1
|
Chen YY, Huang JC, Wu CY, Yu SQ, Wang YT, Ye C, Shi TQ, Huang H. A comprehensive review on the recent advances for 5-aminolevulinic acid production by the engineered bacteria. Crit Rev Biotechnol 2025; 45:148-163. [PMID: 38705840 DOI: 10.1080/07388551.2024.2336532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 05/07/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.
Collapse
Affiliation(s)
- Ying-Ying Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jia-Cong Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Cai-Yun Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Shi-Qin Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Chongdar N, Dasgupta S, Datta AB, Basu G. Preliminary X-ray crystallographic analysis of an engineered glutamyl-tRNA synthetase from Escherichia coli. Acta Crystallogr F Struct Biol Commun 2014; 70:922-7. [PMID: 25005090 PMCID: PMC4089533 DOI: 10.1107/s2053230x14010723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/09/2014] [Indexed: 01/02/2023] Open
Abstract
The nature of interaction between glutamyl-tRNA synthetase (GluRS) and its tRNA substrate is unique in bacteria in that many bacterial GluRS are capable of recognizing two tRNA substrates: tRNAGlu and tRNAGln. To properly understand this distinctive GluRS-tRNA interaction it is important to pursue detailed structure-function studies; however, because of the fact that tRNA-GluRS interaction in bacteria is also associated with phylum-specific idiosyncrasies, the structure-function correlation studies must also be phylum-specific. GluRS from Thermus thermophilus and Escherichia coli, which belong to evolutionarily distant phyla, are the biochemically best characterized. Of these, only the structure of T. thermophilus GluRS is available. To fully unravel the subtleties of tRNAGlu-GluRS interaction in E. coli, a model bacterium that can also be pathogenic, determination of the E. coli GluRS structure is essential. However, previous attempts have failed to crystallize E. coli GluRS. By mapping crystal contacts of a homologous GluRS onto the E. coli GluRS sequence, two surface residues were identified that might have been hindering crystallization attempts. Accordingly, these two residues were mutated and crystallization of the double mutant was attempted. Here, the design, expression, purification and crystallization of an engineered E. coli GluRS in which two surface residues were mutated to optimize crystal contacts are reported.
Collapse
Affiliation(s)
- Nipa Chongdar
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - Saumya Dasgupta
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - Ajit Bikram Datta
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata 700 054, India
| |
Collapse
|
3
|
Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv 2012; 30:1533-42. [PMID: 22537876 DOI: 10.1016/j.biotechadv.2012.04.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/29/2012] [Accepted: 04/10/2012] [Indexed: 02/07/2023]
Abstract
δ-aminolevulinate (ALA) is an important intermediate involved in tetrapyrrole synthesis (precursor for vitamin B12, chlorophyll and heme) in vivo. It has been widely applied in agriculture and medicine. On account of many disadvantages of its chemical synthesis, microbial production of ALA has been received much attention as an alternative because of less expensive raw materials, low pollution, and high productivity. Vitamin B12, one of ALA derivatives, which plays a vital role in prevention of anaemia has also attracted intensive works. In this review, recent advances on the production of ALA and vitamin B12 with novel approaches such as whole-cell enzyme-transformation and metabolic engineering are described. Furthermore, the direction for future research and perspective are also summarized.
Collapse
Affiliation(s)
- Zhen Kang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | |
Collapse
|
4
|
Paravisi S, Fumagalli G, Riva M, Morandi P, Morosi R, Konarev PV, Petoukhov MV, Bernier S, Chênevert R, Svergun DI, Curti B, Vanoni MA. Kinetic and mechanistic characterization of Mycobacterium tuberculosis glutamyl-tRNA synthetase and determination of its oligomeric structure in solution. FEBS J 2009; 276:1398-417. [PMID: 19187240 DOI: 10.1111/j.1742-4658.2009.06880.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mycobacterium tuberculosis glutamyl-tRNA synthetase (Mt-GluRS), encoded by Rv2992c, was overproduced in Escherichia coli cells, and purified to homogeneity. It was found to be similar to the other well-characterized GluRS, especially the E. coli enzyme, with respect to the requirement for bound tRNA(Glu) to produce the glutamyl-AMP intermediate, and the steady-state kinetic parameters k(cat) (130 min(-1)) and K(M) for tRNA (0.7 microm) and ATP (78 microm), but to differ by a one order of magnitude higher K(M) value for L-Glu (2.7 mm). At variance with the E. coli enzyme, among the several compounds tested as inhibitors, only pyrophosphate and the glutamyl-AMP analog glutamol-AMP were effective, with K(i) values in the mum range. The observed inhibition patterns are consistent with a random binding of ATP and L-Glu to the enzyme-tRNA complex. Mt-GluRS, which is predicted by genome analysis to be of the non-discriminating type, was not toxic when overproduced in E. coli cells indicating that it does not catalyse the mischarging of E. coli tRNA(Gln) with L-Glu and that GluRS/tRNA(Gln) recognition is species specific. Mt-GluRS was significantly more sensitive than the E. coli form to tryptic and chymotryptic limited proteolysis. For both enzymes chymotrypsin-sensitive sites were found in the predicted tRNA stem contact domain next to the ATP binding site. Mt-GluRS, but not Ec-GluRS, was fully protected from proteolysis by ATP and glutamol-AMP. Small-angle X-ray scattering showed that, at variance with the E. coli enzyme that is strictly monomeric, the Mt-GluRS monomer is present in solution in equilibrium with the homodimer. The monomer prevails at low protein concentrations and is stabilized by ATP but not by glutamol-AMP. Inspection of small-angle X-ray scattering-based models of Mt-GluRS reveals that both the monomer and the dimer are catalytically active. By using affinity chromatography and His(6)-tagged forms of either GluRS or glutamyl-tRNA reductase as the bait it was shown that the M. tuberculosis proteins can form a complex, which may control the flux of Glu-tRNA(Glu) toward protein or tetrapyrrole biosynthesis.
