1
|
Tomsic J, Caserta E, Pon CL, Gualerzi CO. Weakening the IF2-fMet-tRNA Interaction Suppresses the Lethal Phenotype Caused by GTPase Inactivation. Int J Mol Sci 2021; 22:ijms222413238. [PMID: 34948034 PMCID: PMC8709274 DOI: 10.3390/ijms222413238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/12/2023] Open
Abstract
Substitution of the conserved Histidine 448 present in one of the three consensus elements characterizing the guanosine nucleotide binding domain (IF2 G2) of Escherichia coli translation initiation factor IF2 resulted in impaired ribosome-dependent GTPase activity which prevented IF2 dissociation from the ribosome, caused a severe protein synthesis inhibition, and yielded a dominant lethal phenotype. A reduced IF2 affinity for the ribosome was previously shown to suppress this lethality. Here, we demonstrate that also a reduced IF2 affinity for fMet-tRNA can suppress this dominant lethal phenotype and allows IF2 to support faithful translation in the complete absence of GTP hydrolysis. These results strengthen the premise that the conformational changes of ribosome, IF2, and fMet-tRNA occurring during the late stages of translation initiation are thermally driven and that the energy generated by IF2-dependent GTP hydrolysis is not required for successful translation initiation and that the dissociation of the interaction between IF2 C2 and the acceptor end of fMet-tRNA, which represents the last tie anchoring the factor to the ribosome before the formation of an elongation-competent 70S complex, is rate limiting for both the adjustment of fMet-tRNA in a productive P site and the IF2 release from the ribosome.
Collapse
Affiliation(s)
- Jerneja Tomsic
- Laboratory of Genetics, Department of Bioscience and Biotechnology, University of Camerino, 62032 Camerino, Italy; (J.T.); (E.C.); (C.L.P.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Enrico Caserta
- Laboratory of Genetics, Department of Bioscience and Biotechnology, University of Camerino, 62032 Camerino, Italy; (J.T.); (E.C.); (C.L.P.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Cynthia L. Pon
- Laboratory of Genetics, Department of Bioscience and Biotechnology, University of Camerino, 62032 Camerino, Italy; (J.T.); (E.C.); (C.L.P.)
| | - Claudio O. Gualerzi
- Laboratory of Genetics, Department of Bioscience and Biotechnology, University of Camerino, 62032 Camerino, Italy; (J.T.); (E.C.); (C.L.P.)
- Correspondence: ; Tel.: +39-3391602957
| |
Collapse
|
2
|
Cheng-Guang H, Gualerzi CO. The Ribosome as a Switchboard for Bacterial Stress Response. Front Microbiol 2021; 11:619038. [PMID: 33584583 PMCID: PMC7873864 DOI: 10.3389/fmicb.2020.619038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/03/2020] [Indexed: 12/29/2022] Open
Abstract
As free-living organisms, bacteria are subject to continuous, numerous and occasionally drastic environmental changes to which they respond with various mechanisms which enable them to adapt to the new conditions so as to survive. Here we describe three situations in which the ribosome and its functions represent the sensor or the target of the stress and play a key role in the subsequent cellular response. The three stress conditions which are described are those ensuing upon: a) zinc starvation; b) nutritional deprivation, and c) temperature downshift.
Collapse
|
3
|
Tomsic J, Smorlesi A, Caserta E, Giuliodori AM, Pon CL, Gualerzi CO. Disparate Phenotypes Resulting from Mutations of a Single Histidine in Switch II of Geobacillus stearothermophilus Translation Initiation Factor IF2. Int J Mol Sci 2020; 21:ijms21030735. [PMID: 31979156 PMCID: PMC7037019 DOI: 10.3390/ijms21030735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022] Open
Abstract
The conserved Histidine 301 in switch II of Geobacillus stearothermophilus IF2 G2 domain was substituted with Ser, Gln, Arg, Leu and Tyr to generate mutants displaying different phenotypes. Overexpression of IF2H301S, IF2H301L and IF2H301Y in cells expressing wtIF2, unlike IF2H301Q and IF2H301R, caused a dominant lethal phenotype, inhibiting in vivo translation and drastically reducing cell viability. All mutants bound GTP but, except for IF2H301Q, were inactive in ribosome-dependent GTPase for different reasons. All mutants promoted 30S initiation complex (30S IC) formation with wild type (wt) efficiency but upon 30S IC association with the 50S subunit, the fMet-tRNA reacted with puromycin to different extents depending upon the IF2 mutant present in the complex (wtIF2 ≥ to IF2H301Q > IF2H301R >>> IF2H301S, IF2H301L and IF2H301Y) whereas only fMet-tRNA 30S-bound with IF2H301Q retained some ability to form initiation dipeptide fMet-Phe. Unlike wtIF2, all mutants, regardless of their ability to hydrolyze GTP, displayed higher affinity for the ribosome and failed to dissociate from the ribosomes upon 50S docking to 30S IC. We conclude that different amino acids substitutions of His301 cause different structural alterations of the factor, resulting in disparate phenotypes with no direct correlation existing between GTPase inactivation and IF2 failure to dissociate from ribosomes.
Collapse
|
4
|
Brandi A, Piersimoni L, Feto NA, Spurio R, Alix JH, Schmidt F, Gualerzi CO. Translation initiation factor IF2 contributes to ribosome assembly and maturation during cold adaptation. Nucleic Acids Res 2019; 47:4652-4662. [PMID: 30916323 PMCID: PMC6511846 DOI: 10.1093/nar/gkz188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/07/2019] [Accepted: 03/22/2019] [Indexed: 01/13/2023] Open
Abstract
Cold-stress in Escherichia coli induces de novo synthesis of translation initiation factors IF1, IF2 and IF3 while ribosome synthesis and assembly slow down. Consequently, the IFs/ribosome stoichiometric ratio increases about 3-fold during the first hours of cold adaptation. The IF1 and IF3 increase plays a role in translation regulation at low temperature (cold-shock-induced translational bias) but so far no specific role could be attributed to the extra copies of IF2. In this work, we show that the extra-copies of IF2 made after cold stress are associated with immature ribosomal subunits together with at least another nine proteins involved in assembly and/or maturation of ribosomal subunits. This finding, coupled with evidence that IF2 is endowed with GTPase-associated chaperone activity that promotes refolding of denatured GFP, and the finding that two cold-sensitive IF2 mutations cause the accumulation of immature ribosomal particles, indicate that IF2 is yet another GTPase protein that participates in ribosome assembly/maturation, especially at low temperatures. Overall, these findings are instrumental in redefining the functional role of IF2, which cannot be regarded as being restricted to its well documented functions in translation initiation of bacterial mRNA.
