1
|
Kis M, Asztalos E, Sipka G, Maróti P. Assembly of photosynthetic apparatus in Rhodobacter sphaeroides as revealed by functional assessments at different growth phases and in synchronized and greening cells. PHOTOSYNTHESIS RESEARCH 2014; 122:261-273. [PMID: 25022916 DOI: 10.1007/s11120-014-0026-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
The development of photosynthetic membranes of intact cells of Rhodobacter sphaeroides was tracked by light-induced absorption spectroscopy and induction and relaxation of the bacteriochlorophyll fluorescence. Changes in membrane structure were induced by three methods: synchronization of cell growth, adjustment of different growth phases and transfer from aerobic to anaerobic conditions (greening) of the bacteria. While the production of the bacteriochlorophyll and carotenoid pigments and the activation of light harvesting and reaction center complexes showed cell-cycle independent and continuous increase with characteristic lag phases, the accumulation of phospholipids and membrane potential (electrochromism) exhibited stepwise increase controlled by cell division. Cells in the stationary phase of growth demonstrated closer packing and tighter energetic coupling of the photosynthetic units (PSU) than in their early logarithmic stage. The greening resulted in rapid (within 0-4 h) induction of BChl synthesis accompanied with a dominating role for the peripheral light harvesting system (up to LH2/LH1 ~2.5), significantly increased rate (~7·10(4) s(-1)) and yield (F v/F max ~0.7) of photochemistry and modest (~2.5-fold) decrease of the rate of electron transfer (~1.5·10(4) s(-1)). The results are discussed in frame of a model of sequential assembly of the PSU with emphasis on crowding the LH2 complexes resulting in an increase of the connectivity and yield of light capture on the one hand and increase of hindrance to diffusion of mobile redox agents on the other hand.
Collapse
Affiliation(s)
- M Kis
- Department of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary
| | | | | | | |
Collapse
|
2
|
Odahara T, Ishii N, Ooishi A, Honda S, Uedaira H, Hara M, Miyake J. Thermostability of Rhodopseudomonas viridis and Rhodospirillum rubrum chromatophores reflecting physiological conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1645-53. [DOI: 10.1016/j.bbamem.2011.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/24/2011] [Accepted: 02/15/2011] [Indexed: 11/29/2022]
|
3
|
Abstract
Septum formation is initiated by the FtsZ ring assembly in the middle of rod-shape bacteria. The mechanism which determines the division site in the membrane and makes it recognizable by FtsZ is still unknown. We have recently demonstrated that the putative division membrane domains can be visualized by a fluorescent membrane probe (Fishov and Woldring, Mol. Microbiol., 1999) and that these domains can be dissipated by interrupting the process of coupled transcription and translation of proteins (Binenbaum et al., Mol. Microbiol., 1999). Here, we examined the membrane dynamics of Escherichia coli during division and after a reversible division arrest. Anisotropy of DPH fluorescence, used as an indicator of membrane dynamics (viscosity), correlated with the rate of division in synchronous cells. It decreased during filamentation caused by drugs or by temperature, but not in the ftsZ mutant and when DNA replication was blocked by nalidixic acid. Based on previous data, we incline to interpret these results as reflecting formation and dissipation of putative membrane domains marking the division sites; domains are formed by partitioning nucleoids and dissipate while used for constriction or after the nucleoids have been segregated too far in a filament.
Collapse
Affiliation(s)
- Z Binenbaum
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
4
|
Schmid PC, Kumar VV, Weis BK, Schmid HH. Phosphatidyl-Tris rather than N-acylphosphatidylserine is synthesized by Rhodopseudomonas sphaeroides grown in Tris-containing media. Biochemistry 1991; 30:1746-51. [PMID: 1993190 DOI: 10.1021/bi00221a003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have synthesized 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho(N-oleoyl)serine (N-acyl-PS) and 1,2-dioleoyl-sn-glycero-3-phospho-Tris (phosphatidyl-Tris) and have characterized both phospholipids by their chemical and chromatographic properties, as well as by their IR, 13C NMR, and 1H NMR spectra. Comparison of these data with those reported for a phospholipid isolated from Rhodopseudomonas sphaeroides grown in Tris-supplemented media [Donohue et al. (1982) Biochemistry 21, 2765-2773] indicates that R. sphaeroides synthesizes phosphatidyl-Tris rather than N-acyl-PS.
