1
|
Stability-activity tradeoffs constrain the adaptive evolution of RubisCO. Proc Natl Acad Sci U S A 2014; 111:2223-8. [PMID: 24469821 DOI: 10.1073/pnas.1310811111] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO2 during photosynthesis. Although the majority of plants use the ancestral C3 photosynthetic pathway, many flowering plants have evolved a derived pathway named C4 photosynthesis. The latter concentrates CO2, and C4 RubisCOs consequently have lower specificity for, and faster turnover of, CO2. The C4 forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C3 and C4 species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C4 properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C3 to C4 transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability.
Collapse
|
2
|
Balaji B, Gilson M, Roy H. Binding of a transition state analog to newly synthesized Rubisco. PHOTOSYNTHESIS RESEARCH 2006; 89:43-8. [PMID: 16763877 DOI: 10.1007/s11120-006-9067-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Accepted: 04/22/2006] [Indexed: 05/10/2023]
Abstract
Radioactive amino acids, when added to isolated pea chloroplasts or chloroplast extracts engaged in protein synthesis, are incorporated into Rubisco large subunits that co-migrate with native Rubisco during nondenaturing electrophoresis. We have added the transition state analog 2'-carboxyarabinitol bisphosphate (CABP) to chloroplast extracts after in organello or in vitro incorporation of radioactive amino acids into Rubisco large subunits. Upon addition of CABP the radioactive bands co-migrating with native Rubisco undergo a readily detected shift in electrophoretic mobility just as the native enzyme, thus demonstrating the ability of the newly assembled molecules to interact with this transition state analog.
Collapse
Affiliation(s)
- Boovaraghan Balaji
- Biology Department, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA
| | | | | |
Collapse
|
3
|
Structural framework for catalysis and regulation in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 2003; 414:130-40. [PMID: 12781764 DOI: 10.1016/s0003-9861(03)00164-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the enzyme assimilating CO2 in biology. Despite serious efforts, using many different methods, a detailed understanding of activity and regulation in Rubisco still eludes us. New results in X-ray crystallography may provide a structural framework on which to base experimental approaches for more detailed analyses of the function of Rubisco at the molecular level. This article gives a critical review of the field and summarizes recent results from structural studies of Rubisco.
Collapse
|
4
|
Houtz RL, Portis AR. The life of ribulose 1,5-bisphosphate carboxylase/oxygenase--posttranslational facts and mysteries. Arch Biochem Biophys 2003; 414:150-8. [PMID: 12781766 DOI: 10.1016/s0003-9861(03)00122-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The life of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), from gene to protein to irreplaceable component of photosynthetic CO2 assimilation, has successfully served as a model for a number of essential cellular processes centered on protein chemistry and amino acid modifications. Once translated, the two subunits of Rubisco undergo a myriad of co- and posttranslational modifications accompanied by constant interactions with structurally modifying enzymes. Even after final assembly, the essential role played by Rubisco in photosynthetic CO2 assimilation is dependent on continuous conformation modifications by Rubisco activase. Rubisco is also continuously assaulted by various environmental factors, resulting in its turnover and degradation by processes that appear to be enhanced during plant senescence.
Collapse
Affiliation(s)
- Robert L Houtz
- Department of Horticulture, Plant Physiology/Biochemistry/Molecular Biology Program, N322D Agricultural Science Center North, University of Kentucky, Lexington, KY 40546-0091, USA
| | | |
Collapse
|
5
|
Affiliation(s)
- Daniel E Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3206, USA.
| | | |
Collapse
|
6
|
Taylor TC, Andersson I. Structural transitions during activation and ligand binding in hexadecameric Rubisco inferred from the crystal structure of the activated unliganded spinach enzyme. NATURE STRUCTURAL BIOLOGY 1996; 3:95-101. [PMID: 8548461 DOI: 10.1038/nsb0196-95] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Activation of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco; EC 4.1.1.39) by CO2 involves carbamylation of Lys 201 and the subsequent binding of a magnesium ion to complete the active site. The refined crystal structure of activated Rubisco shows that the magnesium ligands are Asp 203, Glu 204, the carbamate of Lys 201, and three water molecules. Structural differences between the unactivated and activated forms are minimal. Substrate binding replaces water ligands around the metal and triggers substantial structural changes in loops covering the active site. This leads to a contraction and tightening of the structure of the large subunits with the movements transmitted to and modulated by the small subunits.