Collapse
Affiliation(s)
- Anna Brandi
- Laboratory of Genetics, University of Camerino, 62032 Camerino (MC), Italy
| | - Lolita Piersimoni
- Laboratory of Genetics, University of Camerino, 62032 Camerino (MC), Italy.,Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Naser Aliye Feto
- Laboratory of Genetics, University of Camerino, 62032 Camerino (MC), Italy
| | - Roberto Spurio
- Laboratory of Genetics, University of Camerino, 62032 Camerino (MC), Italy
| | - Jean-Hervé Alix
- Laboratory of Genetics, University of Camerino, 62032 Camerino (MC), Italy
| | - Frank Schmidt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Claudio O Gualerzi
- Laboratory of Genetics, University of Camerino, 62032 Camerino (MC), Italy
| |
Collapse
|
5
|
Dongre R, Folkers GE, Gualerzi CO, Boelens R, Wienk H. A model for the interaction of the G3-subdomain of Geobacillus stearothermophilus IF2 with the 30S ribosomal subunit. Protein Sci 2016; 25:1722-33. [PMID: 27364543 DOI: 10.1002/pro.2977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 11/10/2022]
Abstract
Bacterial translation initiation factor IF2 complexed with GTP binds to the 30S ribosomal subunit, promotes ribosomal binding of fMet-tRNA, and favors the joining of the small and large ribosomal subunits yielding a 70S initiation complex ready to enter the translation elongation phase. Within the IF2 molecule subdomain G3, which is believed to play an important role in the IF2-30S interaction, is positioned between the GTP-binding G2 and the fMet-tRNA binding C-terminal subdomains. In this study the solution structure of subdomain G3 of Geobacillus stearothermophilus IF2 has been elucidated. G3 forms a core structure consisting of two β-sheets with each four anti-parallel strands, followed by a C-terminal α-helix. In line with its role as linker between G3 and subdomain C1, this helix has no well-defined orientation but is endowed with a dynamic nature. The structure of the G3 core is that of a typical OB-fold module, similar to that of the corresponding subdomain of Thermus thermophilus IF2, and to that of other known RNA-binding modules such as IF2-C2, IF1 and subdomains II of elongation factors EF-Tu and EF-G. Structural comparisons have resulted in a model that describes the interaction between IF2-G3 and the 30S ribosomal subunit.
Collapse
Affiliation(s)
- Ramachandra Dongre
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Gert E Folkers
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Claudio O Gualerzi
- Laboratory of Genetics, Department of Biosciences and Biotechnology, University of Camerino, Italy
| | - Rolf Boelens
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | - Hans Wienk
- Department of Chemistry, NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| |
Collapse
|
6
|
Gualerzi CO, Pon CL. Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell Mol Life Sci 2015; 72:4341-67. [PMID: 26259514 PMCID: PMC4611024 DOI: 10.1007/s00018-015-2010-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023]
Abstract
Initiation of mRNA translation is a major checkpoint for regulating level and fidelity of protein synthesis. Being rate limiting in protein synthesis, translation initiation also represents the target of many post-transcriptional mechanisms regulating gene expression. The process begins with the formation of an unstable 30S pre-initiation complex (30S pre-IC) containing initiation factors (IFs) IF1, IF2 and IF3, the translation initiation region of an mRNA and initiator fMet-tRNA whose codon and anticodon pair in the P-site following a first-order rearrangement of the 30S pre-IC produces a locked 30S initiation complex (30SIC); this is docked by the 50S subunit to form a 70S complex that, following several conformational changes, positional readjustments of its ligands and ejection of the IFs, becomes a 70S initiation complex productive in initiation dipeptide formation. The first EF-G-dependent translocation marks the beginning of the elongation phase of translation. Here, we review structural, mechanistic and dynamical aspects of this process.
Collapse
MESH Headings
- Bacteria/genetics
- Bacteria/metabolism
- Binding Sites/genetics
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Models, Genetic
- Nucleic Acid Conformation
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
| | - Cynthia L Pon
- Laboratory of Genetics, University of Camerino, 62032, Camerino, Italy.
| |
Collapse
|
7
|
Fabbretti A, Brandi L, Milón P, Spurio R, Pon CL, Gualerzi CO. Translation initiation without IF2-dependent GTP hydrolysis. Nucleic Acids Res 2012; 40:7946-55. [PMID: 22723375 PMCID: PMC3439930 DOI: 10.1093/nar/gks569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Translation initiation factor IF2 is a guanine nucleotide-binding protein. The free energy change associated with guanosine triphosphate hydrolase (GTPase) activity of these proteins is believed to be the driving force allowing them to perform their functions as molecular switches. We examined role and relevance of IF2 GTPase and demonstrate that an Escherichia coli IF2 mutant bearing a single amino acid substitution (E571K) in its 30S binding domain (IF2-G3) can perform in vitro all individual translation initiation functions of wild type (wt) IF2 and supports faithful messenger RNA translation, despite having a reduced affinity for the 30S subunit and being completely inactive in GTP hydrolysis. Furthermore, the corresponding GTPase-null mutant of Bacillus stearothermophilus (E424K) can replace in vivo wt IF2 allowing an E. coli infB null mutant to grow with almost wt duplication times. Following the E571K (and E424K) mutation, which likely disrupts hydrogen bonding between subdomains G2 and G3, IF2 acquires a guanosine diphosphate (GDP)-like conformation, no longer responsive to GTP binding thereby highlighting the importance of interdomain communication in IF2. Our data underlie the importance of GTP as an IF2 ligand in the early initiation steps and the dispensability of the free energy generated by the IF2 GTPase in the late events of the translation initiation pathway.
Collapse
Affiliation(s)
- Attilio Fabbretti
- Laboratory of Genetics, Department of Biosciences and Biotechnology, University of Camerino, 62032 Camerino, Macerata, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Fischer JJ, Coatham ML, Bear SE, Brandon HE, De Laurentiis EI, Shields MJ, Wieden HJ. The ribosome modulates the structural dynamics of the conserved GTPase HflX and triggers tight nucleotide binding. Biochimie 2012; 94:1647-59. [PMID: 22554723 DOI: 10.1016/j.biochi.2012.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
The universally conserved GTPase HflX is a putative translation factor whose GTPase activity is stimulated by the 70S ribosome as well as the 50S but not the 30S ribosomal subunit. However, the details and mechanisms governing this interaction are only poorly understood. In an effort to further elucidate the functional mechanism of HflX, we examined its interaction with the 70S ribosome, the two ribosomal subunits (50S and 30S), as well as its ability to interact with guanine nucleotides in the respective ribosomal complexes using a highly purified in vitro system. Binding studies reported here demonstrate that HflX not only interacts with 50S and 70S particles, but also with the 30S subunit, independent of the nucleotide-bound state. A detailed pre-steady-state kinetic analysis of HflX interacting with a non-hydrolyzable analog of mant-GTP, coupled with an enzymatic probing assay utilizing limited trypsinolysis, reveal that HflX·GTP exists in a structurally distinct 50S- and 70S-bound form that stabilizes GTP binding up to 70 000-fold and that may represent the "GTPase-activated" state. This activation is likely required for efficient GTP-hydrolysis, and may be similar to that observed in elongation factor G. Results reported here address the surprising low affinity of free HflX for GTP and suggest that cellular HflX will mainly exist in the HflX·GTP·ribosome-bound form. A minimal model for the functional cycle of HflX is proposed.
Collapse
Affiliation(s)
- Jeffrey J Fischer
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Translation initiation is a crucial step of protein synthesis which largely defines how the composition of the cellular transcriptome is converted to the proteome and controls the response and adaptation to environmental stimuli. The efficiency of translation of individual mRNAs, and hence the basal shape of the proteome, is defined by the structures of the mRNA translation initiation regions. Initiation efficiency can be regulated by small molecules, proteins, or antisense RNAs, underscoring its importance in translational control. Although initiation has been studied in bacteria for decades, many aspects remain poorly understood. Recent evidence has suggested an unexpected diversity of pathways by which mRNAs can be recruited to the bacterial ribosome, the importance of structural dynamics of initiation intermediates, and the complexity of checkpoints for mRNA selection. In this review, we discuss how the ribosome shapes the landscape of translation initiation by non-linear kinetic processing of the transcriptome information. We summarize the major pathways by which mRNAs enter the ribosome depending on the structure of their 5' untranslated regions, the assembly and the structure of initiation intermediates, the individual and synergistic roles of initiation factors, and the mechanisms of mRNA and initiator tRNA selection.