Collapse
Affiliation(s)
- P C Schmid
- Hormel Institute, University of Minnesota, Austin 55912
| | | | | | | |
Collapse
|
5
|
Souzu H. Changes in chemical structure and function in Escherichia coli cell membranes caused by freeze-thawing. I. Change of lipid state in bilayer vesicles and in the original membrane fragments depending on rate of freezing. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 978:105-11. [PMID: 2643992 DOI: 10.1016/0005-2736(89)90505-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of different rates of freezing on the character of lipids in unilamellar lipid bilayer vesicles and in the original membrane fragments of Escherichia coli B cells was investigated by measuring the temperature-dependent fluorescence polarization ratio changes of cis- and trans-parinaric acids. In lipid bilayer vesicles, both slow and rapid freezing brought about significant alterations in fluorescence polarization ratios in the specimens derived from both logarithmic and stationary-phase cells. In the original membrane fragments derived from logarithmic-phase cells, slow freezing gave rise to a similar alteration in fluorescence polarization ratio change, but no such alteration was found in the case of rapid freezing. Logarithmic-phase cells suffered from a membrane permeability change during slow freezing, which subsequently resulted in low cell viability. The cells suffered only slight impairment in membrane function during rapid freezing, and maintained higher viability. These results suggest that the primary site of damage due to freezing of the cells is the cellular membranes, and this destruction is due to a lipid state change in the membranes brought about by freezing.
Collapse
Affiliation(s)
- H Souzu
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Proulx P. Fluorescence studies on prokaryotic membranes. Subcell Biochem 1988; 13:281-321. [PMID: 2577858 DOI: 10.1007/978-1-4613-9359-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Myers CR, Collins ML. Cell-cycle-specific fluctuation in cytoplasmic membrane composition in aerobically grown Rhodospirillum rubrum. J Bacteriol 1987; 169:5445-51. [PMID: 3119564 PMCID: PMC213970 DOI: 10.1128/jb.169.12.5445-5451.1987] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aerobic growth with synchronous cell division was induced in Rhodospirillum rubrum by starvation methods. Cells were harvested at different points in the cell cycle. Analysis of the composition of the cell envelope prepared by differential centrifugation or density gradient-purified cytoplasmic membrane obtained from cells at different times indicated that the protein/phospholipid ratio fluctuated with the cell cycle. The protein/phospholipid ratio of cell envelope from selection-synchronized cells also fluctuated with the cell cycle. These studies indicate that the phenomenon of cell-cycle-dependent fluctuation in membrane composition is not restricted to the intracytoplasmic chromatophore membrane of phototrophic cells.
Collapse
Affiliation(s)
- C R Myers
- Department of Biological Sciences, University of Wisconsin, Milwaukee 53201
| | | |
Collapse
|
8
|
Souzu H. Fluorescence polarization studies on Escherichia coli membrane stability and its relation to the resistance of the cell to freeze-thawing. I. Membrane stability in cells of differing growth phase. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 861:353-60. [PMID: 3530327 DOI: 10.1016/0005-2736(86)90438-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Physical properties of Escherichia coli membrane lipids in logarithmic- and stationary-phase cells were studied by measuring the fluorescence polarization change of cis- and trans-parinaric acid as a function of temperature. In aqueous dispersions of phospholipids extracted from cytoplasmic and outer membranes of cells of differing growth phase, a similar polarization increase was observed over the range from physiological temperature to below 0 degrees C, and nearly the same transition ratios were obtained in all samples. The cytoplasmic membrane of both of the growth-phase cells showed a higher polarization ratio above the transition temperatures, compared to that in the aqueous dispersion of phospholipids. The polarization ratios below the transition temperatures of these specimens were lower than the value obtained with the lipids, especially in the stationary-phase specimens. The outer membrane specimens showed a similar polarization change but the transition temperature ranges were considerably higher both in the logarithmic- and the stationary-phase specimens, compared to those in the cytoplasmic membrane specimens. Freeze-thawing of logarithmic-phase cells showed the emergence of activity of certain enzymes which are known to be located in the membranes. The stationary-phase cells did not suffer from any such deleterious effect and maintained a high level of cell viability in a similar treatment. These results indicate that in the stationary-phase cell membranes lipids are in a highly ordered state, and the lipid state causes a membrane stability which results in the high resistance of the cell to freeze-thawing.
