1
|
Saribas AS, Coric P, Hamazaspyan A, Davis W, Axman R, White MK, Abou-Gharbia M, Childers W, Condra JH, Bouaziz S, Safak M. Emerging From the Unknown: Structural and Functional Features of Agnoprotein of Polyomaviruses. J Cell Physiol 2016; 231:2115-27. [PMID: 26831433 DOI: 10.1002/jcp.25329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
Agnoprotein is an important regulatory protein of polyomaviruses, including JCV, BKV, and SV40. In the absence of its expression, these viruses are unable to sustain their productive life cycle. It is a highly basic phosphoprotein that localizes mostly to the perinuclear area of infected cells, although a small amount of the protein is also found in nucleus. Much has been learned about the structure and function of this important regulatory protein in recent years. It forms highly stable dimers/oligomers in vitro and in vivo through its Leu/Ile/Phe-rich domain. Structural NMR studies revealed that this domain adopts an alpha-helix conformation and plays a critical role in the stability of the protein. It associates with cellular proteins, including YB-1, p53, Ku70, FEZ1, HP1α, PP2A, AP-3, PCNA, and α-SNAP; and viral proteins, including small t antigen, large T antigen, HIV-1 Tat, and JCV VP1; and significantly contributes the viral transcription and replication. This review summarizes the recent advances in the structural and functional properties of this important regulatory protein. J. Cell. Physiol. 231: 2115-2127, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Sami Saribas
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Pascale Coric
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire de Cristallographie et RMN Biologiques, 4 av. de l'Observatoire, Paris, France
| | - Anahit Hamazaspyan
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - William Davis
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Rachel Axman
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Martyn K White
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Magid Abou-Gharbia
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Wayne Childers
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Jon H Condra
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Serge Bouaziz
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire de Cristallographie et RMN Biologiques, 4 av. de l'Observatoire, Paris, France
| | - Mahmut Safak
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Reddy VB, Thimmappaya B, Dhar R, Subramanian KN, Zain BS, Pan J, Ghosh PK, Celma ML, Weissman SM. The genome of simian virus 40. Science 1978; 200:494-502. [PMID: 205947 DOI: 10.1126/science.205947] [Citation(s) in RCA: 852] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nucleotide sequence of SV40 DNA was determined, and the sequence was correlated with known genes of the virus and with the structure of viral messenger RNA's. There is a limited overlap of the coding regions for structural proteins and a complex pattern of leader sequences at the 5' end of late messenger RNA. The sequence of the early region is consistent with recent proposals that the large early polypeptide of SV40 is encoded in noncontinguous segments of DNA.
Collapse
|