Collapse
Affiliation(s)
- Pohl Milón
- Department of Physical Biochemistry, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | | |
Collapse
|
10
|
Wienk H, Tishchenko E, Belardinelli R, Tomaselli S, Dongre R, Spurio R, Folkers GE, Gualerzi CO, Boelens R. Structural dynamics of bacterial translation initiation factor IF2. J Biol Chem 2012; 287:10922-32. [PMID: 22308033 DOI: 10.1074/jbc.m111.333393] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial translation initiation factor IF2 promotes ribosomal subunit association, recruitment, and binding of fMet-tRNA to the ribosomal P-site and initiation dipeptide formation. Here, we present the solution structures of GDP-bound and apo-IF2-G2 of Bacillus stearothermophilus and provide evidence that this isolated domain binds the 50 S ribosomal subunit and hydrolyzes GTP. Differences between the free and GDP-bound structures of IF2-G2 suggest that domain reorganization within the G2-G3-C1 regions underlies the different structural requirements of IF2 during the initiation process. However, these structural signals are unlikely forwarded from IF2-G2 to the C-terminal fMet-tRNA binding domain (IF2-C2) because the connected IF2-C1 and IF2-C2 modules show completely independent mobility, indicating that the bacterial interdomain connector lacks the rigidity that was found in the archaeal IF2 homolog aIF5B.
Collapse
Affiliation(s)
- Hans Wienk
- Bijvoet Center for Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Activation of initiation factor 2 by ligands and mutations for rapid docking of ribosomal subunits. EMBO J 2010; 30:289-301. [PMID: 21151095 DOI: 10.1038/emboj.2010.328] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/17/2010] [Indexed: 11/08/2022] Open
Abstract
We previously identified mutations in the GTPase initiation factor 2 (IF2), located outside its tRNA-binding domain, compensating strongly (A-type) or weakly (B-type) for initiator tRNA formylation deficiency. We show here that rapid docking of 30S with 50S subunits in initiation of translation depends on switching 30S subunit-bound IF2 from its inactive to active form. Activation of wild-type IF2 requires GTP and formylated initiator tRNA (fMet-tRNA(i)). In contrast, extensive activation of A-type IF2 occurs with only GTP or with GDP and fMet-tRNA(i), implying a passive role for initiator tRNA as activator of IF2 in subunit docking. The theory of conditional switching of GTPases quantitatively accounts for all our experimental data. We find that GTP, GDP, fMet-tRNA(i) and A-type mutations multiplicatively increase the equilibrium ratio, K, between active and inactive forms of IF2 from a value of 4 × 10(-4) for wild-type apo-IF2 by factors of 300, 8, 80 and 20, respectively. Functional characterization of the A-type mutations provides keys to structural interpretation of conditional switching of IF2 and other multidomain GTPases.
Collapse
|
12
|
Shields MJ, Fischer JJ, Wieden HJ. Toward understanding the function of the universally conserved GTPase HflX from Escherichia coli: a kinetic approach. Biochemistry 2009; 48:10793-802. [PMID: 19824612 DOI: 10.1021/bi901074h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein synthesis is a highly conserved process in all living cells involving several members of the translation factor (TRAFAC) class of P-loop GTPases, which play essential roles during translation. The universally conserved GTPase HflX has previously been shown to associate with the 50S ribosomal subunit, as well as to bind and hydrolyze both GTP and ATP. In an effort to elucidate the cellular function of HflX, we have determined the kinetic parameters governing the interaction between HflX and these two purine nucleotides using fluorescence-based steady-state and pre-steady-state techniques. On the basis of these, we demonstrate that the GTPase and ATPase activity of HflX is stimulated by 50S and 70S ribosomal particles. However, given cellular concentrations of the two purine nucleotides, approximately 80% of HflX will be bound to guanine nucleotides, indicating that HflX may function as a guanine nucleotide dependent enzyme in vivo. Using a highly purified reconstituted in vitro translation system, we show that the GTPase activity of HflX is also stimulated by poly(U) programmed 70S ribosomes and that the ribosome-dependent GTPase stimulation is specifically inhibited by the antibiotic chloramphenicol, which binds to the large ribosomal subunit, but not by kanamycin, an aminoglycoside targeting the small ribosomal subunit.
Collapse
Affiliation(s)
- Michael J Shields
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | |
Collapse
|
13
|
Hauryliuk V, Mitkevich VA, Draycheva A, Tankov S, Shyp V, Ermakov A, Kulikova AA, Makarov AA, Ehrenberg M. Thermodynamics of GTP and GDP binding to bacterial initiation factor 2 suggests two types of structural transitions. J Mol Biol 2009; 394:621-6. [PMID: 19837086 DOI: 10.1016/j.jmb.2009.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/05/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
During initiation of messenger RNA translation in bacteria, the GTPase initiation factor (IF) 2 plays major roles in the assembly of the preinitiation 30S complex and its docking to the 50S ribosomal subunit leading to the 70S initiation complex, ready to form the first peptide bond in a nascent protein. Rapid and accurate initiation of bacterial protein synthesis is driven by conformational changes in IF2, induced by GDP-GTP exchange and GTP hydrolysis. We have used isothermal titration calorimetry and linear extrapolation to characterize the thermodynamics of the binding of GDP and GTP to free IF2 in the temperature interval 4-37 degrees C. IF2 binds with about 20-fold and 2-fold higher affinity for GDP than for GTP at 4 and 37 degrees C, respectively. The binding of IF2 to both GTP and GDP is characterized by a large heat capacity change (-868+/-25 and -577+/-23 cal mol(-1) K(-1), respectively), associated with compensatory changes in binding entropy and enthalpy. From our data, we propose that GTP binding to IF2 leads to protection of hydrophobic amino acid residues from solvent by the locking of switch I and switch II loops to the gamma-phosphate of GTP, as in the case of elongation factor G. From the large heat capacity change (also upon GDP binding) not seen in the case of elongation factor G, we propose the existence of yet another type of conformational change in IF2, which is induced by GDP and GTP alike. Also, this transition is likely to protect hydrophobic groups from solvent, and its functional relevance is discussed.
Collapse
Affiliation(s)
- Vasili Hauryliuk
- Institute of Technology, University of Tartu, Nooruse Street 1, Room 425, 50411 Tartu, Estonia
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
This theoretical work covers structural and biochemical aspects of nucleotide binding and GDP/GTP exchange of GTP hydrolases belonging to the family of small GTPases. Current models of GDP/GTP exchange regulation are often based on two specific assumptions. The first is that the conformation of a GTPase is switched by the exchange of the bound nucleotide from GDP to GTP or vice versa. The second is that GDP/GTP exchange is regulated by a guanine nucleotide exchange factor, which stabilizes a GTPase conformation with low nucleotide affinity. Since, however, recent biochemical and structural data seem to contradict this view, we present a generalized scheme for GTPase action. This novel ansatz accounts for those important cases when conformational switching in addition to guanine nucleotide exchange requires the presence of cofactors, and gives a more nuanced picture of how the nucleotide exchange is regulated. The scheme is also used to discuss some problems of interpretation that may arise when guanine nucleotide exchange mechanisms are inferred from experiments with analogs of GTP, like GDPNP, GDPCP, and GDP gamma S.
