1
|
Hartman FC, Harpel MR. Chemical and genetic probes of the active site of D-ribulose-1,5-bisphosphate carboxylase/oxygenase: a retrospective based on the three-dimensional structure. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 67:1-75. [PMID: 8322615 DOI: 10.1002/9780470123133.ch1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- F C Hartman
- Biology Division, Oak Ridge National Laboratory, TN
| | | |
Collapse
|
2
|
Styring S, Braenden R. Identification of ligands to the metal ion in copper(II)-activated ribulose 1,5-bisphosphate carboxylase/oxygenase by the use of electron paramagnetic resonance spectroscopy and oxygen-17 labeled ligands. Biochemistry 2002. [DOI: 10.1021/bi00342a048] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Pierce J, Lorimer GH, Reddy GS. Kinetic mechanism of ribulosebisphosphate carboxylase: evidence for an ordered, sequential reaction. Biochemistry 2002. [DOI: 10.1021/bi00355a029] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Edmondson DL, Kane HJ, Andrews T. Substrate isomerization inhibits ribulosebisphospate carboxylase-oxygenase during catalysis. FEBS Lett 2001. [DOI: 10.1016/0014-5793(90)80066-r] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Metzler DE, Metzler CM, Sauke DJ. Enzymatic Addition, Elimination, Condensation, and Isomerization. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Gourlaouën N, Florentin D, Marquet A. Synthesis of Protein Conjugates of 2-Carboxy-L-Arabinitol 5-Phosphate and 2-Carboxy-L-Ribitol 5-Phosphate. J Carbohydr Chem 1998. [DOI: 10.1080/07328309808001895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Cleland WW, Andrews TJ, Gutteridge S, Hartman FC, Lorimer GH. Mechanism of Rubisco: The Carbamate as General Base. Chem Rev 1998; 98:549-562. [PMID: 11848907 DOI: 10.1021/cr970010r] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- W. Wallace Cleland
- The Institute for Enzyme Research, University of Wisconsin, Madison, Wisconsin 53705, Research School of Biological Sciences, Australian National University, Canberra 2601, Australia, Central Research and Development Department, Dupont Company, Experimental Station, Wilmington, Delaware 19880-0402, and Protein Engineering Program, Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8077
| | | | | | | | | |
Collapse
|
8
|
Harpel MR, Larimer FW, Hartman FC. Multiple catalytic roles of His 287 of Rhodospirillum rubrum ribulose 1,5-bisphosphate carboxylase/oxygenase. Protein Sci 1998; 7:730-8. [PMID: 9541405 PMCID: PMC2143942 DOI: 10.1002/pro.5560070322] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Active-site His 287 of Rhodospirillum rubrum ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase interacts with the C3-hydroxyl of bound substrate or reaction-intermediate analogue (CABP), water molecules, and ligands for the activator metal-ion (Andersson I, 1996, J Mol Biol 259:160-174; Taylor TC, Andersson I, 1997, J Mol Biol 265:432-444). To test structure-based postulates of catalytic functionality, His 287 was replaced with Asn or Gln. The mutants are not affected adversely in subunit assembly, activation (binding of Mg2+ and carbamylation of Lys 191), or recognition of phosphorylated ligands; they bind CABP with even greater tenacity than does wild-type enzyme. H287N and H287Q are severely impaired in catalyzing overall carboxylation (approximately 10(3)-fold and > 10(5)-fold, respectively) and enolization (each mutant below threshold for detection) of RuBP. H287N preferentially catalyzes decarboxylation of carboxylated reaction intermediate instead of forward processing to phosphoglycerate. Analysis of RuBP turnover that occurs at high concentrations of mutants over extended time periods reveal > 10-fold reduced CO2/O2 specificities, elevated misprotonation of the enediol intermediate, and misprocessing of the oxygenated intermediate of the oxygenase pathway. These results are consistent with multifaceted roles for His 287 in promoting enediol formation, enediol tautomerization, and forward-processing of carboxylated intermediate.
Collapse
Affiliation(s)
- M R Harpel
- Protein Engineering Program, Life Sciences Division, Oak Ridge National Laboratory, Tennessee 37831-8080, USA
| | | | | |
Collapse
|
9
|
Harpel MR, Hartman FC. