1
|
Zera AJ, Newman S, Berkheim D, Black C, Klug L, Crone E. Purification and characterization of cytoplasmic NADP+-isocitrate dehydrogenase, and amplification of the NADP+-IDH gene from the wing-dimorphic sand field cricket, Gryllus firmus. JOURNAL OF INSECT SCIENCE (ONLINE) 2011; 11:53. [PMID: 21861657 PMCID: PMC3281439 DOI: 10.1673/031.011.5301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/13/2010] [Indexed: 05/31/2023]
Abstract
Cytoplasmic NADP(+)-isocitrate dehydrogenase (NADP(+)-IDH) has been purified and characterized, and its gene sequenced in many animal, plant, and yeast species. However, much less information is available on this enzyme-gene in insects. As a first step in investigating the biochemical and molecular mechanisms by which NADP(+)-IDH contributes to adaptations for flight vs. reproduction in insects, the enzyme was purified to homogeneity in the wing-dimorphic cricket, Gryllus firmus, characterized, and its corresponding gene sequenced. Using a combination of polyethylene glycol precipitation, Cibacron-Blue affinity chromatography, and hydrophobic interaction chromatography the enzyme was purified 291-fold (7% yield; specific activity = 15.8 µmol NADPH/min/mg protein). The purified enzyme exhibited a single band on SDS PAGE (46.3 kD), but consisted of two N-terminal amino acid sequences that differed in the first two amino acids. Purified enzyme exhibited standard Michaelis-Menten kinetics at pH 8.0 and 28° C (K(M(NADP+)) = 2.3 ± 0.4 µM; K(M(Na+-Isocitrate)) = 14.7 + 1.8 µM). Subunit molecular mass and K(M)S were similar to published values for NADP(+)-IDHs from a variety of vertebrate and two insect species. PCR amplification of an internal sequence using genomic DNA followed by 3' and 5' RACE yielded a nucleotide sequence of the mature protein and translated amino-acid sequences that exhibited high similarity (40-50% and 70-80%, respectively) to sequences from insect and vertebrate NADP(+)-IDHs. Two potential ATG start codons were identified. Both Nterminal amino-acid sequences matched the nucleotide sequence, consistent with both enzyme forms being transcribed from the same gene, although these variants could also be encoded by different genes. Bioinformatic analyses and differential centrifugation indicated that the majority, if not all, of the enzyme is cytoplasmic. The enzyme exhibited high specific activity in fat body, head and gut, and a single band on native PAGE.
Collapse
Affiliation(s)
- Anthony J. Zera
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA
| | - Susan Newman
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA
| | - David Berkheim
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA
| | - Christine Black
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA
| | - Lindsay Klug
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA
| | - Erica Crone
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA
| |
Collapse
|
2
|
Jackman JE, Raetz CR, Fierke CA. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme. Biochemistry 1999; 38:1902-11. [PMID: 10026271 DOI: 10.1021/bi982339s] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase (LpxC) catalyzes the committed step in the biosynthesis of lipid A and is therefore a potential antibiotic target. Inhibition of this enzyme by hydroxamate compounds [Onishi, H. R.; Pelak, B. A.; Gerckens, L. S.; Silver, L. L.; Kahan, F. M.; Chen, M. H.; Patchett, A. A.; Stachula, S. S.; Anderson, M. S.; Raetz, C. R. H. (1996) Science 274, 980-982] suggested the presence of a metal ion cofactor. We have investigated the substrate specificity and metal dependence of the deacetylase using spectroscopic and kinetic analyses. Comparison of the steady-state kinetic parameters for the physiological substrate UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc and an alternative substrate, UDP-GlcNAc, demonstrates that the ester-linked R-3-hydroxymyristoyl chain increases kcat/KM (5 x 10(6))-fold. Metal-chelating reagents, such as dipicolinic acid (DPA) and ethylenediaminetetraacetic acid, completely inhibit LpxC activity, implicating an essential metal ion. Plasma emission spectroscopy and colorimetric assays directly demonstrate that purified LpxC contains bound Zn2+. This Zn2+ can be removed by incubation with DPA, causing a decrease in the LpxC activity that can be restored by subsequent addition of Zn2+. However, high concentrations of Zn2+ also inhibit LpxC. Addition of Co2+, Ni2+, or Mn2+ to apo-LpxC also activates the enzyme to varying degrees while no additional activity is observed upon the addition of Cd2+, Ca2+, Mg2+, or Cu2+. This is consistent with the profile of metals that substitute for catalytic zinc ions in metalloproteinases. Co2+ ions stimulate LpxC activity maximally at a stoichiometry of 1:1. These data demonstrate that E. coli LpxC is a metalloenzyme that requires bound Zn2+ for optimal activity.
Collapse
Affiliation(s)
- J E Jackman
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
3
|
Martinez-Rivas, Vega. Purification and characterization of NAD-isocitrate dehydrogenase from chlamydomonas reinhardtii. PLANT PHYSIOLOGY 1998; 118:249-55. [PMID: 9733544 PMCID: PMC34862 DOI: 10.1104/pp.118.1.249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/1998] [Accepted: 06/19/1998] [Indexed: 05/22/2023]
Abstract
NAD-isocitrate dehydrogenase (NAD-IDH) from the eukaryotic microalga Chlamydomonas reinhardtii was purified to electrophoretic homogeneity by successive chromatography steps on Phenyl-Sepharose, Blue-Sepharose, diethylaminoethyl-Sephacel, and Sephacryl S-300 (all Pharmacia Biotech). The 320-kD enzyme was found to be an octamer composed of 45-kD subunits. The presence of isocitrate plus Mn2+ protected the enzyme against thermal inactivation or inhibition by specific reagents for arginine or lysine. NADH was a competitive inhibitor (Ki, 0.14 mM) and NADPH was a noncompetitive inhibitor (Ki, 0.42 mM) with respect to NAD+. Citrate and adenine nucleotides at concentrations less than 1 mM had no effect on the activity, but 10 mM citrate, ATP, or ADP had an inhibitory effect. In addition, NAD-IDH was inhibited by inorganic monovalent anions, but L-amino acids and intermediates of glycolysis and the tricarboxylic acid cycle had no significant effect. These data support the idea that NAD-IDH from photosynthetic organisms may be a key regulatory enzyme within the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Martinez-Rivas
- Instituto de Bioquimica Vegetal y Fotosintesis, Centro de Investigaciones Isla de la Cartuja, Universidad de Sevilla-Consejo Superior de Investigaciones Cientificas, Avenida Americo Vespucio s/n, 41092-Sevilla, Spain
| | | |
Collapse
|
4
|
Poly WJ. Nongenetic variation, genetic-environmental interactions and altered gene expression. I. Temperature, photoperiod, diet, pH and sex-related effects. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 117:11-66. [PMID: 9185336 DOI: 10.1016/s0300-9629(96)00366-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of protein electrophoretic data for determining the relationships among species or populations is widespread and generally accepted. However, many confounding factors may alter the results of an electrophoretic study in such a way as to allow erroneous conclusions to be drawn in taxonomic, systematic or population studies. Such variables as temperature, photoperiod, salinity, pH and diet have been shown to influence enzymes and proteins both quantitatively and qualitatively. Production of distinct "cold" and "warm" isozymes or "seasonal" isozymes have been found in a variety of organisms. The factors that are or may be responsible for the appearance of these isozymes is discussed. Most studies that have demonstrated some apparent form of environmentally induced genetic expression have not determined that mechanisms responsible. However, proteolytic modification has been shown to produce seasonal isozymes of fructose 1,6-bisphosphatase in rabbit liver and may account for other seasonal isozymes. Acclimating organisms to various conditions may actually allow detection of cryptic genetic variation and provide valuable data. There are many aspects to consider in designing acclimation experiments, and the conditions used will vary according to the aim of the research. Polyploidy may contribute to the genesis of environmentally regulated isozymes. A review of this literature follows with additional hypotheses and conclusions. Recommendations are given for the resolution of real and potential problems.