Collapse
|
15
|
Žoldák G, Sedlák E, Wolfrum A, Musatov A, Fedunová D, Szkaradkiewicz K, Sprinzl M. Multidomain Initiation Factor 2 from Thermus thermophilus Consists of the Individual Autonomous Domains. Biochemistry 2008; 47:4992-5005. [DOI: 10.1021/bi702295g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriel Žoldák
- Department of Biochemistry, Faculty of Sciences, P. J. Šafárik University, Kośice, Slovakia, Laboratorium für Biochemie, Universität Bayreuth, Bayreuth, Germany, Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229, and Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
| | - Erik Sedlák
- Department of Biochemistry, Faculty of Sciences, P. J. Šafárik University, Kośice, Slovakia, Laboratorium für Biochemie, Universität Bayreuth, Bayreuth, Germany, Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229, and Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
| | - Alexandra Wolfrum
- Department of Biochemistry, Faculty of Sciences, P. J. Šafárik University, Kośice, Slovakia, Laboratorium für Biochemie, Universität Bayreuth, Bayreuth, Germany, Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229, and Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
| | - Andrej Musatov
- Department of Biochemistry, Faculty of Sciences, P. J. Šafárik University, Kośice, Slovakia, Laboratorium für Biochemie, Universität Bayreuth, Bayreuth, Germany, Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229, and Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
| | - Diana Fedunová
- Department of Biochemistry, Faculty of Sciences, P. J. Šafárik University, Kośice, Slovakia, Laboratorium für Biochemie, Universität Bayreuth, Bayreuth, Germany, Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229, and Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
| | - Karol Szkaradkiewicz
- Department of Biochemistry, Faculty of Sciences, P. J. Šafárik University, Kośice, Slovakia, Laboratorium für Biochemie, Universität Bayreuth, Bayreuth, Germany, Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229, and Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
| | - Mathias Sprinzl
- Department of Biochemistry, Faculty of Sciences, P. J. Šafárik University, Kośice, Slovakia, Laboratorium für Biochemie, Universität Bayreuth, Bayreuth, Germany, Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229, and Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
| |
Collapse
|
16
|
Grigoriadou C, Marzi S, Kirillov S, Gualerzi CO, Cooperman BS. A quantitative kinetic scheme for 70 S translation initiation complex formation. J Mol Biol 2007; 373:562-72. [PMID: 17868692 PMCID: PMC2083556 DOI: 10.1016/j.jmb.2007.07.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 10/23/2022]
Abstract
Association of the 30 S initiation complex (30SIC) and the 50 S ribosomal subunit, leading to formation of the 70 S initiation complex (70SIC), is a critical step of the translation initiation pathway. The 70SIC contains initiator tRNA, fMet-tRNA(fMet), bound in the P (peptidyl)-site in response to the AUG start codon. We have formulated a quantitative kinetic scheme for the formation of an active 70SIC from 30SIC and 50 S subunits on the basis of parallel rapid kinetics measurements of GTP hydrolysis, Pi release, light-scattering, and changes in fluorescence intensities of fluorophore-labeled IF2 and fMet-tRNA(f)(Met). According to this scheme, an initially formed labile 70 S complex, which promotes rapid IF2-dependent GTP hydrolysis, either dissociates reversibly into 30 S and 50 S subunits or is converted to a more stable form, leading to 70SIC formation. The latter process takes place with intervening conformational changes of ribosome-bound IF2 and fMet-tRNA(fMet), which are monitored by spectral changes of fluorescent derivatives of IF2 and fMet-tRNA(fMet). The availability of such a scheme provides a useful framework for precisely elucidating the mechanisms by which substituting the non-hydrolyzable analog GDPCP for GTP or adding thiostrepton inhibit formation of a productive 70SIC. GDPCP does not affect stable 70 S formation, but perturbs fMet-tRNA(fMet) positioning in the P-site. In contrast, thiostrepton severely retards stable 70 S formation, but allows normal binding of fMet-tRNA(fMet)(prf20) to the P-site.
Collapse
Affiliation(s)
- Christina Grigoriadou
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Stefano Marzi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Stanislas Kirillov
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Petersburg Nuclear Physics Institute RAS, 188300 Gatchina, Russia
| | - Claudio O. Gualerzi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Barry S. Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author:
| |
Collapse
|
17
|
Milon P, Tischenko E, Tomšic J, Caserta E, Folkers G, La Teana A, Rodnina MV, Pon CL, Boelens R, Gualerzi CO. The nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic sensor. Proc Natl Acad Sci U S A 2006; 103:13962-7. [PMID: 16968770 PMCID: PMC1599896 DOI: 10.1073/pnas.0606384103] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Indexed: 11/18/2022] Open
Abstract
Translational initiation factor 2 (IF2) is a guanine nucleotide-binding protein that can bind guanosine 3',5'-(bis) diphosphate (ppGpp), an alarmone involved in stringent response in bacteria. In cells growing under optimal conditions, the GTP concentration is very high, and that of ppGpp very low. However, under stress conditions, the GTP concentration may decline by as much as 50%, and that of ppGpp can attain levels comparable to those of GTP. Here we show that IF2 binds ppGpp at the same nucleotide-binding site and with similar affinity as GTP. Thus, GTP and the alarmone ppGpp can be considered two alternative physiologically relevant IF2 ligands. ppGpp interferes with IF2-dependent initiation complex formation, severely inhibits initiation dipeptide formation, and blocks the initiation step of translation. Our data suggest that IF2 has the properties of a cellular metabolic sensor and regulator that oscillates between an active GTP-bound form under conditions allowing active protein syntheses and an inactive ppGpp-bound form when shortage of nutrients would be detrimental, if not accompanied by slackening of this synthesis.
Collapse
Affiliation(s)
- Pohl Milon
- *Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
- Institute of Physical Biochemistry, University of Witten/Herdecke, 58448 Witten, Germany
| | - Eugene Tischenko
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Jerneja Tomšic
- *Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
- Institute of Biochemistry, Polytechnic University of “The Marche,” 60131 Ancona, Italy; and
| | - Enrico Caserta
- *Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
- Institute of Biochemistry, Polytechnic University of “The Marche,” 60131 Ancona, Italy; and
| | - Gert Folkers
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Anna La Teana
- Institute of Biochemistry, Polytechnic University of “The Marche,” 60131 Ancona, Italy; and
| | - Marina V. Rodnina
- Institute of Physical Biochemistry, University of Witten/Herdecke, 58448 Witten, Germany
| | - Cynthia L. Pon
- *Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Claudio O. Gualerzi
- *Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| |
Collapse
|
18
|
Caserta E, Tomsic J, Spurio R, La Teana A, Pon CL, Gualerzi CO. Translation initiation factor IF2 interacts with the 30 S ribosomal subunit via two separate binding sites. J Mol Biol 2006; 362:787-99. [PMID: 16935296 DOI: 10.1016/j.jmb.2006.07.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/15/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
The functional properties of the two natural forms of Escherichia coli translation initiation factor IF2 (IF2alpha and IF2beta) and of an N-terminal deletion mutant of the factor (IF2DeltaN) lacking the first 294 residues, corresponding to the entire N-terminal domain, were analysed comparatively. The results revealed that IF2alpha and IF2beta display almost indistinguishable properties, whereas IF2DeltaN, although fully active in all steps of the translation initiation pathway, displays functional activities having properties and requirements distinctly different from those of the intact molecule. Indeed, binding of IF2DeltaN to the 30 S subunit, IF2DeltaN-dependent stimulation of fMet-tRNA binding to the ribosome and of initiation dipeptide formation strongly depend upon the presence of IF1 and GTP, unlike with IF2alpha and IF2beta. The present results indicate that, using two separate active sites, IF2 establishes two interactions with the 30 S ribosomal subunit which have different properties and functions. The first site, located in the N domain of IF2, is responsible for a high-affinity interaction which "anchors" the factor to the subunit while the second site, mainly located in the beta-barrel module homologous to domain II of EF-G and EF-Tu, is responsible for the functional ("core") interaction of IF2 leading to the decoding of fMet-tRNA in the 30 S subunit P-site. The first interaction is functionally dispensable, sensitive to ionic-strength variations and essentially insensitive to the nature of the guanosine nucleotide ligand and to the presence of IF1, unlike the second interaction which strongly depends upon the presence of IF1 and GTP.