Collapse
|
9
|
Tai SP, Hoger JH, Kaplan S. Phospholipid transfer activity in synchronous populations of Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 859:198-208. [PMID: 3730377 DOI: 10.1016/0005-2736(86)90215-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Studies of intracytoplasmic membrane biogenesis employing steady-state synchronously dividing populations of Rhodobacter sphaeroides reveal that the translocation of pre-existing phospholipid into the growing membrane is concurrent with cell division (Cain, B.D., Deal, C.D., Fraley, R.T. and Kaplan, S. (1981) J. Bacteriol. 145, 1154-1166), yet the mechanism of phospholipid movement is unknown. However, the discovery of phospholipid transfer protein activity in R. sphaeroides (Cohen, L.K., Lueking, D.R. and Kaplan, S. (1979) J. Biol. Chem. 254, 721-728) provides one possible mechanism for phospholipid movement. Therefore the level of phospholipid transfer activity in cell lysates of synchronized cultures was measured and was shown to increase stepwise coinciding precisely with the increase in cell number of the culture. Although the amount of transfer activity per cell remained constant throughout the cell cycle, the specific activity of the phospholipid transfer activity showed a cyclical oscillation with its highest value coincident with the completion of cell division. Purified intracytoplasmic membrane can be used as phospholipid acceptor in the developed phospholipid transfer assay by employing either cytoplasmic membrane or liposomes as the phospholipid donor. Intracytoplasmic membrane isolated from the cells prior to division (high protein to phospholipid ratio) served as a better phospholipid acceptor in the phospholipid transfer system when compared with membranes derived from the cells following cell division (low protein to phospholipid ratio).
Collapse
|
10
|
Reilly PA, Niederman RA. Role of apparent membrane growth initiation sites during photosynthetic membrane development in synchronously dividing Rhodopseudomonas sphaeroides. J Bacteriol 1986; 167:153-9. [PMID: 3522542 PMCID: PMC212854 DOI: 10.1128/jb.167.1.153-159.1986] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sites of intracytoplasmic membrane growth and temporal relations in the assembly of photosynthetic units were examined in synchronously dividing Rhodopseudomonas sphaeroides cells. After rate-zone sedimentation of cell-free extracts, apparent sites of initiation of intracytoplasmic membrane growth formed an upper pigmented band that sedimented more slowly than the intracytoplasmic membrane-derived chromatophore fraction. Throughout the cell cycle, the levels of the peripheral B800-850 light-harvesting pigment-protein complex relative to those of the core B875 complex in the upper pigmented fraction were only about half those of chromatophores. Pulse-labeling studies with L-[35S]methionine indicated that the rates of assembly of proteins in the upper pigmented fraction were much higher than those of chromatophores throughout the cell cycle; rates for the reaction center polypeptides were estimated to be approximately 3.5-fold higher than in chromatophores when the two membrane fractions were equalized on a protein basis. In pulse-chase studies, radioactivity of the reaction center and B875 polypeptides increased significantly in chromatophores and decreased in the upper pigmented band during cell division. These data suggest that the B875 reaction center cores of the photosynthetic units are inserted preferentially into sites of membrane growth initiation isolated in the upper pigmented band and that the incomplete photosynthetic units are transferred from their sites of assembly into the intracytoplasmic membrane during cell division. These results suggested further that B800-850 is added directly to the intracytoplasmic membrane throughout the cell cycle.
Collapse
|
11
|
Myers CR, Collins ML. Cell-cycle-specific oscillation in the composition of chromatophore membrane in Rhodospirillum rubrum. J Bacteriol 1986; 166:818-23. [PMID: 3086290 PMCID: PMC215199 DOI: 10.1128/jb.166.3.818-823.1986] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Synchrony in phototrophic cultures of Rhodospirillum rubrum was induced by stationary-phase cycling or by alterations in light intensity. Intracytoplasmic chromatophore membranes were prepared by differential centrifugation. Analysis of the composition of chromatophores obtained from cells at different times indicated that the protein/bacteriochlorophyll a ratio was constant throughout the cell cycle but that the protein/phospholipid ratio oscillated. This cell-cycle-dependent fluctuation in chromatophore membrane composition was reflected in the buoyant densities of the isolated chromatophores.
Collapse
|
12
|
Yen GS, Cain BD, Kaplan S. Cell-cycle-specific biosynthesis of the photosynthetic membrane of Rhodopseudomonas sphaeroides. Structural implications. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 777:41-55. [PMID: 6333251 DOI: 10.1016/0005-2736(84)90495-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Structural changes association with the intracytoplasmic membrane during the cell cycle of the photosynthetic bacterium Rhodopseudomonas sphaeroides have been studied by freeze-fracture electron microscopy. The isolated intracytoplasmic membrane vesicles, chromatophores, were fused in order to obtain large fracture faces, allowing more precise measurements and statistical analysis of both intramembrane particle density and size determinations. The intramembrane particle density of the protoplasmic face (PF) of the intracytoplasmic membrane, (from 4970 to 8290/micrometers 2), was shown to be a linear function of the protein/phospholipid ratio (from 2.5 to 5.1, w/w) of the intracytoplasmic membrane. Under constant light intensity, both the average particle size and particle size distribution remained unchanged during the cell cycle. These results provide the structural basis for the earlier reported cell-cycle-specific variations in both protein/phospholipid ratio and alternation in phospholipid structure of the intracytoplasmic membrane of R. sphaeroides during photosynthetic growth. The average particle diameter in the PF face of the intracytoplasmic membrane was 8.25, 9.08 and 9.75 nm at incident light intensities of 4000, 500 and 30 ft X cd, respectively. When chromatophores were fused with small, unilamellar liposomes, the intramembrane particle density decreased as input liposome phospholipid increased, whereas the particle size remained constant and particle distribution became random.
Collapse
|
13
|
Snozzi M, Crofts AR. Electron transport in chromatophores from Rhodopseudomonas sphaeroides GA fused with liposomes. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 766:451-63. [PMID: 6331848 DOI: 10.1016/0005-2728(84)90261-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chromatophores from Rhodopseudomonas sphaeroides GA were fused with liposomes in order to dilute the components of the cyclic photosynthetic electron-transport chain within the membrane. This dilution led to a decrease in the rate of cytochrome b-561 reduction. The original rates could be restored at potentials around 100 mV (where a large part of the quinone pool is chemically reduced), if ubiquinone was incorporated into the liposomes prior to fusion. Similar dilution effects could be observed in synchronized cultures. The membrane obtained after division contained about twice the amount of phospholipids per reaction center when compared to chromatophores prepared from cells harvested just before division. Chromatophores from synchronized cultures are more uniform with respect to the concentration of the different electron-transport components in the membrane than the membranes from normally grown cells. The kinetic behaviour both of fused chromatophores and of membranes from synchronized cultures are in agreement with a modified Q-cycle model for photosynthetic electron transport in Rps. sphaeroides. The results presented in this paper cannot be explained by postulating the presence of a firmly bound quinone, Qz, in the ubiquinol: cytochrome c2 oxidoreductase, as previously proposed.
Collapse
|
14
|
Localization of phospholipid biosynthetic enzyme activities in cell-free fractions derived from Rhodopseudomonas sphaeroides. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43549-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Shepherd WD, Kaplan S. Effect of cerulenin on macromolecule synthesis in chemoheterotrophically and photoheterotrophically grown Rhodopseudomonas sphaeroides. J Bacteriol 1983; 156:1322-31. [PMID: 6196350 PMCID: PMC217983 DOI: 10.1128/jb.156.3.1322-1331.1983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The antibiotic cerulenin causes the immediate cessation of phospholipid biosynthesis in both chemoheterotrophic and photoheterotrophic cultures of Rhodopseudomonas sphaeroides. Macromolecule biosynthesis in photoheterotrophic cells was unaffected by cerulenin for the first 2 h after antibiotic addition and then continued at a reduced rate for an additional 8 h. In contrast, macromolecule biosynthesis in chemoheterotrophic cells was severely affected by cerulenin within the first 2 h of treatment. Pulse-labeling of protein after cerulenin addition revealed that all subcellular fractions were equally affected by the action of cerulenin with chemoheterotrophic cell fractions more profoundly affected than those derived from photoheterotrophic cells. Protein insertion into the intracytoplasmic membrane of photoheterotrophic cells continued for up to 6 h after the onset of cerulenin treatment. Residual macromolecule synthesis was correlated with the presence of the photosynthetic membrane system under all conditions of growth.
Collapse
|
16
|
Cain BD, Singer M, Donohue TJ, Kaplan S. In vivo metabolic intermediates of phospholipid biosynthesis in Rhodopseudomonas sphaeroides. J Bacteriol 1983; 156:375-85. [PMID: 6604726 PMCID: PMC215092 DOI: 10.1128/jb.156.1.375-385.1983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The in vivo metabolic pathways of phospholipid biosynthesis in Rhodopseudomonas sphaeroides have been investigated. Rapid pulse-chase-labeling studies indicated that phosphatidylethanolamine and phosphatidylglycerol were synthesized as in other eubacteria. The labeling pattern observed for N-acylphosphatidylserine (NAPS) was inconsistent with the synthesis of this phospholipid occurring by direct acylation of phosphatidylserine (PS). Rather, NAPS appeared to be kinetically derived from an earlier intermediate such as phosphatidic acid or more likely CDP-diglyceride. Tris-induced NAPS accumulation specifically reduced the synthesis of PS. Treatment of cells with a bacteriostatic concentration of hydroxylamine (10 mM) greatly reduced total cellular phospholipid synthesis, resulted in accumulation of PS, and stimulated the phosphatidylglycerol branch of phospholipid metabolism relative to the PS branch of the pathway. When the cells were treated with a lower hydroxylamine dosage (50 microM), total phospholipid synthesis lagged as PS accumulated, however, phospholipid synthesis resumed coincident with a reversal of PS accumulation. Hydroxylamine alone was not sufficient to promote NAPS accumulation but this compound allowed continued NAPS accumulation when cells were grown in medium containing Tris. The significance of these observations is discussed in terms of NAPS biosynthesis being representative of a previously undescribed branch of the phospholipid biosynthetic sequence.