Collapse
Affiliation(s)
- Stefano Paravisi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Crystal structure of glutamyl-queuosine tRNAAsp synthetase complexed with L-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon. J Mol Biol 2008; 381:1224-37. [PMID: 18602926 DOI: 10.1016/j.jmb.2008.06.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/13/2008] [Accepted: 06/19/2008] [Indexed: 11/24/2022]
Abstract
Glutamyl-queuosine tRNA(Asp) synthetase (Glu-Q-RS) from Escherichia coli is a paralog of the catalytic core of glutamyl-tRNA synthetase (GluRS) that catalyzes glutamylation of queuosine in the wobble position of tRNA(Asp). Despite important structural similarities, Glu-Q-RS and GluRS diverge strongly by their functional properties. The only feature common to both enzymes consists in the activation of Glu to form Glu-AMP, the intermediate of transfer RNA (tRNA) aminoacylation. However, both enzymes differ by the mechanism of selection of the cognate amino acid and by the mechanism of its activation. Whereas GluRS selects l-Glu and activates it only in the presence of the cognate tRNA(Glu), Glu-Q-RS forms Glu-AMP in the absence of tRNA. Moreover, while GluRS transfers the activated Glu to the 3' accepting end of the cognate tRNA(Glu), Glu-Q-RS transfers the activated Glu to Q34 located in the anticodon loop of the noncognate tRNA(Asp). In order to gain insight into the structural elements leading to distinct mechanisms of amino acid activation, we solved the three-dimensional structure of Glu-Q-RS complexed to Glu and compared it to the structure of the GluRS.Glu complex. Comparison of the catalytic site of Glu-Q-RS with that of GluRS, combined with binding experiments of amino acids, shows that a restricted number of residues determine distinct catalytic properties of amino acid recognition and activation by the two enzymes. Furthermore, to explore the structural basis of the distinct aminoacylation properties of the two enzymes and to understand why Glu-Q-RS glutamylates only tRNA(Asp) among the tRNAs possessing queuosine in position 34, we performed a tRNA mutational analysis to search for the elements of tRNA(Asp) that determine recognition by Glu-Q-RS. The analyses made on tRNA(Asp) and tRNA(Asn) show that the presence of a C in position 38 is crucial for glutamylation of Q34. The results are discussed in the context of the evolution and adaptation of the tRNA glutamylation system.
Collapse
|
6
|
Abstract
This review is concerned specifically with the structures and biosynthesis of hemes in E. coli and serovar Typhimurium. However, inasmuch as all tetrapyrroles share a common biosynthetic pathway, much of the material covered here is applicable to tetrapyrrole biosynthesis in other organisms. Conversely, much of the available information about tetrapyrrole biosynthesis has been gained from studies of other organisms, such as plants, algae, cyanobacteria, and anoxygenic phototrophs, which synthesize large quantities of these compounds. This information is applicable to E. coli and serovar Typhimurium. Hemes play important roles as enzyme prosthetic groups in mineral nutrition, redox metabolism, and gas-and redox-modulated signal transduction. The biosynthetic steps from the earliest universal precursor, 5-aminolevulinic acid (ALA), to protoporphyrin IX-based hemes constitute the major, common portion of the pathway, and other steps leading to specific groups of products can be considered branches off the main axis. Porphobilinogen (PBG) synthase (PBGS; also known as ALA dehydratase) catalyzes the asymmetric condensation of two ALA molecules to form PBG, with the release of two molecules of H2O. Protoporphyrinogen IX oxidase (PPX) catalyzes the removal of six electrons from the tetrapyrrole macrocycle to form protoporphyrin IX in the last biosynthetic step that is common to hemes and chlorophylls. Several lines of evidence converge to support a regulatory model in which the cellular level of available or free protoheme controls the rate of heme synthesis at the level of the first step unique to heme synthesis, the formation of GSA by the action of GTR.
Collapse
|
7
|
|
8
|
Campanacci V, Dubois DY, Becker HD, Kern D, Spinelli S, Valencia C, Pagot F, Salomoni A, Grisel S, Vincentelli R, Bignon C, Lapointe J, Giegé R, Cambillau C. The Escherichia coli YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity. J Mol Biol 2004; 337:273-83. [PMID: 15003446 DOI: 10.1016/j.jmb.2004.01.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 01/08/2004] [Accepted: 01/08/2004] [Indexed: 11/23/2022]
Abstract
In the course of a structural genomics program aiming at solving the structures of Escherichia coli open reading frame products of unknown function, we have determined the structure of YadB at 1.5A using molecular replacement. The YadB protein is 298 amino acid residues long and displays 34% sequence identity with E.coli glutamyl-tRNA synthetase (GluRS). It is much shorter than GluRS, which contains 468 residues, and lacks the complete domain interacting with the tRNA anticodon loop. As E.coli GluRS, YadB possesses a Zn2+ located in the putative tRNA acceptor stem-binding domain. The YadB cluster uses cysteine residues as the first three zinc ligands, but has a weaker tyrosine ligand at the fourth position. It shares with canonical amino acid RNA synthetases a major functional feature, namely activation of the amino acid (here glutamate). It differs, however, from GluRSs by the fact that the activation step is tRNA-independent and that it does not catalyze attachment of the activated glutamate to E.coli tRNAGlu, but to another, as yet unknown tRNA. These results suggest thus a novel function, distinct from that of GluRSs, for the yadB gene family.
Collapse
Affiliation(s)
- Valérie Campanacci
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098, CNRS and Universités d'Aix-Marseille I and II, 31 chemin J. Aiguier, F-13402 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Desjardins M, Desgagnés J, Lacoste L, Yang F, Morin MP, Lapointe J, Chênevert R. Synthesis of inhibitors of glutamyl-tRNA synthetase. Bioorg Med Chem Lett 1997. [DOI: 10.1016/s0960-894x(97)00434-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Gagnon Y, Lacoste L, Champagne N, Lapointe J. Widespread use of the glu-tRNAGln transamidation pathway among bacteria. A member of the alpha purple bacteria lacks glutaminyl-trna synthetase. J Biol Chem 1996; 271:14856-63. [PMID: 8662929 DOI: 10.1074/jbc.271.25.14856] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The expression of the Rhizobium meliloti glutamyl-tRNA synthetase gene in Escherichia coli under the control of a trc promoter results in a toxic effect upon isopropyl-beta-D-thiogalactopyranoside induction, which is probably caused by a misacylation activity. To further investigate this unexpected result, we looked at the pathway of Gln-tRNAGln formation in R. meliloti. No glutaminyl-tRNA synthetase activity has been found in R. meliloti crude extract, but we detected a specific aminotransferase activity that changes Glu-tRNAGln to Gln-tRNAGln. Our results show that R. meliloti, a member of the alpha-subdivision of the purple bacteria, is the first Gram-negative bacteria reported to use a transamidation pathway for Gln-tRNAGln synthesis. A phylogenetic analysis of the contemporary glutamyl-tRNA synthetase and glutaminyl-tRNA synthetase amino acid sequences reveals that a close evolutionary relationship exists between R. meliloti and yeast mitochondrial glutamyl-tRNA synthetases, which is consistent with an origin of mitochondria in the alpha-subdivision of Gram-negative purple bacteria. A 256-amino acid open reading frame closely related to bacterial glutamyl-tRNA synthetases, which probably originates from a glutamyl-tRNA synthetase gene duplication, was found in the 4-min region of the E. coli chromosome. We suggest that this open reading frame is a relic of an ancient transamidation pathway that occurred in an E. coli ancestor before the horizontal transfer of a eukaryotic glutaminyl-tRNA synthetase (Lamour, V., Quevillon, S., Diriong, S., N'Guyen, V. C., Lipinski, M., and Mirande, M.(1994) Proc. Natl. Acad. Sci. U. S. A. 91, 8670-8674) and that it favored its stable acquisition. From these observations, a revisited model for the evolution of the contemporary glutamyl-tRNA synthetases and glutaminyl-tRNA synthetases that differs from the generally accepted model for the evolution of aminoacyl-tRNA synthetases is proposed.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acyl-tRNA Synthetases/biosynthesis
- Amino Acyl-tRNA Synthetases/chemistry
- Amino Acyl-tRNA Synthetases/metabolism
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- Confidence Intervals
- Enzyme Induction
- Escherichia coli/metabolism
- Genes, Bacterial
- Glutamate-tRNA Ligase/chemistry
- Isopropyl Thiogalactoside/pharmacology
- Molecular Sequence Data
- Phylogeny
- Promoter Regions, Genetic
- RNA, Transfer, Amino Acyl/isolation & purification
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Gln/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Sinorhizobium meliloti/enzymology
- Sinorhizobium meliloti/genetics
- Transferases/metabolism
Collapse
Affiliation(s)
- Y Gagnon
- Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Ste-Foy, Québec G1K 7P4, Canada
| | | | | | | |
Collapse
|
12
|
|
13
|
Osorio AV, Camarena L, Salazar G, Noll-Louzada M, Bastarrachea F. Nitrogen regulation in an Escherichia coli strain with a temperature sensitive glutamyl-tRNA synthetase. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:400-8. [PMID: 7686246 DOI: 10.1007/bf00276938] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Escherichia coli cells carrying the gltX351 allele are unable to grow at 42 degrees C (Ts phenotype) due to an altered glutamyl-tRNA synthetase. We found that gltX351 cells display a new phenotype termed Gsd-, i.e. an inability to raise glutamine synthetase activity above low constitutive levels in minimal medium with 6.8 mM glutamine as sole nitrogen source. When 0.5 mM NH4+ or 12 mM glutamate replaced glutamine, the glutamine synthetase activities of gltX351 cells were raised to wild-type levels. Northern experiments showed that the Gsd- phenotype is the result of an impairment in transcription initiation from the Ntr-regulated promoter, glnAp2. Intragenic and extragenic secondary mutations appeared frequently in gltX351 cells, which suppressed their Gsd- but not their Ts phenotype. Moreover, in heterozygous gltX+/gltX351 partial diploids, gltX351 was dominant for the Gsd- phenotype and recessive for the Tr phenotype. A slight increase in the glutamine pool and in the intracellular glutamine: 2-oxoglutarate ratio was also observed but this could not account for the Gsd- phenotype of gltX351 cells. In cells carrying gltX351 and a suppressor of the Gsd- phenotype, sup-1, tightly linked to gltX351, the glutamine pool and glutamine: 2-oxoglutarate intracellular ratio were even higher than in the gltX351 single mutant. These results indicate that the gltX351 mutant polypeptide may be the direct cause of the Gsd- phenotype. The possibility that it interacts with one or more components that trigger the Ntr response is discussed.
Collapse
MESH Headings
- Enzyme Repression/genetics
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Conversion
- Genes, Bacterial
- Genes, Dominant
- Genes, Regulator
- Glutamate-tRNA Ligase/genetics
- Glutamate-tRNA Ligase/metabolism
- Ketoglutaric Acids/analysis
- Mutagenesis, Insertional
- Mutation
- Nitrogen/metabolism
- Plasmids
- RNA, Bacterial/analysis
- RNA, Messenger/analysis
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Glu/metabolism
- Suppression, Genetic
- Temperature
Collapse
Affiliation(s)
- A V Osorio
- Departamento de Biologia Molecular, Universidad Nacional Autónoma de México, D.F
| | | | | | | | | |
Collapse
|
14
|
Sylvers LA, Rogers KC, Shimizu M, Ohtsuka E, Söll D. A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 1993; 32:3836-41. [PMID: 8385989 DOI: 10.1021/bi00066a002] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Early investigations into the interaction between Escherichia coli glutamyl-tRNA synthetase (GluRS) and tRNAGlu have implicated the modified nucleoside 5-[(methylamino)methyl]-2-thiouridine in the first position of the anticodon as an important contact for efficient aminoacylation. However, the experimental methods employed were not sufficient to determine whether the interaction was dependent on the presence of the modification or simply involved other anticodon loop-nucleotides, now occluded from interaction with the synthetase. Unmodified E. coli tRNA(Glu), derived by in vitro transcription of the corresponding gene, is a poor substrate for GluRS, exhibiting a 100-fold reduction in its specificity constant (kcat/KM) compared to that of tRNA(Glu) prepared from an overproducing strain. Through the use of recombinant RNA technology, we created several hybrid tRNAs which combined sequences from the in vitro transcript with that of the native tRNA, resulting in tRNA molecules differing in modified base content. By in vitro aminoacylation of these hybrid tRNA molecules and of tRNAs with base substitutions at positions of nucleotide modification, we show conclusively that the modified uridine at position 34 in tRNA(Glu) is required for efficient aminoacylation by E. coli GluRS. This is only the second example of a tRNA modification acting as a positive determinant for interaction with its cognate aminoacyl-tRNA synthetase.