Collapse
Affiliation(s)
- Enrico Caserta
- Laboratory of Genetics, Department of Biology, University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | | | |
Collapse
|
19
|
Arnold S, Siemann-Herzberg M, Schmid J, Reuss M. Model-based inference of gene expression dynamics from sequence information. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 100:89-179. [PMID: 16270657 DOI: 10.1007/b136414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A dynamic model of prokaryotic gene expression is developed that makes considerable use of gene sequence information. The main contribution arises from the fact that the combined gene expression model allows us to access the impact of altering a nucleotide sequence on the dynamics of gene expression rates mechanistically. The high level of detail of the mathematical model is considered as an important step towards bringing together the tremendous amount of biological in-depth knowledge that has been accumulated at the molecular level, using a systems level analysis (in the sense of a bottom-up, inductive approach). This enables to the model to provide highly detailed insights into the various steps of the protein expression process and it allows us to access possible targets for model-based design. Taken as a whole, the mathematical gene expression model presented in this study provides a comprehensive framework for a thorough analysis of sequence-related effects on the stages of mRNA synthesis, mRNA degradation and ribosomal translation, as well as their nonlinear interconnectedness. Therefore, it may be useful in the rational design of recombinant bacterial protein synthesis systems, the modulation of enzyme activities in pathway design, in vitro protein biosynthesis, and RNA-based vaccination.
Collapse
Affiliation(s)
- Sabine Arnold
- Biotechnology R&D, DSM Nutritional Products Ltd., Bldg. 203/113A, 4002 Basel, Switzerland
| | | | | | | |
Collapse
|
20
|
Laursen BS, Sørensen HP, Mortensen KK, Sperling-Petersen HU. Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 2005; 69:101-23. [PMID: 15755955 PMCID: PMC1082788 DOI: 10.1128/mmbr.69.1.101-123.2005] [Citation(s) in RCA: 418] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Valuable information on translation initiation is available from biochemical data and recently solved structures. We present a detailed description of current knowledge about the structure, function, and interactions of the individual components involved in bacterial translation initiation. The first section describes the ribosomal features relevant to the initiation process. Subsequent sections describe the structure, function, and interactions of the mRNA, the initiator tRNA, and the initiation factors IF1, IF2, and IF3. Finally, we provide an overview of mechanisms of regulation of the translation initiation event. Translation occurs on ribonucleoprotein complexes called ribosomes. The ribosome is composed of a large subunit and a small subunit that hold the activities of peptidyltransfer and decode the triplet code of the mRNA, respectively. Translation initiation is promoted by IF1, IF2, and IF3, which mediate base pairing of the initiator tRNA anticodon to the mRNA initiation codon located in the ribosomal P-site. The mechanism of translation initiation differs for canonical and leaderless mRNAs, since the latter is dependent on the relative level of the initiation factors. Regulation of translation occurs primarily in the initiation phase. Secondary structures at the mRNA ribosomal binding site (RBS) inhibit translation initiation. The accessibility of the RBS is regulated by temperature and binding of small metabolites, proteins, or antisense RNAs. The future challenge is to obtain atomic-resolution structures of complete initiation complexes in order to understand the mechanism of translation initiation in molecular detail.
Collapse
Affiliation(s)
- Brian Søgaard Laursen
- Department of Molecular Biology, Aarhus University, Gustav Wieds vej 10C, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
21
|
Spencer AC, Spremulli LL. The interaction of mitochondrial translational initiation factor 2 with the small ribosomal subunit. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1750:69-81. [PMID: 15935986 DOI: 10.1016/j.bbapap.2005.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/03/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
Bovine mitochondrial translational initiation factor 2 (IF-2(mt)) is organized into four domains, an N-terminal domain, a central G-domain and two C-terminal domains. These domains correspond to domains III-VI in the six-domain model of Escherichia coli IF-2. Variants in IF-2(mt) were prepared and tested for their abilities to bind the small (28S) subunit of the mitochondrial ribosome. The binding of wild-type IF-2(mt) was strong (K(d) approximately 10-20 nM) and was not affected by fMet-tRNA. Deletion of the N-terminal domain substantially reduced the binding of IF-2(mt) to 28S subunits. However, the addition of fMet-tRNA stimulated the binding of this variant at least 2-fold demonstrating that contacts between fMet-tRNA and IF-2(mt) can stabilize the binding of this factor to 28S subunits. No binding was observed for IF-2(mt) variants lacking the G-domain which probably plays a critical role in organizing the structure of IF-2(mt). IF-2(mt) contains a 37-amino acid insertion region between domains V and VI that is not found in the prokaryotic factors. Mutations in this region caused a significant reduction in the ability of the factor to promote initiation complex formation and to bind 28S subunits.
Collapse
Affiliation(s)
- Angela C Spencer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|
22
|
Marzi S, Knight W, Brandi L, Caserta E, Soboleva N, Hill WE, Gualerzi CO, Lodmell JS. Ribosomal localization of translation initiation factor IF2. RNA (NEW YORK, N.Y.) 2003; 9:958-69. [PMID: 12869707 PMCID: PMC1370462 DOI: 10.1261/rna.2116303] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Accepted: 05/15/2003] [Indexed: 05/22/2023]
Abstract
Bacterial translation initiation factor IF2 is a GTP-binding protein that catalyzes binding of initiator fMet-tRNA in the ribosomal P site. The topographical localization of IF2 on the ribosomal subunits, a prerequisite for understanding the mechanism of initiation complex formation, has remained elusive. Here, we present a model for the positioning of IF2 in the 70S initiation complex as determined by cleavage of rRNA by the chemical nucleases Cu(II):1,10-orthophenanthroline and Fe(II):EDTA tethered to cysteine residues introduced into IF2. Two specific amino acids in the GII domain of IF2 are in proximity to helices H3, H4, H17, and H18 of 16S rRNA. Furthermore, the junction of the C-1 and C-2 domains is in proximity to H89 and the thiostrepton region of 23S rRNA. The docking is further constrained by the requisite proximity of the C-2 domain with P-site-bound tRNA and by the conserved GI domain of the IF2 with the large subunit's factor-binding center. Comparison of our present findings with previous data further suggests that the IF2 orientation on the 30S subunit changes during the transition from the 30S to 70S initiation complex.
Collapse
Affiliation(s)
- Stefano Marzi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC) Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
O'Donnell SM, Janssen GR. Leaderless mRNAs bind 70S ribosomes more strongly than 30S ribosomal subunits in Escherichia coli. J Bacteriol 2002; 184:6730-3. [PMID: 12426363 PMCID: PMC135410 DOI: 10.1128/jb.184.23.6730-6733.2002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By primer extension inhibition assays, 70S ribosomes bound with higher affinity, or stability, than did 30S subunits to leaderless mRNAs containing AUG or GUG start codons. Addition of translation initiation factors affected ribosome binding to leaderless mRNAs. Our results suggest that translation of leaderless mRNAs might initiate through a pathway involving 70S ribosomes or 30S subunits lacking IF3.