Collapse
Affiliation(s)
- T C Taylor
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Center, Sweden
| | | |
Collapse
|
7
|
Smrcka AV, Bohnert HJ, Jensen RG. Modulation of the tight binding of carboxyarabinitol 1,5-bisphosphate to the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 1991; 286:14-9. [PMID: 1910281 DOI: 10.1016/0003-9861(91)90003-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The large subunit (L) of ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) from Synechococcus PCC 6301 was expressed in Escherichia coli, purified as the octamer L8, and analyzed for its ability to tightly bind the transition state analog, 2-carboxyarabinitol 1,5-bisphosphate (CABP). [14C]CABP remained tightly bound to L8 after challenging with [12C]CABP and gel filtration, indicating that L8 alone without the small subunit (S) could tightly bind CABP. Binding of CABP to L8 induced a shift in the gel filtration profile due to apparent aggregation of L8. Aggregation did not occur with the L8S8-CABP complex nor with L8-CABP in the presence of 150 mM MgCl2. If ionic strength was increased with either KCl or MgCl2 during or after the binding of [14C]CABP to L8, [14C]CABP in the complex exchanged with [12C]CABP and was lost from the protein. Ionic strength strongly affected the rate constant (k4) for [14C]CABP dissociation from the L8-[14C]CABP complex, but had little effect on k4 for the L8S8-CABP complex. The differences in CABP binding characteristics between the L8-CABP and L8S8-CABP complexes demonstrate that S is intimately involved in maintaining the stability of the tight binding of CABP to the active site. These are the same interactions stabilizing the intermediate, 3-keto-2-carboxyarabinitol 1,5-bisphosphate, to native rubisco during CO2 fixation.
Collapse
Affiliation(s)
- A V Smrcka
- Department of Biochemistry, University of Arizona, Tucson 85721
| | | | | |
Collapse
|
8
|
Knight S, Andersson I, Brändén CI. Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 A resolution. Subunit interactions and active site. J Mol Biol 1990; 215:113-60. [PMID: 2118958 DOI: 10.1016/s0022-2836(05)80100-7] [Citation(s) in RCA: 247] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The X-ray structure of the quaternary complex of ribulose 1,5-bisphosphate carboxylase/oxygenase from spinach with CO2, Mg2+ and a reaction-intermediate analogue (CABP) has been determined and refined at 2.4 A resolution. Cyclic non-crystallographic symmetry averaging around the molecular 4-fold axis and phase combination were used to improve the initial multiple isomorphous replacement phases. A model composed of one large subunit and one small subunit was built in the resulting electron density map, which was of excellent quality. Application of the local symmetry gave an initial model of the L8S8 molecule with a crystallographic R-value of 0.43. Refinement of this initial model was performed by a combination of conventional least-squares energy refinement and molecular dynamics simulation using the XPLOR program. Three rounds of refinement, interspersed with manual rebuilding at the graphics display, resulted in a model containing all of the 123 amino acid residues in the small subunit, and 467 of the 475 residues in the large subunit. The R-value for this model is 0.24, with relatively small deviations from ideal stereochemistry. Subunit interactions in the L8S8 molecule have been analysed and are described. The interface areas between the subunits are extensive, and bury almost half of the accessible surface areas of both the large and the small subunit. A number of conserved interaction areas that may be of functional significance have been identified and are described, and biochemical and mutagenesis data are discussed in the structural framework of the model.
Collapse
Affiliation(s)
- S Knight
- Swedish University of Agricultural Sciences, Department of Molecular Biology, Uppsala, Sweden
| | | | | |
Collapse
|
9
|
Pevsner J, Hou V, Snowman AM, Snyder SH. Odorant-binding protein. Characterization of ligand binding. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39300-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Seemann JR, Kobza J, Moore BD. Metabolism of 2-carboxyarabinitol 1-phosphate and regulation of ribulose-1,5-bisphosphate carboxylase activity. PHOTOSYNTHESIS RESEARCH 1990; 23:119-130. [PMID: 24421056 DOI: 10.1007/bf00035005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/1989] [Accepted: 04/12/1989] [Indexed: 06/03/2023]
Abstract
Metabolism of 2'-carboxy-D-arabinitol 1-phosphate (CA1P) is an important component in the light-dependent regulation of ribulose-1,5-bisphosphate carboxylase (Rubisco) activity and whole leaf photosynthetic CO2 assimilation in many species, and functions as one mechanism for regulating Rubisco activity when photosynthesis is light-limited. Species differ in their capacity to accumulate CA1P, ranging from those which can synthesize levels of this compound approaching or in excess of the Rubisco catalytic site concentration, to those which apparently lack the capacity for CA1P synthesis. CA1P is structurally related to the six carbon transition state intermediate of the carboxylation reaction and binds tightly to the carbamylated catalytic site of Rubisco, making that site unavailable for catalysis. Under steady-state, the concentration of CA1P in the leaf is highest at low photon flux density (PFD) or in the dark. Degradation of CA1P and recovery of Rubisco activity requires light and is stimulated by increasing PFD. The initial degradation reaction is catalyzed by an enzyme located in the chloroplast stroma, CA1P phosphatase, which yields carboxyarabinitol (CA) and inorganic phosphate as its products. The pathway of CA metabolism in the plant remains to be determined. Synthesis of CA1P occurs in the dark, and in Phaseolus vulgaris this process has been shown to be stimulated by low PFD. The pathway of CA1P synthesis and its relationship to the degradative pathway remains unknown at the present time. The discovery of the existence of this previously unknown carbon pathway in photosynthesis indicates that we still have much to learn concerning the regulation of Rubisco activity and photosynthesis.
