RNA stability and/or translation. The petD chloroplast mRNA in Chlamydomonas reinhardtii has three such essential regulatory elements in its 362-nt long 5' UTR. To further analyze these elements, we compared 5' UTR sequences from four Chlamydomonas species (C. reinhardtii, C. incerta, C. moewusii and C. eugametos) and five independent strains of C. reinhardtii. Overall, these petD 5' UTRs have relatively low sequence conservation across these species. In contrast, sequences of the three regulatory elements and their relative positions appear partially conserved. Functionality of the 5' UTRs was tested in C. reinhardtii chloroplasts using beta-glucuronidase reporter genes, and the nearly identical C. incerta petD functioned for mRNA stability and translation in C. reinhardtii chloroplasts while the more divergent C. eugametos petD did not. This identified what may be key features in these elements. We conclude that these petD regulatory elements, and possibly the corresponding trans-acting factors, function via mechanisms highly specific and surprisingly sensitive to minor sequence changes. This provides a new and broader perspective of these important regulatory sequences that affect photosynthesis in these algae.
Collapse
Affiliation(s)
- Lynn M Kramzar
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI 53141, USA
| | | | | | | |
Collapse
|
5
|
Manuell A, Beligni MV, Yamaguchi K, Mayfield SP. Regulation of chloroplast translation: interactions of RNA elements, RNA-binding proteins and the plastid ribosome. Biochem Soc Trans 2005; 32:601-5. [PMID: 15270686 DOI: 10.1042/bst0320601] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chloroplast gene expression is primarily controlled during the translation of plastid mRNAs into proteins, and genetic studies have identified cis-acting RNA elements and trans-acting protein factors required for chloroplast translation. Biochemical analysis has identified both general and specific mRNA-binding proteins as components of the regulation of chloroplast translation, and has revealed that chloroplast translation is related to bacterial translation but is more complex. Utilizing proteomic and bioinformatic analyses, we have identified the proteins that function in chloroplast translation, including a complete set of chloroplast ribosomal proteins, and homologues of the 70 S initiation, elongation and termination factors. These analyses show that the translational apparatus of chloroplasts is related to that of bacteria, but has adopted a number of eukaryotic mechanisms to facilitate and regulate chloroplast translation.
Collapse
Affiliation(s)
- A Manuell
- Department of Cell Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
6
|
McCormac DJ, Litz H, Wang J, Gollnick PD, Berry JO. Light-associated and processing-dependent protein binding to 5' regions of rbcL mRNA in the chloroplasts of a C4 plant. J Biol Chem 2001; 276:3476-83. [PMID: 11076953 DOI: 10.1074/jbc.m009236200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In amaranth, a C(4) dicotyledonous plant, the plastid rbcL gene (encoding the large subunit of ribulose-1,5-bisphosphate carboxylase) is regulated post-transcriptionally during many developmental processes, including light-mediated development. To identify post-transcriptional regulators of rbcL expression, three types of analyses (polysome heel printing, gel retardation, and UV cross-linking) were utilized. These approaches revealed that multiple proteins interact with 5' regions of rbcL mRNA in light-grown, but not etiolated, amaranth plants. Light-associated binding of a 47-kDa protein (p47), observed by UV cross-linking, was highly specific for the rbcL 5' RNA. Binding of p47 occurred only with RNAs corresponding to mature processed rbcL transcripts (5'-untranslated region (UTR) terminating at -66); transcripts with longer 5'-UTRs did not associate with p47 in vitro. Variations in the length of the rbcL 5'-UTR were found to occur in vivo, and these different 5' termini may prevent or enhance light-associated p47 binding, possibly affecting rbcL expression as well. p47 binding correlates with light-dependent rbcL polysome association of the fully processed transcripts in photosynthetic leaves and cotyledons but not with cell-specific rbcL mRNA accumulation in bundle sheath and mesophyll chloroplasts.
Collapse
Affiliation(s)
- D J McCormac
- Department of Biological Sciences, State University of New York, Buffalo, New York 14260, USA
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Abstract
The discovery that chloroplasts have semi-autonomous genetic systems has led to many insights into the biogenesis of these organelles and their evolution from free-living photosynthetic bacteria. Recent developments of our understanding of the molecular mechanisms of translation in chloroplasts suggest selective pressures that have maintained the 100-200 genes of the ancestral endosymbiont in chloroplast genomes. The ability to introduce modified genes into chloroplast genomes by homologous recombination and the recent development of an in vitro chloroplast translation system have been exploited for analyses of the cis-acting requirements for chloroplast translation. Trans-acting translational factors have been identified by genetic and biochemical approaches. Several studies have suggested that chloroplast mRNAs are translated in association with membranes.
Collapse
Affiliation(s)
- W Zerges
- Concordia University, 1455 de Maisonneuve W., H3G 1M8, Quebec, Montreal, Canada.