Collapse
Affiliation(s)
- L A Sylvers
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | | | | | |
Collapse
|
15
|
Lin SX, Brisson A, Liu J, Roy PH, Lapointe J. Higher specific activity of the Escherichia coli glutamyl-tRNA synthetase purified to homogeneity by a six-hour procedure. Protein Expr Purif 1992; 3:71-4. [PMID: 1384858 DOI: 10.1016/1046-5928(92)90058-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The glutamyl-tRNA synthetase (EC 6.1.1.17) of Escherichia coli was purified to homogeneity from the overproducing strain DH5 alpha(pLQ7612) by a two-step procedure that takes only about 6 h and yields 10 mg of enzyme per gram of wet cells. The process consists of a two-phase polyethylene glycol-dextran partition, the top phase of which is diluted and directly applied to an anion-exchange FPLC MonoQ column. The purified enzyme has a specific activity about twice that of the same enzyme purified to homogeneity by the lengthy conventional procedure from either a normal strain or this overproducing strain. This difference is discussed in relation to the generation of microheterogeneity in proteins during their purification.
Collapse
Affiliation(s)
- S X Lin
- Département de biochimie, Faculté des sciences et de génie, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
16
|
Rieble S, Beale SI. Separation and partial characterization of enzymes catalyzing delta-aminolevulinic acid formation in Synechocystis sp. PCC 6803. Arch Biochem Biophys 1991; 289:289-97. [PMID: 1910318 DOI: 10.1016/0003-9861(91)90474-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Formation of the universal tetrapyrrole precursor, delta-aminolevulinic acid (ALA), from glutamate via the five-carbon pathway requires three enzymes: glutamyl-tRNA synthetase, glutamyl-tRNA reductase, and glutamate-1-semialdehyde (GSA) aminotransferase. All three enzymes were separated from extracts of the unicellular cyanobacterium Synechocystis sp. PCC 6803, and two of them, glutamyl-tRNA synthetase and GSA aminotransferase, were partially characterized. After an initial high speed centrifugation and differentiatial ammonium sulfate fractionation of cell extract, the enzymes were separated by successive affinity chromatography on Reactive Blue 2-Sepharose and 2',5'-ADP-agarose. All three enzyme fractions were required to reconstitute ALA formation from glutamate. The apparent native molecular masses of glutamyl-tRNA synthetase and GSA aminotransferase were determined by gel filtration chromatography to be 63 and 98 kDa, respectively. Neither glutamyl-tRNA synthetase nor GSA aminotransferase activity was affected by hemin concentrations up to 10 and 30 microM, respectively, and neither activity was affected by protochlorophyllide concentrations up to 2 microM. GSA aminotransferase was inhibited 50% by 0.5 microM gabaculine. The gabaculine inhibition was reversible for up to 1 h after its addition, if the gabaculine was removed by gel filtration before the enzyme was incubated with substrate. However, irreversible inactivation was obtained by preincubating the enzyme at 30 degrees C either for several hours with gabaculine alone or for a few minutes with both gabaculine and GSA. Neither pyridoxal phosphate nor pyridoxamine phosphate significantly affected the activity of GSA aminotransferase at physiologically relevant concentrations, and neither of these compounds reactivated the gabaculine-inactivated enzyme. It was noted that the presence of pyridoxamine phosphate in the ALA assay mixture produced a false positive color reaction even in the absence of enzyme.
Collapse
Affiliation(s)
- S Rieble
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| | | |
Collapse
|
17
|
Purification and characterization of Chlamydomonas reinhardtii chloroplast glutamyl-tRNA synthetase, a natural misacylating enzyme. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39701-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Biosynthesis of Δ-aminolevulinate in greening barley leaves. VIII: Purification and characterization of the glutamate-tRNA ligase. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf02910432] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Glutamyl-tRNA synthetase of Escherichia coli. Isolation and primary structure of the gltX gene and homology with other aminoacyl-tRNA synthetases. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67429-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Lapointe J, Duplain L, Proulx M. A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNAGln in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln1 in vitro. J Bacteriol 1986; 165:88-93. [PMID: 3079749 PMCID: PMC214374 DOI: 10.1128/jb.165.1.88-93.1986] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the presence or absence of its regulatory factor, the monomeric glutamyl-tRNA synthetase from Bacillus subtilis can aminoacylate in vitro with glutamate both tRNAGlu and tRNAGln from B. subtilis and tRNAGln1 but not tRNAGln2 or tRNAGlu from Escherichia coli. The Km and Vmax values of the enzyme for its substrates in these homologous or heterologous aminoacylation reactions are very similar. This enzyme is the only aminoacyl-tRNA synthetase reported to aminoacylate with normal kinetic parameters two tRNA species coding for different amino acids and to misacylate at a high rate a heterologous tRNA under normal aminoacylation conditions. The exceptional lack of specificity of this enzyme for its tRNAGlu and tRNAGln substrates, together with structural and catalytic peculiarities shared with the E. coli glutamyl- and glutaminyl-tRNA synthetases, suggests the existence of a close evolutionary linkage between the aminoacyl-tRNA synthetases specific for glutamate and those specific for glutamine. A comparison of the primary structures of the three tRNAs efficiently charged by the B. subtilis glutamyl-tRNA synthetase with those of E. coli tRNAGlu and tRNAGln2 suggests that this enzyme interacts with the G64-C50 or G64-U50 in the T psi stem of its tRNA substrates.
Collapse
|
21
|
Arafat W, Kern D, Dirheimer G. Inhibition of aminoacyl-tRNA synthetases by the mycotoxin patulin. Chem Biol Interact 1985; 56:333-49. [PMID: 3907866 DOI: 10.1016/0009-2797(85)90015-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effect of patulin on tRNA aminoacylation has been determined. This mycotoxin inhibits the aminoacylation process by irreversibly inactivating aminoacyl-tRNA synthetases. At neutral and alkaline pH-values, the inactivation occurs mainly by modification of essential thiol groups of the protein, whereas at acidic pH, where the effect is the most pronounced, the modification of other amino acid residues cannot be excluded.