Collapse
|
17
|
Kaplan S, Cain BD, Donohue TJ, Shepherd WD, Yen GS. Biosynthesis of the photosynthetic membranes of Rhodopseudomonas sphaeroides. J Cell Biochem 1983; 22:15-29. [PMID: 6607927 DOI: 10.1002/jcb.240220103] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The steady-state biosynthesis of the photosynthetic membrane (ICM) of Rhodopseudomonas sphaeroides has been reviewed. At moderate light intensities, 500 ft-c, preexisting ICM serves as the insertion matrix for newly synthesized membrane components. Whereas the bulk of the membrane protein, protein-pigment complexes, and pigments are inserted into preexisting ICM throughout the cell cycle, phospholipid is transferred from outside the ICM to the ICM only at the time of cell division. Because the site of cellular phospholipid synthesis is the cytoplasmic membrane, these results infer that despite the physical continuity of cytoplasmic membrane and ICM, there must exist between these membranous domains a "barrier" to the free diffusion of cellular phospholipid. The cyclical alternation in protein to phospholipid ratio of the ICM infers major structural and functional alternations, such as changes in the protein to lipid ratio of the membrane, specific density of the membrane, lipid structure within the membrane, and the rate of cyclic electron flow. When biochemical studies are correlated with detailed electron microscopic investigations we can further conclude that the number of photosynthetic units within the plane of the membrane can vary by nearly a factor of two over the course of the cell cycle. The average physical size of the photosynthetic units is constant for a given light intensity but inversely proportional to light intensity. The distribution of photosynthetic unit size classes within the membrane can be interpreted as suggesting that the "core" of the photosynthetic unit (reaction center plus fixed antenna complex) is inserted into the membrane coordinately as a structural entity. The variable antenna complex is, on the other hand, inserted independent of the "core" and randomly associates with both old and new core complexes. Finally, we conclude that there is substantial substructure to te distribution of photosynthetic units within the ICM, ie, they are highly ordered and exist in a defined spatial orientation to one another.
Collapse
|
18
|
Fatty acid and phospholipid composition ofBacillus megaterium spores with altered germination properties. Lipids 1982; 17:914-23. [DOI: 10.1007/bf02534587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/1982] [Indexed: 10/23/2022]
|
19
|
Abstract
The transposon Tn951 (lac) was introduced into the photosynthetic bacterium Rhodopseudomonas sphaeroides 2.4.1, which is normally Lac-, via the P-group plasmid RP1. beta-Galactosidase was produced constitutively in both chemotrophically and phototrophically grown cells, and the levels were found to be the same but low. Mutants were isolated, however, that were able to grow on lactose minimal medium and which expressed different levels of beta-galactosidase when grown chemotrophically or phototrophically. The beta-galactosidase levels found in all R. sphaeroides strains were much less than those found in Escherichia coli.
Collapse
|
20
|
Cain BD, Donohue TJ, Kaplan S. Kinetic analysis of N-acylphosphatidylserine accumulation and implications for membrane assembly in Rhodopseudomonas sphaeroides. J Bacteriol 1982; 152:607-15. [PMID: 6982265 PMCID: PMC221507 DOI: 10.1128/jb.152.2.607-615.1982] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The accumulation of N-acylphosphatidylserine (NAPS) in response to the inclusion of Tris in the growth medium of Rhodopseudomonas sphaeroides strain M29-5 has been examined. In the accompanying paper (Donohue et al., J. Bacteriol. 152:000--000, 1982), we show that in response to Tris, NAPS accumulated to as much as 40% of the total cellular phospholipid content. NAPS accumulation began immediately upon addition of Tris and was reflected as an abrupt 12-fold increase in the apparent rate of NAPS accumulation. We suggest that Tris altered the flow of metabolites through a preexisting and previously unknown metabolic pathway. NAPS accumulation ceased immediately upon the removal of Tris; however, accumulated NAPS remained largely metabolically stable. Importantly, under conditions in which NAPS was not accumulated, the intracytoplasmic membrane was shown to be virtually devoid of newly synthesized NAPS. The significance of this observation is discussed in terms of its physiological implications on phospholipid transfer and membrane biogenesis in R. sphaeroides.