Collapse
Affiliation(s)
- J R Seemann
- Department of Biochemistry, University of Nevada, 89557, Reno, Nevada, USA
| | | | | |
Collapse
|
11
|
Steinberg NA, Meeks JC. Photosynthetic CO2 fixation and ribulose bisphosphate carboxylase/oxygenase activity of Nostoc sp. strain UCD 7801 in symbiotic association with Anthoceros punctatus. J Bacteriol 1989; 171:6227-33. [PMID: 2509431 PMCID: PMC210493 DOI: 10.1128/jb.171.11.6227-6233.1989] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The cyanobacterium Nostoc sp. strain UCD 7801, immediately after separation from pure cultures of a reconstituted symbiotic association with the bryophyte Anthoceros punctatus, exhibited a rate of light-dependent CO2 fixation that was eightfold lower than that measured in the free-living growth state. Ribulose bisphosphate carboxylase/oxygenase (RuBPC/O) specific activity was also eightfold lower in cell extracts of symbiotic strain 7801 relative to that in free-living cultures. The in vitro activity from symbiotic strain 7801 could not be increased by incubation under the standard RuBPC/O activation conditions. Polyclonal antibodies against the RuBPC/O large subunit were used in an enzyme-linked immunosorbent assay to determine that RuBPC/O accounted for 4.3 and 5.2% of the total protein in cell extracts of strain 7801 grown in symbiotic and free-living states, respectively. The results imply that the regulation of RuBPC/O activity in the symbiotic growth state is by a posttranslational mechanism rather than by an alteration in RuBPC/O protein synthesis. The amount of carboxyarabinitol bisphosphate required to irreversibly inhibit RuBPC/O activity of sybiotic cell extracts was 80% of that required for extracts of free-living cultures. This result indicates that any covalent modification of RuBPC/O in symbiotically associated Nostoc cells did not interfere with the ribulose bisphosphate binding site, since inactive enzyme also bound carboxyarabinitol bisphosphate.
Collapse
Affiliation(s)
- N A Steinberg
- Department of Microbiology, University of California, Davis 95616
| | | |
Collapse
|
12
|
Johal S, Holaday AS. Differential expression of ribulose-1,5-bisphosphate carboxylase in reciprocal F1 hybrids of a C3 and a C4-like Flaveria species. Biochem Genet 1989; 27:497-505. [PMID: 2619710 DOI: 10.1007/bf02396147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stable reciprocal hybrids between Flaveria pringlei (C3) and F. brownii (C4-like) have been produced by standard breeding techniques. There are no differences in the isoelectric focusing patterns of the catalytic subunits of the ribulose-1,5-bisphosphate carboxylase/oxygenase from F. pringlei, F. brownii, or the reciprocal hybrids. The enzyme from both species also contains an identical noncatalytic subunit polypeptide. However, the carboxylase enzyme from F. brownii contains another isomeric form of noncatalytic subunit polypeptide which is resolveable by isoelectric focusing. This isomeric form constitutes about 50% of the total noncatalytic subunits in this species. It comprises only about 10% of the total noncatalytic subunit population in the C3 x C4 plants, but about 42% of the noncatalytic subunits in the reciprocal cross. The concentrations of the holoenzyme in the reciprocal hybrids are comparable to those of the respective maternal parent. We hypothesize that a differential inheritance of parental chloroplasts by the reciprocal hybrids may be associated with this apparent maternal influence on the expression of the noncatalytic polypeptides and the holoenzyme concentration.