Collapse
|
22
|
|
23
|
Mizutani T, Narihara T, Hashimoto A. Purification and properties of bovine liver seryl-tRNA synthetase. ACTA ACUST UNITED AC 1984; 143:9-13. [PMID: 6565588 DOI: 10.1111/j.1432-1033.1984.tb08331.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Seryl-tRNA synthetase was purified 1800-fold from bovine liver extract by ultracentrifugation at 150 000 X g, chromatography on DEAE-cellulose, fractional precipitation with ammonium sulfate, gel chromatography on Sephacryl S-300, adsorption chromatography on hydroxyapatite, affinity chromatography on blue-Sepharose and finally on Matrex gel red A. The relative molecular mass, Mr, in the denatured state was estimated as 87 000 by sodium dodecyl sulfate disc gel electrophoresis; in the active state the Mr, was estimated as 170 000 for the dimeric native enzyme (alpha 2 type) by chromatography on Sephacryl S-300. The amino acid composition of the enzyme was determined. The Km values for ATP and serine were 0.49 mM and 30 microM, respectively. The Km values for tRNASerIGA and tRNASerCmCA were 1.40 microM and 1.25 microM, respectively. Sequences common to the two isoaccepting tRNASer molecules are discussed in relation to the recognition mechanism of the purified seryl-tRNA synthetase.
Collapse
|
24
|
Thomes JC, Ratinaud MH, Julien R. Dimeric glutamyl-tRNA synthetases from wheat. Kinetic properties and functional structures. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 135:479-84. [PMID: 6617645 DOI: 10.1111/j.1432-1033.1983.tb07676.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Michaelis constants in the tRNA aminoacylation reaction have been studied for the three dimeric glutamyl-tRNA synthetases C, P and E. The values were found to be: for tRNA, 0.20 microM, and 0.44 microM; for glutamic acid, 10 microM, 83 microM and 83 microM; for MgATP, 0.46 mM, 0.38 mM and 0.26 mM. MgATP concentrations higher than 2 mM induce pronounced inhibition. The presence of the cognate tRNA is required for [32P]PPi-ATP isotopic exchange. In the absence of tRNA no hyperbolic saturation of the enzymes by glutamic acid occurs in our experimental conditions. Analysis of the enzymic activity as a function of enzyme concentration leads to the conclusion that the active forms are dimers which are in equilibrium with inactive monomers. The values of the dissociation constants Kd were found to be 43 nM, 53 nM and 87 nM for glutamyl-tRNA synthetases C, P and E respectively.
Collapse
|
25
|
Ratinaud MH, Thomes JC, Julien R. Glutamyl-tRNA synthetases from wheat. Isolation and characterization of three dimeric enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 135:471-7. [PMID: 6617644 DOI: 10.1111/j.1432-1033.1983.tb07675.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three dimeric glutamyl-tRNA synthetases (GluRS) were isolated from extracts of quiescent wheat germ and wheat chloroplasts. The chloroplast enzyme (Mr = 110 000), called GluRS C, exhibits a prokaryotic (Escherichia coli) tRNA specificity. Two enzymes were found in the quiescent germ and were separated on phosphocellulose P11: one called GluRS P, probably the mitochondrial enzyme, has the same tRNA specificity as GluRS C; the other, called GluRS E, has eukaryotic (wheat germ) tRNA specificity. Both enzymes exhibit a molecular weight close to 160 000. Each of these enzymes co-eluate on hydroxyapatite and phosphocellulose chromatographies with an unstable active monomer whose molecular weight is approximately half that of the corresponding dimer. Two assumptions are discussed about these monomers.
Collapse
|
26
|
Dietrich A, Souciet G, Colas B, Weil JH. Phaseolus vulgaris cytoplasmic leucyl-tRNA synthetase. Purification and comparison of its catalytic, structural, and immunological properties with those of the chloroplastic enzyme. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44187-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Vlassov VV, Kern D, Romby P, Giegé R, Ebel JP. Interaction of tRNAPhe and tRNAVal with aminoacyl-tRNA synthetases. A chemical modification study. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 132:537-44. [PMID: 6343077 DOI: 10.1111/j.1432-1033.1983.tb07395.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The alkylation by ethylnitrosourea of phosphodiester bonds in tRNAPhe from yeast and in tRNAVal from yeast and from rabbit liver and that by 4-(N-2-chloroethyl-N-methylamino)-benzylamine of N-7 atoms of guanosine residues in yeast tRNAVal have been used to study the interaction of these tRNAs with aminoacyl-tRNA synthetases. The modifications occurring at low yield were carried out on 3' and/or 5' end-labelled tRNAs either free or in the presence of cognate or non-cognate synthetases. After splitting of the tRNAs at the alkylated positions, the position of the modification sites in the tRNA sequences were detected by acrylamide gel electrophoresis. It was found that the synthetases protect against alkylation certain phosphate or guanosine residues in their cognate tRNAs. Non-cognate synthetases failed to protect efficiently specific positions in tRNA against modification. In yeast tRNAPhe the cognate phenylalanyl-tRNA synthetase protects certain phosphates located in all four stems and in the anticodon and extra-loop of the tRNA. Particularly strong protections occur on phosphate 34 in the anticodon loop and on phosphates 23, 27, 28, 41 and 46 in the D and anticodon stems. In yeast tRNAVal complexed with yeast valyl-tRNA synthetase the protected phosphates are essentially located in the corner between the amino-acid-accepting and D stems, in the D loop, anticodon stem and in the variable region of the tRNA. Three guanosine residues, located in the D stem, and another one in the 3' part of the anticodon stem were also found protected by the synthetase. In mammalian tRNAVal, complexed with the cognate but heterologous yeast valyl-tRNA synthetase, the protected phosphates lie in the anticodon stem, in the extra-loop and in the T psi arm. The location of the protected residues in the structure of three tRNAs suggests some common features in the binding of tRNAs to aminoacyl-tRNA synthetases. These results will be discussed in the light of informations on interaction sites obtained by nuclease digestion and ultraviolet cross-linking methods.
Collapse
|
28
|
Sanfaçon H, Levasseur S, Roy PH, Lapointe J. Cloning of the gene for Escherichia coli glutamyl-tRNA synthetase. Gene X 1983; 22:175-80. [PMID: 6307818 DOI: 10.1016/0378-1119(83)90101-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The structural gene for the glutamyl-tRNA synthetase of Escherichia coli has been cloned in E. coli strain JP1449, a thermosensitive mutant altered in this enzyme. Ampicillin-resistant and tetracycline-sensitive thermoresistant colonies were selected following the transformation of JP1449 by a bank of hybrid plasmids containing fragments from a partial Sau3A digest of chromosomal DNA inserted into the BamHI site of pBR322. One of the selected clones, HS7611, has a level of glutamyl-tRNA synthetase activity more than 20 times higher than that of a wild-type strain. The overproduced enzyme has the same molecular weight and is as thermostable as that of a wild-type strain, indicating that the complete structural gene is present in the insert. These characteristics were lost by curing this clone of its plasmid with acridine orange, and were transferred with high efficiency to the mutant strain JP1449 by transformation with the purified plasmid. A physical map of the plasmid, which contains an insert of about 2.7 kb in length, is presented.
Collapse
|
29
|
The monomeric glutamyl-tRNA synthetase from Bacillus subtilis 168 and its regulatory factor. Their purification, characterization, and the study of their interaction. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33112-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Mazat JP, Merle M, Graves PV, Merault G, Gandar JC, Labouesse B. Kinetic anticooperativity in pre-steady-state formation of tryptophanyl adenylate by tryptophanyl-tRNA synthetase from beef pancreas. A consequence of the tryptophan anticooperative binding. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 128:389-98. [PMID: 7151786 DOI: 10.1111/j.1432-1033.1982.tb06977.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The kinetics of formation of tryptophanyl adenylate by tryptophanyl-tRNA synthetase from beef pancreas has been followed by stopped-flow, using the quenching of fluorescence of the enzyme linked to the amino acid activation reaction. Both subunits of this alpha 2 enzyme catalyze the adenylate formation. At saturation with substrates the rate constant of the activation reaction is the same for both subunits. The same behaviour is observed for the pyrophosphorolysis reaction. Both subunits exhibit the same affinity for ATP-Mg in the forward reaction and the same affinity for magnesium pyrophosphate in the backward reaction. On the contrary the formation of tryptophanyl adenylate follows biphasic kinetics when tryptophan concentration is much below saturation. This is independent of ATP-Mg concentration and is the consequence of different affinities of the two subunits for tryptophan as already observed by Graves et al. (1979, Eur. J. Biochem. 96, 509-518) in equilibrium dialysis experiments. A monoadenylate-enzyme complex on one subunit has been prepared. This complex made possible the study of the formation of the second adenylate on the other subunit. The formation of this second adenylate followed first-order kinetics at all ATP-Mg and tryptophan concentrations. The tryptophan concentration dependence of the rate of formation of this second adenylate leads to a Michaelis constant close to the dissociation constant of the low affinity tryptophan site of the enzyme. No isomerization step could be evidenced. The experiments were carried out under two conditions corresponding to those used by Merault et al. (1978. Eur. J. Biochem. 87, 541-550) in the steady state of the tRNATrp aminoacylation reaction (10 mM total magnesium in 100 mM KCl and 1 mM free magnesium ions, both at pH 8.0.25 C). No great difference either in the mechanism or in the dissociation and rate constants was observed but an inhibitory effect of KCl. It is concluded that the enzyme is symmetrical as far as the ATP-Mg and the magnesium pyrophosphate sites are concerned and that the rate of the activation reaction reflects the anticooperative occupancy of the tryptophan sites carried by the two subunits.
Collapse
|
31
|
Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. III. Assignment of aminoacyl-tRNA synthetase activities to the polypeptide components of the complexes. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33932-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
32
|
Gerlo E, Freist W, Charlier J. Arginyl-tRNA synthetase from Escherichia coli K12: specificity with regard to ATP analogs and their magnesium complexes. HOPPE-SEYLER'S ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE 1982; 363:365-73. [PMID: 7042510 DOI: 10.1515/bchm2.1982.363.1.365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fifteen analogs of ATP have been tested in the ATP/PPi pyrophosphate exchange and the aminoacylation of arginyl-tRNA synthetase from E. coli K12. Six compounds are substrates in both reactions, whereas seven of the triphosphates were inhibitors for both reactions. The Km, V and Ki values have been determined. The enzyme is less specific against base modifications of the ATP molecule than arginyl tRNA synthetase from baker's yeast in the aminoacylation and is inhibited by more base-modified compounds in the ATP/PPi exchange. The enzyme accepts 3'-deoxy-ATP as substrate and is inhibited by 2'-methoxy-ATP, whereas the reversed observation is made for the yeast arginyl-tRNA synthetase. The stoichiometry and association constants of complexes formed by six ATP analogs (four substrates and two inhibitors) and magnesium ions were investigated; five analogs form 1:1 complexes, one analog (3'-deoxy-ATP) binds two magnesium ions. The enzyme must accept different complexes formed with one or two magnesium ions as substrate, which must be different in structure from complexes proposed in literature.
Collapse
|
33
|
Boutorin AS, Clark BF, Ebel JP, Kruse TA, Petersen HU, Remy P, Vassilenko S. A study of the interaction of Escherichia coli elongation factor-Tu with aminoacyl-tRNAs by partial digestion with cobra venom ribonuclease. J Mol Biol 1981; 152:593-608. [PMID: 7035684 DOI: 10.1016/0022-2836(81)90271-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Fasiolo F, Remy P, Holler E. Phenylalanyl-tRNA synthetase of baker's yeast. Modulation of adenosine triphosphate-pyrophosphate exchange by transfer ribonucleic acid. Biochemistry 1981; 20:3851-6. [PMID: 6268148 DOI: 10.1021/bi00516a028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Native and modified phenylalanine transfer ribonucleic acid (tRNAPhe) can modulate phenylalanine-dependent adenosine triphosphate--inorganic [32P]pyrophosphate (ATP--[32P]PPi) exchange activity via inhibition of adenylate synthesis. Inhibition is visualized if concentrations of L-phenylalanine, ATP, and pyrophosphate are subsaturating. In the proposed mechanism, tRNAPhe is a noncompetitive inhibitor at conditions where only one of the two active sites per molecule of enzyme is occupied by L-phenylalanine, ATP, and pyrophosphate. At saturating concentrations of these reactants, both active sites are occupied and, according to the model, inhibition is eliminated. Occupation by these reactants is assumed to follow homotropic negative cooperativity. The type of effects depends on modification of tRNAPhe. Native tRNAPhe, tRNA2'-dAPhe, and tRNAoxi-redPhe are inhibitors, tRNAPhepCpC has no effect, and tRNAoxPhe is an activator. Kinetics of activation by tRNAoxPhe are slow, following the time course of Schiff base formation and subsequent reduction by added cyanoborohydride. Besides showing that a putative enzyme amino group is nonessential for substrate binding and adenylate synthesis, this result may suggest that an enzyme amino group could interact with the 3'-terminal adenyl group of cognate tRNA. In the case of asymmetrical occupation of the enzyme active sites by all of the small reactants ATP, L-phenylalanine, and pyrophosphate, the interaction with the amino group might trigger the observed noncompetitive inhibition of the pyrophosphate exchange by tRNAPhe.