Collapse
Affiliation(s)
- Sean M O'Donnell
- Department of Microbiology, Miami University, Oxford, Ohio 45056, USA
| | | |
Collapse
|
24
|
|
25
|
Larigauderie G, Laalami S, Nyengaard NR, Grunberg-Manago M, Cenatiempo Y, Mortensen KK, Sperling-Petersen HU. Mutation of Thr445 and Ile500 of initiation factor 2 G-domain affects Escherichia coli growth rate at low temperature. Biochimie 2000; 82:1091-8. [PMID: 11120350 DOI: 10.1016/s0300-9084(00)01200-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Escherichia coli protein synthesis initiation factor IF2 is a member of the large family of G-proteins. Along with translational elongation factors EF-Tu and EF-G and translational release factor RF-3, IF2 belongs to the subgroup of G-proteins that are part of the prokaryotic translational apparatus. The roles of IF2 and EF-Tu are similar: both promote binding of an aminoacyl-tRNA to the ribosome and hydrolyze GTP. In order to investigate the differences and similarities between EF-Tu and IF2 we have created point mutations in the G-domain of IF2, Thr445 to Cys, Ile500 to Cys, and the double mutation. Threonine 445 (X1), which corresponds to cysteine 81 in EF-Tu, is well conserved in the DX1X2GH consensus sequence that has been proposed to interact with GTP. The NKXD motif, in which X is isoleucine 500 in IF2, corresponds to cysteine 137 in EF-Tu, and is responsible for the binding of the guanine ring. The recombinant mutant proteins were expressed and tested in vivo for their ability to sustain growth of an Escherichia coli strain lacking the chromosomal copy of the infB gene coding for IF2. All mutated proteins resulted in cell viability when grown at 42 degrees C or 37 degrees C. However, Thr445 to Cys mutant showed a significant decrease in the growth rate at 25 degrees C. The mutant proteins were overexpressed and purified. As observed in vivo, a reduced activity at low temperature was measured when carrying out in vitro ribosome dependent GTPase and stimulation of ribosomal fMet-tRNAfMet binding.
Collapse
Affiliation(s)
- G Larigauderie
- Department of Molecular and Structural Biology, Aarhus University, 8000, Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
26
|
Grill S, Gualerzi CO, Londei P, Bläsi U. Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation. EMBO J 2000; 19:4101-10. [PMID: 10921890 PMCID: PMC306601 DOI: 10.1093/emboj/19.15.4101] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translation initiation in bacteria involves a stochastic binding mechanism in which the 30S ribosomal subunit first binds either to mRNA or to initiator tRNA, fMet-tRNA(f)(Met). Leaderless lambda cI mRNA did not form a binary complex with 30S ribosomes, which argues against the view that ribosomal recruitment signals other than a 5'-terminal start codon are essential for translation initiation of these mRNAs. We show that, in Escherichia coli, translation initiation factor 2 (IF2) selectively stimulates translation of lambda cI mRNA in vivo and in vitro. These experiments suggest that the start codon of leaderless mRNAs is recognized by a 30S-fMet-tRNA(f)(Met)-IF2 complex, an intermediate equivalent to that obligatorily formed during translation initiation in eukaryotes. We further show that leaderless lambda cI mRNA is faithfully translated in vitro in both archaebacterial and eukaryotic translation systems. This suggests that translation of leaderless mRNAs reflects a fundamental capability of the translational apparatus of all three domains of life and lends support to the hypothesis that the translation initiation pathway is universally conserved.
Collapse
Affiliation(s)
- S Grill
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, 1030 Vienna, Austria
| | | | | | | |
Collapse
|
27
|
Spurio R, Brandi L, Caserta E, Pon CL, Gualerzi CO, Misselwitz R, Krafft C, Welfle K, Welfle H. The C-terminal subdomain (IF2 C-2) contains the entire fMet-tRNA binding site of initiation factor IF2. J Biol Chem 2000; 275:2447-54. [PMID: 10644698 DOI: 10.1074/jbc.275.4.2447] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous protein unfolding studies had suggested that IF2 C, the 24. 5-kDa fMet-tRNA binding domain of Bacillus stearothermophilus translation initiation factor IF2, may consist of two subdomains. In the present work, the four Phe residues of IF2 C (positions 531, 599, 657, and 721) were replaced with Trp, yielding four variant proteins having intrinsic fluorescence markers in different positions of the molecule. Comparison of the circular dichroism and Trp fluorescence changes induced by increasing concentrations of guanidine hydrochloride demonstrated that IF2 C indeed consists of two subdomains: the more stable N-terminal (IF2 C-1) subdomain containing Trp-599, and the less stable C-terminal (IF2 C-2) subdomain containing Trp-721. Isolated subdomain IF2 C-2, which consists of just 110 amino acids (from Glu-632 to Ala-741), was found to bind fMet-tRNA with the same specificity and affinity as native IF2 or IF2 C-domain. Trimming IF2 C-2 from both N and C termini demonstrated that the minimal fragment still capable of fMet-binding consists of 90 amino acids. IF2 C-2 was further characterized by circular dichroism; by urea-, guanidine hydrochloride-, and temperature-induced unfolding; and by differential scanning calorimetry. The results indicate that IF2 C-2 is a globular molecule containing predominantly beta structures (25% antiparallel and 8% parallel beta strands) and turns (19%) whose structural properties are not grossly affected by the presence or absence of the N-terminal subdomain IF2 C-1.
Collapse
Affiliation(s)
- R Spurio
- Laboratory of Genetics, Department of Biology, University of Camerino, Camerino 62032, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Moreno JM, Drskjøtersen L, Kristensen JE, Mortensen KK, Sperling-Petersen HU. Characterization of the domains of E. coli initiation factor IF2 responsible for recognition of the ribosome. FEBS Lett 1999; 455:130-4. [PMID: 10428486 DOI: 10.1016/s0014-5793(99)00858-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have studied the interactions between the ribosome and the domains of Escherichia coli translation initiation factor 2, using an in vitro ribosomal binding assay with wild-type forms, N- and C-terminal truncated forms of IF2 as well as isolated structural domains. A deletion mutant of the factor consisting of the two N-terminal domains of IF2, binds to both 30S and 50S ribosomal subunits as well as to 70S ribosomes. Furthermore, a truncated form of IF2, lacking the two N-terminal domains, binds to 30S ribosomal subunits in the presence of IF1. In addition, this N-terminal deletion mutant IF2 possess a low but significant affinity for the 70S ribosome which is increased by addition of IF1. The isolated C-terminal domain of IF2 has no intrinsic affinity for the ribosome nor does the deletion of this domain from IF2 affect the ribosomal binding capability of IF2. We conclude that the N-terminus of IF2 is required for optimal interaction of the factor with both 30S and 50S ribosomal subunits. A structural model for the interaction of IF2 with the ribosome is presented.
Collapse
Affiliation(s)
- J M Moreno
- Department of Biostructural Chemistry, Institute of Molecular and Structural Biology, Aarhus University, Denmark
| | | | | | | | | |
Collapse
|
29
|
Luchin S, Putzer H, Hershey JW, Cenatiempo Y, Grunberg-Manago M, Laalami S. In vitro study of two dominant inhibitory GTPase mutants of Escherichia coli translation initiation factor IF2. Direct evidence that GTP hydrolysis is necessary for factor recycling. J Biol Chem 1999; 274:6074-9. [PMID: 10037688 DOI: 10.1074/jbc.274.10.6074] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently shown that the Escherichia coli initiation factor 2 (IF2) G-domain mutants V400G and H448E do not support cell survival and have a strong negative effect on growth even in the presence of wild-type IF2. We have isolated both mutant proteins and performed an in vitro study of their main functions. The affinity of both mutant proteins for GTP is almost unchanged compared with wild-type IF2. However, the uncoupled GTPase activity of the V400G and H448E mutants is severely impaired, the Vmax values being 11- and 40-fold lower, respectively. Both mutant forms promoted fMet-tRNAfMet binding to 70 S ribosomes with similar efficiencies and were as sensitive to competitive inhibition by GDP as wild-type IF2. Formation of the first peptide bond, as measured by the puromycin reaction, was completely inhibited in the presence of the H448E mutant but still significant in the case of the V400G mutant. Sucrose density gradient centrifugation revealed that, in contrast to wild-type IF2, both mutant proteins stay blocked on the ribosome after formation of the 70 S initiation complex. This probably explains their dominant negative effect in vivo. Our results underline the importance of GTP hydrolysis for the recycling of IF2.