Collapse
Affiliation(s)
- S Johal
- BP America, Research and Development, Cleveland, Ohio 44128
| | | |
Collapse
|
13
|
Holzenburg A, Mayer F. D-ribulose-1,5-bisphosphate carboxylase/oxygenase: function-dependent structural changes. ELECTRON MICROSCOPY REVIEWS 1989; 2:139-69. [PMID: 2491339 DOI: 10.1016/0892-0354(89)90014-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The key carboxylating enzyme of the reductive pentose phosphate cycle, D-ribulose-1,5-bisphosphate carboxylase/oxygenase [RuBisCO] isolated from the chemolithoautotrophic, H2-oxidizing bacterium Alcaligenes eutrophus H16 has been analyzed by several different techniques that allow conclusions about structure and function-dependent structural changes. The techniques include a novel approach in which the enzyme was induced to form 2D-crystals suitable for electron microscopy in each of its three stable functional states: as active enzyme [Ea] (in the presence of Mg2+ and HCO3-); as inactivated enzyme [Eia] (in the absence of Mg2+ and HCO3-) and as enzyme locked in an in vitro transition state [CABP-E] (Ea fully saturated with the transition state analogue 2-carboxy-D-arabinitol-1,5-bisphosphate [CABP-E]). In conjunction with X-ray crystallography, X-ray small angle scattering and other biophysical and biochemical data, the results obtained by electron microscopy support the idea that drastic configurational changes occur. Upon transition from Ea to the CABP-E the upper and lower L4S4 halves of the molecule consisting of eight large and eight small subunits (L8S8; MW = 536,000 Da) are assumed to be laterally shifted by as much as 3.6 nm relative to one another while the location of the small subunits on top of the large subunits, and relative to them, remains the same. For the Eia a similar sliding-layer configurational change in the range of 2-2.5 nm is proposed and in addition it is suggested that other configurational/conformational changes take place. The proposed structural changes are discussed with respect to the current model for the tobacco enzyme and correlated with data obtained for various other plant and (cyano) bacterial L8S8 RuBisCOs leading to speculations about structure-function relationships.
Collapse
Affiliation(s)
- A Holzenburg
- Institut für Mikrobiologie der Georg-August-Universität Göttingen, F.R.G
| | | |
Collapse
|
14
|
Schloss JV. Comparative affinities of the epimeric reaction-intermediate analogs 2- and 4-carboxy-D-arabinitol 1,5-bisphosphate for spinach ribulose 1,5-bisphosphate carboxylase. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68901-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
15 Preparation of Two-dimensional Arrays of Soluble Proteins as Demonstrated for Bacterial D-Ribulose-1,5-bisphosphate Carboxylase/Oxygenase. METHODS IN MICROBIOLOGY 1988. [DOI: 10.1016/s0580-9517(08)70059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
16
|
Suh SW, Cascio D, Chapman MS, Eisenberg D. A crystal form of ribulose-1,5-bisphosphate carboxylase/oxygenase from Nicotiana tabacum in the activated state. J Mol Biol 1987; 197:363-5. [PMID: 3681999 DOI: 10.1016/0022-2836(87)90129-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A new crystal form of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) from Nicotiana tabacum has been obtained at alkaline pH with polyethylene glycol 8000 in the presence of a non-ionic detergent, beta-octyl glucoside. The crystals are grown at room temperature by the hanging-drop vapor diffusion technique from a protein solution containing enzyme complexed with CO2, Mg2+, and the transition state analog 2-C-carboxy-D-arabinitol-1,5-bisphosphate. The crystals belong to the the space group P3(1)21 (or P3(2)21) with the cell parameters a = 204.6 A, and c = 117.4 A (1 A = 0.1 nm). The asymmetric unit contains half (L4S4: L, large subunit, 53,000 Mr; S, small subunit, 15,000 Mr) of a hexadecameric molecule (L8S8, 540,000 Mr). The crystals diffract to at least 2.6 A Bragg spacing and are suitable for X-ray structure determination.
Collapse
Affiliation(s)
- S W Suh
- Molecular Biology Institute, University of California, Los Angeles 90024
| | | | | | | |
Collapse
|
17
|
Structure of D-ribulose-l,5-bisphosphate carboxylase/oxygenase from Alcaligenes eutrophyus H16. Nature 1987; 325:730-2. [DOI: 10.1038/325730a0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
|