Collapse
|
35
|
Kern D, Giegé R, Ebel JP. Purification and some properties of alanyl- and leucyl-tRNA synthetases from baker's yeast. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 653:83-90. [PMID: 7013809 DOI: 10.1016/0005-2787(81)90106-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Alanyl- and leucyl-tRNA synthetases from baker's yeast were purified to homogeneity in the presence of the protease inhibitor phenylmethylsulfonyl fluoride. Both consist of single polypeptide chains of 118 000 and 125 000 daltons, respectively, as determined by polyacrylamide gel electrophoresis under denaturing conditions. The monomeric structure of leucyl-tRNA synthetase differs from the dimeric one obtained previously in the absence of protease inhibitors. This illustrates the sensitivity of the synthetases to proteolytic actions and indicates that native structures can only be obtained under optimal protecting conditions. Alanyl- and leucyl-tRNA synthetases differ with respect to pH optimum (6.5 and 8.5, respectively), Michaelis constant for amino acid (1 mM and 0.03, respectively) and in the rate-limiting step for the tRNA aminoacylation reaction. Whereas the catalytic step itself was rate-limiting for alanyl-tRNA synthetase, a step occurring after this was rate-limiting for leucyl-tRNA synthetase.
Collapse
|
36
|
Kern D, Lapointe J. The catalytic mechanism of glutamyl-tRNA synthetase of Escherichia coli. A steady-state kinetic investigation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 115:29-38. [PMID: 7014220 DOI: 10.1111/j.1432-1033.1981.tb06193.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The sequence of substrate binding and of end-product dissociation at the steady state of the catalytic process of tRNAGlu aminoacylation by glutamyl-tRNA synthetase from Escherichia coli has been investigated using bisubstrate kinetics, dead-end and end-product inhibition studies. The nature of the kinetic patterns indicates that ATP and tRNAGlu bind randomly to the free enzyme, whereas glutamate binds only to the ternary enzyme . tRNAGlu . ATP complex. Binding of ATP to the enzyme hinders that of tRNAGlu and vice versa. After interconversion of the quaternary enzyme . substrates complex the end-products dissociate in the following order: PPi first, AMP second and Glu-tRNA last. In addition to its role as substrate and as effector with ATP for the binding of glutamate, tRNAGlu promotes the catalytically active enzyme state. Whereas at saturating tRNAGlu concentration the catalysis is rate-determining, this conformational change can be rate-determining at low tRNAGlu concentrations. The results are discussed in the light of the two-step aminoacylation pathway catalyzed by this synthetase.
Collapse
|
37
|
Cedergren RJ, Sankoff D, LaRue B, Grosjean H. The evolving tRNA molecule. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1981; 11:35-104. [PMID: 7030617 DOI: 10.3109/10409238109108699] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The study of tRNA molecular evolution is crucial to understanding the origin and establishment of the genetic code as well as the differentiation and refinement of the machinery of protein synthesis in prokaryotes, eukaryotes, organelles, and phage systems. The small size of the molecule and its critical involvement in a multiplicity of roles distinguish its study from classical protein molecular evolution with respect to goals and methods. Here, the authors assess available and missing data, existing and needed methodology, and the impact of tRNA studies on current theories both of genetic code evolution and of the evolution of species. They analyze mutational "hot spots", the role of base modification, synthetase recognition, codon-anticodon interactions and the status of organelle tRNA.
Collapse
|
38
|
Vadeboncoeur C, Lapointe J. Slow diffusion of glutamate and ATP-Mg into high-molecular-weight complexes containing the glutamyl-tRNA synthetase from bovine brain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1980; 109:581-7. [PMID: 7408903 DOI: 10.1111/j.1432-1033.1980.tb04831.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
Potier S, Robbe-Saul S, Boulanger Y. Structural studies on aminoacyl-tRNA synthetases. A tentative correlation between the subunit size and the occurrence of repeated sequences. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 624:130-41. [PMID: 6996739 DOI: 10.1016/0005-2795(80)90232-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent studies have shown that those synthetases with subunits greater than 85,000 daltons contain extensive repeated sequences, whilst those with small subunits (40,000 daltons) do not. We have undertaken a comparative study of four aminoacyl-tRNA synthetases (glutamyl-, arginyl-, valyl-, and phenylalanyl-tRNA synthetases) with subunit sizes ranging from 56,000 to 130,000 daltons in an attempt to correlate the occurrence and extent of the repeats with the length of the polypeptide chain. Our results show that monomeric glutamyl-tRNA synthetase from Escherichia coli (56,000 daltons) contains few repeated sequences, whereas both subunits of yeast phenylalanyl-tRNA synthetase (alpha, 73,000 daltons; beta, 62,000 daltons) and yeast arginyl-tRNA synthetase (74,000 daltons) do have a significant amount of repeats. Thus 56,000 dalton appears to be the minimum size compatible with the existence of such repeats.
Collapse
|
40
|
Kern D, Lapointe J. Catalytic mechanism of glutamyl-tRNA synthetase from Escherichia coli. Reaction pathway in the aminoacylation of tRNAGlu. Biochemistry 1980; 19:3060-8. [PMID: 6249345 DOI: 10.1021/bi00554a035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
Kern D, Potier S, Lapointe J, Boulanger Y. The glutaminyl-transfer RNA synthetase of Escherichia coli. Purification, structure and function relationship. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 607:65-80. [PMID: 6989402 DOI: 10.1016/0005-2787(80)90221-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glutaminyl-tRNA synthetase from Escherichia coli has been purified to homogeneity with a yield of about 50%. It is a monomer of about 69 000 daltons. Arginyl and glutamyl-tRNA synthetases are also monomeric synthetases of molecular weight significantly lower than 100 000. In addition it is well known that these three synthetases require their cognate tRNA to catalyze the [32P]PPi-ATP exchange. Like arginyl-tRNA synthetase, but unlike glutamyl-tRNA synthetase, glutaminyl-tRNA synthetase seems to contain some repeated sequences. Therefore no correlation can be established between the tRNA requirement of these synthetases for the catalysis of the isotope-exchange and the presence or the absence of sequence duplication. In the native enzyme four sulfhydryl groups react with dithiobisnitrobenzoic acid causing a loss of both the aminoacylation and the [32P]PPi-ATP exchange activities. The rate-limiting steps of the overall aminoacylation and its reverse reaction correspond, respectively, to the catalysis of the aminoacylation of tRNA Gln and of the the deacylation of glutaminyl-tRNA Gln. At acidic pH, glutaminyl-tRNA synthetase catalyzes the synthesis of the glutaminyl-tRNA Gln and its deacylation at significantly lower rates than the [32P]PPi-ATP exchange, indicating than glutaminyl-tRNA Gln cannot be an obligatory intermediate in this isotope exchange. These results suggest the existence of a two-step aminoacylation mechanism catalyzed by this enzyme.