Collapse
Affiliation(s)
- S Luchin
- UPR9073 du CNRS, Institut de Biologie Physico-Chimique 13, rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Moreno JM, Kildsgaard J, Siwanowicz I, Mortensen KK, Sperling-Petersen HU. Binding of Escherichia coli initiation factor IF2 to 30S ribosomal subunits: a functional role for the N-terminus of the factor. Biochem Biophys Res Commun 1998; 252:465-71. [PMID: 9826553 DOI: 10.1006/bbrc.1998.9664] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the initiation step of bacterial protein synthesis initiation factor IF2 has to join the 30S ribosomal subunit in order to promote the binding of the fMet-tRNAMetf. In order to identify regions within IF2 which may be involved in the primary ribosome-factor interaction, we have constructed several C-terminal and N-terminal truncated forms of the factor as well as isolated structural domains, and tested them in a 30S ribosomal binding assay in vitro. Monoclonal antibodies with epitopes located within the two N-terminal domains of IF2 were used in these experiments. Hitherto, no function has been allocated to the N-terminal region of IF2. Here we show that a mutant consisting of the two N-terminal domains has intrinsic affinity to the ribosomal subunit. Furthermore, a deletion mutant of IF2 which is lacking the two N-terminal domains shows negligible affinity. Moreover mAb with epitopes located within domain II strongly inhibits the binding capacity of IF2 to the 30S ribosomal subunit, whereas mAb with epitopes mapped within domain I do not affect the binding of the factor. The C-terminal domain of IF2 shows no affinity for the small ribosomal subunit. In addition, mutants with C-terminal deletions are not significantly affected in this interaction. Therefore, we conclude that the N-terminus of IF2 has affinity per se to bind the ribosomal subunit, with domain II being directly involved in the interaction.
Collapse
Affiliation(s)
- J M Moreno
- Department of Biostructural Chemistry, Institute of Molecular and Structural Biology, Aarhus University, Gustav Wieds Vej 10, Aarhus C, DK-8000, Denmark
| | | | | | | | | |
Collapse
|
31
|
Vornlocher HP, Scheible WR, Faulhammer HG, Sprinzl M. Identification and purification of translation initiation factor 2 (IF2) from Thermus thermophilus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:66-71. [PMID: 9030723 DOI: 10.1111/j.1432-1033.1997.66_1a.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Translation initiation factor 2 (IF2) is one of three protein factors required for initiation of protein synthesis in eubacteria. The protein is responsible for binding the initiator RNA to the ribosomal P site. IF2 is a member of the GTP GDP-binding protein superfamily. In the extreme thermophilic bacterium Thermus thermophilus, IF2 was identified as a 66-kDa protein by affinity labeling and immunoblotting. The protein was purified to homogeneity. The specific activity indicates a stoichiometric IF2-mediated binding of formylmethionine-tRNA to 70S ribosomes. The N-terminal amino acid sequences of the intact protein and of two proteolytic fragments of 25 kDa and 40 kDa were determined. Comparison with other bacterial IF2 sequences indicates a similar domain architecture in all bacterial IF2 proteins.
Collapse
Affiliation(s)
- H P Vornlocher
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | | | |
Collapse
|
32
|
Ma J, Spremulli LL. Expression, purification, and mechanistic studies of bovine mitochondrial translational initiation factor 2. J Biol Chem 1996; 271:5805-11. [PMID: 8621449 DOI: 10.1074/jbc.271.10.5805] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A complete cDNA clone encoding bovine mitochondrial translational initiation factor 2 (IF-2mt) has been obtained. The regions of the cDNA corresponding to mature IF-2mt and several of its functional domains have been expressed in Escherichia coli as histidine-tagged proteins. The precursor (approximately 90 kDa) and mature (approximately 85 kDa) forms of IF-2mt are toxic to E. coli and can only be expressed at low levels. Shorter forms of this factor (approximately 80 and approximately 72 kDa) are also found during the expression of mature IF-2mt. The various forms of IF-2mt can be separated by high performance liquid chromatography. All of these forms are active in promoting the GTP-dependent binding of formyl-Met-tRNA to the small subunit of either E. coli or bovine mitochondrial ribosomes. IF-2mt can bind to mitochondrial ribosomes in the absence of GTP, initiator tRNA, or messenger RNA. The presence of GTP stimulates IF-2mt binding to ribosomes about 3-fold. IF-2mt interacts only weakly with GTP or with the initiator tRNA in the absence of ribosomes. Molecular dissection of IF-2mt shows that a long deletion (approximately 150 amino acid residues) from the NH2-terminal region does not affect its activity in vitro. The COOH domain of IF-2mt (amino acid residues 332-727) can bind to ribosomes even though it does not promote initiator-tRNA binding.
Collapse
Affiliation(s)
- J Ma
- Department of Chemistry and Lineberger Comprehensive Cancer Research Center, University of North Carolina, Chapel Hill, 27599-3290, USA
| | | |
Collapse
|
33
|
Laalami S, Grentzmann G, Bremaud L, Cenatiempo Y. Messenger RNA translation in prokaryotes: GTPase centers associated with translational factors. Biochimie 1996; 78:577-89. [PMID: 8955901 DOI: 10.1016/s0300-9084(96)80004-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During the decoding of messenger RNA, each step of the translational cycle requires the intervention of protein factors and the hydrolysis of one or more GTP molecule(s). Of the prokaryotic translational factors, IF2, EF-Tu, SELB, EF-G and RF3 are GTP-binding proteins. In this review we summarize the latest findings on the structures and the roles of these GTPases in the translational process.
Collapse
Affiliation(s)
- S Laalami
- Institut de Biologie Moléculaire et d'Ingénierie Génétique, URA-CNRS 1172, Université de Poitiers, France
| | | | | | | |
Collapse
|
34
|
Laalami S, Timofeev AV, Putzer H, Leautey J, Grunberg-Manago M. In vivo study of engineered G-domain mutants of Escherichia coli translation initiation factor IF2. Mol Microbiol 1994; 11:293-302. [PMID: 8170391 DOI: 10.1111/j.1365-2958.1994.tb00309.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the IF2-catalysed formation of the 30S initiation complex, the GTP requirement and its subsequent hydrolysis during 70S complex formation are considered to be essential for translation initiation in Escherichia coli. In order to clarify the role of certain amino acid residues believed to be crucial for the GTP hydrolytic activity of E. coli IF2, we have introduced seven single amino acid substitutions into its GTP-binding site (Gly for Val-400; Thr for Pro-446; Gly, Glu, Gln for His-448; and Asn, Glu for Asp-501). These mutated IF2 proteins were expressed in vivo in physiological quantities and tested for their ability to maintain the growth of an E. coli strain from which the functional chromosomal copy of the infB gene has been deleted. Only one of the mutated proteins (Asp-501 to Glu) was able to sustain cell viability and several displayed a dominant negative effect. These results emphasize that the amino acid residues we substituted are essential for the IF2 functions and demonstrate the importance of GTP hydrolysis in translation initiation. These findings are discussed in relation to a previously proposed theoretical model for the IF2 G-domain.