Collapse
Affiliation(s)
- W J Poly
- Department of Zoology, Southern Illinois University, Carbondale 62901-6501, USA.
| |
Collapse
|
5
|
Olano J, de Arriaga D, Busto F, Soler J. Kinetics and Thermostability of NADP-Isocitrate Dehydrogenase from Cephalosporium acremonium. Appl Environ Microbiol 1995; 61:2326-34. [PMID: 16535052 PMCID: PMC1388470 DOI: 10.1128/aem.61.6.2326-2334.1995] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NADP-isocitrate dehydrogenase [isocitrate:NADP(sup+) oxidoreductase (decarboxylating); EC 1.1.1.42] was purified from Cephalosporium acremonium as a single species. The enzyme is a dimer of 140 kDa with identical subunits of 75 kDa. The existence of a monomer-dimer equilibrium is apparent as revealed by an enzyme dilution approach. The chelate complex of the tribasic form of isocitrate and Mg(sup2+) is the true substrate. The V(infmax) depends on a basic form of an ionizable group of the enzyme-substrate complex with a pK(infes) (pK of the enzyme-substrate complex) of 6.9 and a (Delta)H(infion) (activation enthalpy) of -2 (plusmn) 0.4 kcal mol(sup-1) (ca. 8 (plusmn) 2 kJ mol(sup-1)). The enzyme showed maximum activity at 60(deg)C, an unusually high temperature for a nonthermophilic fungus. The thermodynamic parameters for isocitrate oxidative decarboxylation and for the binding of isocitrate and NADP(sup+) were calculated. We analyzed the kinetic thermal stability of the enzyme at pH 6.5 and 7.6. It was inactivated above 40(deg)C following a first-order kinetics. The presence of 12 mM Mg(sup2+) plus 10 mM dl-isocitrate led to 100% protection of enzyme activity against inactivation at 60(deg)C for 120 min. Removal of either or both compounds led to activity loss. A greater stabilizing role for Mg(sup2+) was seen at pH 6.5 than at pH 7.6, whereas the stabilizing effect of isocitrate was not dependent on pH.
Collapse
|
6
|
|
7
|
Chen RD, Bismuth E, Champigny ML, Gadal P. Chromatographic and immunological evidence that chloroplastic and cytosolic pea (Pisum sativum L.) NADP-isocitrate dehydrogenases are distinct isoenzymes. PLANTA 1989; 178:157-163. [PMID: 24212744 DOI: 10.1007/bf00393190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/1988] [Accepted: 12/02/1988] [Indexed: 06/02/2023]
Abstract
Two NADP-isocitrate dehydrogenase isoenzymes designated as NADP-IDH1 and NADP-IDH2 (EC 1.1.1.42) were identified in pea (Pisum sativum) leaf extracts by diethylaminoethylcellulose chromatography. The predominant form was found to be NADP-IDH1 while NADP-IDH2 represented only about 4% of the total leaf enzyme activity. These enzymes share few common epitopes as NADP-IDH2 was poorly recognized by the specific polyclonal antibodies raised against NADP-IDH1, and as a consequence NADP-IDH2 does not result from a post-translational modification of NADP-IDH1. Subcellular fractionation and isolation of chloroplasts through a Percoll gradient, followed by the identification of the associated enzymes, showed that NADP-IDH1 is restricted to the cytosol and NADP-IDH2 to the chloroplasts. Compared with the cytosolic isoenzyme, NADP-IDH2 was more thermolabile and exhibited a lower optimum pH. The data reported in this paper constitute the first report that the chloroplastic NADP-IDH and the cytosolic NADP-IDH are two distinct isoenzymes. The possible functions of the two isoenzymes are discussed.