Collapse
|
42
|
The catalytic mechanism of the glutamyl-tRNA synthetase from Escherichia coli. Detection of an intermediate complex in which glutamate is activated. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(19)85976-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Kern D, Lapointe J. The twenty aminoacyl-tRNA synthetases from Escherichia coli. General separation procedure, and comparison of the influence of pH and divalent cations on their catalytic activities. Biochimie 1980; 61:1257-72. [PMID: 44203 DOI: 10.1016/s0300-9084(80)80285-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A general separation procedure of the twenty E. coli aminoacyl-tRNA synthetases including either a 105 000 g centrifugation or a poly-ethyleneglycol-dextran two-phases partition fractionation, and chromatographies on DEAE-cellulose, phosphocellulose and hydroxyapatite is described. The specific activities of the synthetases have been determined after each chromatographic step and compared to their respective activities in the 105 000 g supernatant. Some aminoacyl-tRNA synthetases were obtained at 80 per cent purity. The presence of phenylmethylsulfonyl fluoride does not significantly modify either the elution patterns of the synthetases during the various chromatographic steps or their specific activities. Thus, contrarily to enzymes from various eukaryotic organisms no significant inactivation of the E. coli aminoacyl-tRNA synthetases occurs via proteolytic processes during the purification procedure. The effects of various factors: pH, magnesium, and other bivalent cations including spermidine, were tested on the aminoacylation and the [32P] PPi-ATP isotope-exchange reactions, and the optimal aminoacylation and isotope-exchange conditions determined for 18 of the 20 E. coli aminoacyl-tRNA synthetases.
Collapse
|
44
|
Godeau JM. Arginyl-transfer ribonucleic acid synthetase of Bacillus stearothermophilus. Purification and kinetic analysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1980; 103:169-77. [PMID: 7358046 DOI: 10.1111/j.1432-1033.1980.tb04301.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Arginyl-tRNA synthetase from Bacillus stearothermophilus (NCA 1518) has been purified 880-fold to apparent homogeneity as demonstrated by electrophoresis in the presence of sodium dodecyl sulphate. The molecular weight is 59 000 as confirmed by Sephadex G-100 and by sucrose gradient ultracentrifugation. The enzyme is monomeric, no subunits were detected. Its cognate tRNA induces an apparent increase in molecular weight suggesting the dimerisation of the enzyme. Nevertheless, it is not obvious that the enzyme dimer forms prior to the aminoacylation reaction catalysed by the enzyme. An ATPase activity was found associated to the synthetase but can be neglected because the ATP consumption is too low for hampering the arginyl-tRNA synthetase activity. The order of addition of substrates and release of products has been studied by measurements of initial velocity, product inhibition and dead-end inhibition. The nature of the kinetic patterns indicates that the aminoacylation reaction conforms to the classical concept of the mechanism which includes the formation of an enzyme-bound aminoacyl-adenylate as an intermediate in the first step followed by transfer of the amino acid to tRNA. The first partial reaction, measured by the ATP-32PPi exchange or AMP synthesis in the presence of ATP and arginine, requires tRNA, which is consistent with the model in which tRNAArg is an activator of the arginyladenylate synthesis.
Collapse
|
45
|
Kern D, Lapointe J. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Effect of alteration of the 5-(methylaminomethyl)-2-thiouridine in the anticodon of glutamic acid transfer ribonucleic acid on the catalytic mechanism. Biochemistry 1979; 18:5819-26. [PMID: 229902 DOI: 10.1021/bi00593a011] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Kern D, Lapointe J. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Study of the interactions with its substrates. Biochemistry 1979; 18:5809-18. [PMID: 229901 DOI: 10.1021/bi00593a010] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The binding of the various substrates to Escherichia coli glutamyl-tRNA synthetase has been investigated by using as experimental approaches the binding study under equilibrium conditions and the substrate-induced protection of the enzyme against its thermal inactivation. The results show that ATP and tRNAGlu bind to the free enzyme, whereas glutamate binds only to an enzyme form to which glutamate-accepting tRNAGlu is associated. By use of modified E. coli tRNAsGlu and heterologous tRNAsGlu, a correlation could be established between the ability of tRNAGlu to be aminoacylated by glutamyl-tRNA synthetase and its abilities to promote the [32P]PPi-ATP isotope exchange and the binding of glutamate to the synthetase. These results give a possible explanation for the inability of blutamyl-tRNA synthetase to catalyze the isotope exchange in the absence of amino acid accepting tRNAGlu and for the failure to detect an enzyme-adenylate complex for this synthetase by using the usual approaches. One binding site was detected for each substrate. The specificity of the interaction of the various substrates has been further investigated. Concerning ATP, inhibition studies of the aminoacylation reaction by various analogues showed the existence of a synergistic effect between the adenine and the ribose residues for the interaction of adenosine. The primary recognition of ATP involves the N-1 and the 6-amino group of adenine as well as the 2'-OH group of ribose. This first interaction is then strengthened by the phosphate groups- Inhibition studies by various analogues of glutamate showed a strong decrease in the affinity of this substrate for the synthetase after substitution of the alpha- or gamma-carboxyl groups. The enzyme exhibits a marked tendency to complex tRNAs of other specificities even in the presence of tRNAGlu. MgCl2 and spermidine favor the specific interactions. The influence of monovalent ions and of pH on the interaction between glutamyl-tRNA synthetase and tRNAGlu is similar to those reported for other synthetases not requiring their cognate tRNA to bind the amino acid. Finally, contrary to that reported for other monomeric synthetases, no dimerization of glutamyl-tRNA synthetase occurs during the catalytic process.
Collapse
|