Collapse
Affiliation(s)
- S Laalami
- URA 1139 du CNRS, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | |
Collapse
|
35
|
Ma L, Spremulli L. Immunological characterization of the complex forms of chloroplast translational initiation factor 2 from Euglena gracilis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36968-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
Severini M, Choli T, La Teana A, Gualerzi CO. Proteolysis of Bacillus stearothermophilus IF2 and specific protection by fMet-tRNA. FEBS Lett 1992; 297:226-8. [PMID: 1544401 DOI: 10.1016/0014-5793(92)80543-p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Translation initiation factor IF2 from Bacillus stearothermophilus (741 amino acids, Mr 82,043) was subjected to trypsinolysis alone or in the presence of fMet-tRNA. The initiator tRNA was found to protect very efficiently the Arg308-Ala309 bond within the GTP binding site of IF2 and, more weakly, three bonds (Lys146-Gln147, Lys154-Glu155 and Arg519-Ser520). The first two are located at the border between the non-conserved, dispensable (for translation) N-terminal portion and the conserved G-domain of the protein, the third is located at the border between the G- and C-domains. Since IF2 is known to interact with fMet-tRNA through its protease-resistant C- (carboxyl terminus) domain, the observed protection suggests that, upon binding of fMet-tRNA, long-distance tertiary interactions between the IF2 domains may take place.
Collapse
Affiliation(s)
- M Severini
- Department of Biology, University of Camerino, Italy
| | | | | | | |
Collapse
|
37
|
Liao H, Spremulli L. Initiation of protein synthesis in animal mitochondria. Purification and characterization of translational initiation factor 2. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54767-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Gualerzi C, Severini M, Spurio R, La Teana A, Pon C. Molecular dissection of translation initiation factor IF2. Evidence for two structural and functional domains. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55305-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Severini M, Choli T, La Teana A, Gualerzi CO. Proteolysis of Bacillus stearothermophilus IF2 and specific protection by GTP. FEBS Lett 1990; 276:14-6. [PMID: 2265694 DOI: 10.1016/0014-5793(90)80495-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Translation initiation factor IF2 from Bacillus stearothermophilus (741 amino acids, Mr = 82,043) was subjected to trypsinolysis alone or in the presence of GTP. Following electroblotting and automated amino acid sequencing of the resulting peptides, the location and the sequential order of the main cleavage sites were identified. Trypsinolysis of IF2 ultimately generates two compact domains: a 24.5 kDa C-terminal fragment and a 40 kDa G-fragment which is obtained only in the presence of GTP which strongly protects a cleavage site within the GTP binding domain.
Collapse
Affiliation(s)
- M Severini
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | |
Collapse
|
40
|
Lapadat MA, Spremulli LL. Effect of Guanine Nucleotides on the Conformation and Stability of Chloroplast Elongation Factor Tu. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83574-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Celano B, Pawlik RT, Gualerzi CO. Interaction of Escherichia coli translation-initiation factor IF-1 with ribosomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 178:351-5. [PMID: 3061814 DOI: 10.1111/j.1432-1033.1988.tb14457.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The interaction between Escherichia coli translation-initiation factor IF-1 and ribosomes was studied in binding experiments by Airfuge centrifugation. IF-1 binds to the 30S, but not to the 50S, ribosomal subunit and its binding is strongly stimulated by IF-3 and IF-2, either alone or in combination. From the dependence of the Kd of the 30S-subunit--IF-1 complex on ionic strength, it can be concluded that IF-1 binds primarily via an ionic interaction, most likely with the 16S rRNA, with the minimum number of ion pairs involved being 2.7-3.6. The 30S-subunit--IF-1 interaction is unaffected by temperature changes between 11 degrees C and 44 degrees C and is thus accompanied by a negligible enthalpy change. It is concluded that the interaction is an entropy-driven process triggered mainly by the release of counter ions from the RNA phosphates. Titration of 30S-subunit--IF-1 complexes with 50S subunits causes the ejection of the factor indicating that IF-1 is released from the ribosomes during the subunit association step which marks the transition from a 30S-initiation-complex to a 70S initiation complex.
Collapse
Affiliation(s)
- B Celano
- Max-Planck-Institut für Molekulare Genetik, West Berlin
| | | | | |
Collapse
|
42
|
|
43
|
Cannistraro S, Petrillo C, Sacchetti F, Calogero R, Gualerzi C. Neutron diffraction evidence for substrate-triggered intermolecular interactions in the ribosomal protein IF-2. Chem Phys Lett 1987. [DOI: 10.1016/0009-2614(87)80161-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Dholakia J, Wahba A. The isolation and characterization from rabbit reticulocytes of two forms of eukaryotic initiation factor 2 having different beta-polypeptides. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61092-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Lammi M, Pon CL, Gualerzi CO. The NH2-terminal cleavage of Escherichia coli translational initiation factor IF3. A mechanism to control the intracellular level of the factor? FEBS Lett 1987; 215:115-21. [PMID: 3552730 DOI: 10.1016/0014-5793(87)80124-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A short form of Escherichia coli translational initiation factor IF3, repeatedly found both in vivo and in vitro, lacking the positively charged N-terminal hexapeptide has been produced by mild trypsinization. The properties of this short form of IF3 have been studied. Compared to the long native form of the factor, the shortened IF3 displays a markedly decreased thermal stability and affinity for the 30 S ribosomal subunit, as well as a reduced biological activity in protein synthesis. Following the loss of the N-terminal hexapeptide, a second peptide bond (Lys-90-Val-91) becomes easily accessible to proteolytic attack suggesting that formation of the short IF3 may be the first step in the physiological degradation of the factor.
Collapse
|
46
|
Brombach M, Gualerzi CO, Nakamura Y, Pon CL. Molecular cloning and sequence of the Bacillus stearothermophilus translational initiation factor IF2 gene. MOLECULAR & GENERAL GENETICS : MGG 1986; 205:97-102. [PMID: 3025563 DOI: 10.1007/bf02428037] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structural gene for the Bacillus stearothermophilus initiation factor IF2 was localized to a 6 kb HindIII restriction fragment by cross-hybridization with the SstI-SmaI fragment of the Escherichia coli infB gene. This fragment corresponds to the central region of the molecule containing the GTP-binding domain which is homologous in E. coli IF2, EF-Tu, EF-G and the human ras1 oncogene protein. After cloning into pACYC177, the HindIII fragment was further analysed by restriction mapping and cross-hybridization. A smaller (2.2 kb) SphI-HindIII fragment, which showed cross-hybridization, was subcloned into M13 phage and sequenced by the dideoxy chain-terminating method. This fragment was found to contain the entire IF2 gene except for the region coding for the N-terminus. This remaining region, coding for 45 amino acids, was located by homologous hybridization on an overlapping ClaI-SstI fragment which was also subcloned and sequenced. Overall, the B. stearothermophilus IF2 gene codes for a protein of 742 amino acids (Mr = 82,043) whose primary sequence displays extensive homology with the C-terminal two-thirds (but little or no homology with the N-terminal one-third) of the corresponding E. coli IF2 molecule. When cloned into an expression vector under the control of the lambda PL promoter, the B. stearothermophilus IF2 gene, reconstituted by ligation of the two separately cloned pieces, could be expressed at high levels in E. coli cells.
Collapse
|
47
|
|