Collapse
Affiliation(s)
- R D Chen
- Physiologie Végétale Moléculaire URA CNRS D 1128, Université Paris Sud, Bâtiment 430, F-91405, Orsay Cedex, France
| | | | | | | |
Collapse
|
8
|
Chen R, Le Maréchal P, Vidal J, Jacquot JP, Gadal P. Purification and comparative properties of the cytosolic isocitrate dehydrogenases (NADP) from pea (Pisum sativum) roots and green leaves. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 175:565-72. [PMID: 3137028 DOI: 10.1111/j.1432-1033.1988.tb14229.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cytosolic isocitrate dehydrogenases (NADP-IDH) were purified to homogeneity from pea roots and green leaves with a high yield by ammonium sulfate precipitation, DEAE-cellulose chromatography, Sephacryl S-200 gel filtration, Matrex red-A affinity chromatography and phenyl-Superose HR 5/5 HPLC. Both isoenzymes were dimeric proteins, consisting of two apparently identical 41-kDa subunits, having similar secondary structures with an alpha-helical content of 20% and a beta-pleated sheet content of 43%. Similarly immunoassays suggested that the two isoenzymes were closely related in terms of antigenic determinants. However, the two proteins were distinguishable by their electrophoretic mobilities and amino acid compositions. The profiles of the two isoenzymes as a function of pH were similar and exhibited a broad pH optimum from 8.5 to 9.0 with Mg2+ as cofactor and 8.0 to 8.5 when Mn2+ was used. Compared to the root isoenzyme, the leaf NADP-IDH appeared to be more heat-labile. However, these isoenzymes exhibited similar behavior for thermal denaturation in the presence of bovine serum albumin and were stabilized upon addition of substrate, metal and coenzyme. Their values of activation energy were estimated as 47 kJ/mol. When using Mn2+ as cofactor, the two isoenzymes displayed identical Km(Mn2+), Km(DL-isocitrate) and Km(NADP) values, which were calculated to be 2.1 microM, 5.7 microM and 2.7 microM respectively. With Mg2+ as cofactor, their Km(Mg2+) K(DL-isocitrate)m and Km(NADP) values were also not statistically different, being 34.0 microM, 15.2 microM and 2.6 microM for the root NADP-IDH, and 29.0 microM, 20.3 microM and 3.1 microM for the leaf isoenzyme. From the above data it can be concluded that although the cytosolic NADP-IDH in pea roots and leaves are organ-specific isozymes, their similar physicochemical and kinetic properties suggest that the two isozymes might be involved in identical metabolic functions.
Collapse
Affiliation(s)
- R Chen
- Physiologie Végétale Moléculaire, Unité Associée CNRS, Université Paris, Orsay, France
| | | | | | | | | |
Collapse
|
9
|
Munneke LR, Collier GE. Cytoplasmic and mitochondrial arginine kinases in Drosophila: evidence for a single gene. Biochem Genet 1988; 26:131-41. [PMID: 2837172 DOI: 10.1007/bf00555494] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitochondrial and cytoplasmic isozymes of arginine kinase have been identified in Drosophila melanogaster. On the basis of their immunological similarity, parallel dosage responses, and cosegregation of electrophoretic mobility differences, it is concluded that both isozymes are the product of a single gene. The consequences of this in relation to the regulation and evolution of this unusual gene-enzyme system are discussed. It is inferred that the origin of the phosphagen shuttle must predate the divergence of invertebrates and vertebrates.
Collapse
Affiliation(s)
- L R Munneke
- Department of Biological Sciences, Illinois State University, Normal 61761
| | | |
Collapse
|
10
|
Gonzalez-Villaseñor LI, Powers DA. A multilocus system for studying tissue and subcellular specialization. The pH and temperature dependence of the two major NADP-dependent isocitrate dehydrogenase isozymes of the fish Fundulus heteroclitus. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67268-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|