Collapse
|
21
|
Welte W, Kreutz W. Formation, structure and composition of a planar hexagonal lattice composed of specific protein-lipid complexes in the thylakoid membranes of Rhodopseudomonas viridis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1982. [DOI: 10.1016/0005-2736(82)90400-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Yen GS, Wraight CA, Kaplan S. Fusion of chromatophores derived from Rhodopseudomonas sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1982. [DOI: 10.1016/0005-2736(82)90372-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Donohue TJ, Cain BD, Kaplan S. Purification and characterization of an N-acylphosphatidylserine from Rhodopseudomonas sphaeroides. Biochemistry 1982; 21:2765-73. [PMID: 6980013 DOI: 10.1021/bi00540a029] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new phospholipid that can account for up to 40% of the total cellular phospholipid of Rhodopseudomonas sphaeroides has been identified. Purification of the phospholipid was accomplished by column chromatography on silicic acid and diethylaminoethylcellulose followed by preparative thin-layer chromatography. A combination of spectroscopic and chemical techniques were used to identify the unknown phospholipid as an N-acylphosphatidylserine. Infrared spectroscopy revealed the presence of both ester and amide bonds in the phospholipid. Interpretation of the proton nuclear magnetic resonance spectrum of the new phospholipid indicated the presence of three acyl chains per phospholipid and in all other respects was compatible with the proposed structure of the molecule. Chemical studies confirmed the presence of a glycerylphosphorylserine moiety in the molecule and yielded three fatty acyl chains per hydrolyzed phospholipid. The fatty acid composition of the phospholipid was approximately 85% vaccenic acid, 9% stearic acid, 5% palmitic acid, and 1% palmitoleic acid, which is essentially identical with the fatty acid composition of whole cell phospholipid preparations from R. sphaeroides. Chemical synthesis of an N-acylphosphatidylserine from beef brain phosphatidylserine and palmitic anhydride gave a product with characteristics similar to those of the naturally occurring material isolated from R. sphaeroides.
Collapse
|
24
|
Onishi JC, Niederman RA. Rhodopseudomonas sphaeroides membranes: alterations in phospholipid composition in aerobically and phototrophically grown cells. J Bacteriol 1982; 149:831-9. [PMID: 6977537 PMCID: PMC216469 DOI: 10.1128/jb.149.3.831-839.1982] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The effects of growth conditions on phospholipid composition in Rhodopseudomonas sphaeroides have been reexamined. The levels of phosphatidylethanolamine (27 to 28%), phosphatidylglycerol (23 to 24%), and phosphatidylcholine (11 to 18%) were very similar in cells grown aerobically or phototrophically at a high light intensity, consistent with findings for another member of Rhodospirillaceae. In addition, an unknown phospholipid species was detected which comprised 20 to 30% of the total phospholipid in these cells. In cells growing phototrophically at low-intensity illumination, the level of phosphatidylethanolamine increased by about 1.6-fold and that of the unknown phospholipid markedly decreased. Although the synthesis of photosynthetic pigments, light-harvesting protein, and intracytoplasmic photosynthetic membranes also increased markedly, the ratios of individual phospholipid species were essentially identical in photosynthetic membrane and cell wall fractions purified from these cells. Since a significant exchange of lipids apparently did not occur during the isolation of these fractions, it was suggested that the changes in cellular phospholipid accumulation were not due to a unique composition within the photosynthetic membrane. Instead, these phosphoglyceride changes were found to be related to overall phospholipid metabolism and could be accounted for principally by differences in biosynthetic rates. These results, together with studies in nutrient-restricted aerobic cells, suggested that the mechanism by which phospholipid levels are regulated may be related to radiant energy flux rather than cellular energy limitation.