| |
Collapse
|
9
|
Fargo DC, Boynton JE, Gillham NW. Mutations altering the predicted secondary structure of a chloroplast 5' untranslated region affect its physical and biochemical properties as well as its ability to promote translation of reporter mRNAs both in the Chlamydomonas reinhardtii chloroplast and in Escherichia coli. Mol Cell Biol 1999; 19:6980-90. [PMID: 10490635 PMCID: PMC84693 DOI: 10.1128/mcb.19.10.6980] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Random mutations were generated in the sequence for the 5' untranslated region (5'UTR) of the Chlamydomonas reinhardtii chloroplast rps7 mRNA by PCR, the coding sequence for the mutant leaders fused upstream of the lacZ' reporter in pUC18, and transformed into Escherichia coli, and white colonies were selected. Twelve single base pair changes were found at different positions in the rps7 5'UTR in 207 white colonies examined. Seven of the 12 mutant leaders allowed accumulation of abundant lacZ' message. These mutant rps7 leaders were ligated into an aadA expression cassette and transformed into the chloroplast of C. reinhardtii and into E. coli. In vivo spectinomycin-resistant growth rates and in vitro aminoglycoside adenyltransferase enzyme activity varied considerably between different mutants but were remarkably similar for a given mutant expressed in the Chlamydomonas chloroplast and in E. coli. The variable effect of the mutants on aadA reporter expression and their complete abolition of lacZ' reporter expression in E. coli suggests differences in the interaction between the 5'UTR of rps7 and aadA or lacZ' coding regions. Several rps7 5'UTR mutations affected the predicted folding pattern of the 5'UTR by weakening the stability of stem structures. Site-directed secondary mutations generated to restore these structures in the second stem suppressed the loss of reporter activity caused by the original mutations. Additional site-directed mutations that were predicted to further strengthen (A-U-->G-C) or weaken (G-C-->A-U) the second stem of the rps7 leader both resulted in reduced reporter expression. This genetic evidence combined with differences between mutant and wild-type UV melting profiles and RNase T1 protection gel shifts further indicate that the predicted wild-type folding pattern in the 5'UTR is likely to play an essential role in translation initiation.
Collapse
Affiliation(s)
- D C Fargo
- Developmental, Cell and Molecular Biology Group, Departments of Botany and Zoology, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
10
|
Bruick RK, Mayfield SP. Light-activated translation of chloroplast mRNAs. TRENDS IN PLANT SCIENCE 1999; 4:190-195. [PMID: 10322559 DOI: 10.1016/s1360-1385(99)01402-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The integrated regulation of mRNA stability, processing and translation facilitates the expression of several chloroplast genes, particularly in response to changes in illumination. Nuclear and chloroplast-encoded factors that mediate the expression of specific chloroplast messages have been characterized from green algae and plants. Recent studies suggest that the chloroplast might have recruited eukaryotic proteins, which are usually found in the cytoplasm or the endoplasmic reticulum, to couple the level of photosynthetic activity to gene expression via translational activation. Consequently, elements required for translational initiation of chloroplast messages differ from their prokaryotic ancestors. These results suggest that chloroplast translational regulation is a hybrid between prokaryotic and eukaryotic systems.
Collapse
Affiliation(s)
- RK Bruick
- Dept of Cell Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
11
|
Abstract
The entire sequence (120-190 kb) of chloroplast genomes has been determined from a dozen plant species. The genome contains from 87 to 183 known genes, of which half encode components involved in translation. These include a complete set of rRNAs and about 30 tRNAs, which are likely to be sufficient to support translation in chloroplasts. RNA editing (mostly C to U base changes) occurs in some chloroplast transcripts, creating start and stop codons and changing codons to retain conserved amino acids. Many components that constitute the chloroplast translational machinery are similar to those of Escherichia coli, whereas only one third of the chloroplast mRNAs contain Shine-Dalgarno-like sequences at the correct positions. Analyses conducted in vivo and in vitro have revealed the existence of multiple mechanisms for translational initiation in chloroplasts.
Collapse
Affiliation(s)
- M Sugiura
- Center for Gene Research, Nagoya University, Japan.
| | | | | |
Collapse
|
12
|
Yu NJ, Spremulli LL. Regulation of the activity of chloroplast translational initiation factor 3 by NH2- and COOH-terminal extensions. J Biol Chem 1998; 273:3871-7. [PMID: 9461569 DOI: 10.1074/jbc.273.7.3871] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mature form of the chloroplast translational initiation factor 3 (IF3chl) from Euglena gracilis consists of an internal region homologous to prokaryotic IF3 flanked by long NH2- and COOH-terminal extensions. Sequences in these extensions reduce the activity of the homology domain in promoting initiation complex formation with chloroplast mRNAs and 30 S ribosomal subunits. A series of deletions of the NH2- and COOH-terminal extensions of IF3chl were constructed and tested for their effects on the activity of the homology domain. About half of the inhibitory effect arises from sequences within 9 residues of the junction between the NH2-terminal extension and the homology domain. The remaining inhibitory effect is the result of sequences in the COOH-terminal extension. The equilibrium constant governing the binding of the homology domain of IF3chl to 30 S subunits is estimated to be 1.3 x 10(7) M-1. Sequences close to the junction of the NH2-terminal extension and the homology domain reduce this binding constant about 10-fold. Sequences in the COOH-terminal extension have a similar negative effect. The negative effects of these two regions are cumulative, resulting in a 100-fold reduction of the binding constant. The 9 residues at the NH2-terminal extension effectively prevent the proofreading activity of IF3chl. The entire COOH-terminal extension reduces the proofreading ability by about half. These results are discussed in terms of the proposed three-dimensional structure of the homology domain of IF3chl.
Collapse
Affiliation(s)
- N J Yu
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | |
Collapse
|
13
|
Abstract
Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival.
Collapse
Affiliation(s)
- E H Harris
- DCMB Group, Department of Botany, Duke University, Durham, North Carolina 27708-1000
| | | | | |
Collapse
|
14
|
Betts L, Spremulli LL. Analysis of the role of the Shine-Dalgarno sequence and mRNA secondary structure on the efficiency of translational initiation in the Euglena gracilis chloroplast atpH mRNA. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47216-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Koo J, Spremulli L. Effect of the secondary structure in the Euglena gracilis chloroplast ribulose-bisphosphate carboxylase/oxygenase messenger RNA on translational initiation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37314-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|