Collapse
|
25
|
Pugh EL, Kates M, Szabo AG. Studies on fluorescence polarization of 1-acyl-2-cis- or trans-parinaroyl sn-3-glycerophosphorylcholines in model systems and microsomal membranes. Chem Phys Lipids 1982; 30:55-69. [PMID: 7083418 DOI: 10.1016/0009-3084(82)90007-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fluorescent lecithin probes containing cis- or trans-parinaric acid (PnA) at the 2-position cis-parinaroylphosphatidylcholine (cis-PnPC) and trans-parinaroyl phosphatidylcholine (trans-PnPC)) showed similar behavior to that of the free cis- or trans-parinaric acids (cis-PnA or trans-PnA) in bilayer vesicles of synthetic saturated lecithins. Transition temperatures detected by cis-PnPC were about 1 degree C than those observed with trans-PnPC. In mixed lecithin vesicles, the trans-PnPC probe monitored a higher temperature melting component than did the cis-probe. Both probes were readily incorporated into microsomal membranes and into sonicated vesicles prepared from the microsomal phospholipids. With either cis- or trans-PnPC no change in polarization ratio was observed for microsomal membranes between 40 degrees C and 0 degrees C but this ratio increased with decreasing temperature between 0 degrees C and -5 degrees C. However, vesicles of extracted phospholipids showed a continuous increase in polarization ratio with decreasing temperature between 20 degrees C and -15 degrees C with trans-PnPC and between 5 degrees C and -15 degrees C with cis-PnPC. These results suggest that the two lecithin probes monitor different environments in the membranes and phospholipid vesicles prepared from them.
Collapse
|
26
|
|
27
|
Phospholipid accumulation during the cell cycle in synchronous cultures of the yeast, Saccharomyces cerevisiae. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)68542-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
28
|
Cohen L, Kaplan S. The non-detergent solubilization and isolation of intracytoplasmic membrane polypeptides from Rhodopseudomonas sphaeroides. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69294-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Cain BD, Deal CD, Fraley RT, Kaplan S. In vivo intermembrane transfer of phospholipids in the photosynthetic bacterium Rhodopseudomonas sphaeroides. J Bacteriol 1981; 145:1154-66. [PMID: 6970743 PMCID: PMC217116 DOI: 10.1128/jb.145.3.1154-1166.1981] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The kinetics of accumulation of phospholipids into the intracytoplasmic membrane of Rhodopseudomonas sphaeroides have been examined. We have previously demonstrated that accumulation of phospholipids in the intracytoplasmic membrane is discontinuous with respect to the cell cycle. In this study we demonstrated a sevenfold increase in the rate of phospholipid incorporation into the intracytoplasmic membrane concurrent with the onset of cell division. Pulse-chase labeling studies revealed that the increase in the rate of phospholipid accumulation into the intracytoplasmic membrane results from the transfer of phospholipid from a site other than the intracytoplasmic membrane, and that the transfer of phospholipid, rather than synthesis of phospholipid, is most likely subject to cell cycle-specific regulation. The rates of synthesis of the individual phospholipid species (phosphatidylethanolamine, phosphatidyglycerol, and an unknown phospholipid) remained constant with respect to one another throughout the cell cycle. Similarly, each of these phospholipid species appeared to be transferred simultaneously to the intracytoplasmic membrane. We also present preliminary kinetic evidence which suggested that phosphatidylethanolamine may be converted to phosphatidycholine within the intracytoplasmic membrane.
Collapse
|
30
|
Chapter 2 Molecular motions and membrane organization and function. ACTA ACUST UNITED AC 1981. [DOI: 10.1016/s0167-7306(09)60006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
31
|
|
32
|
Lai CS, Hopwood LE, Swartz HM. Electron spin resonance studies of changes in membrane fluidity of Chinese hamster ovary cells during the cell cycle. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 602:117-26. [PMID: 6251882 DOI: 10.1016/0005-2736(80)90294-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Electron spin resonance (ESR) spin-label methods were used with 5-doxyl-stearic acid as a probe to investigate membrane fluidity of Chinese hamster ovary (CHO) cells during the cell cycle. A 35 GHz ESR technique was developed to study membrane fluidity of intact cells. This technique requires only about 1/6 the amount of cells compared to the conventional spin-label techniques. With this technique we observed a cyclic change of membrane fluidity during the cell cycle of CHO cells: cells in mitosis had the highest membrane fluidity, whereas cells in G1 and early S phases had the lowest membrane fluidity.
Collapse
|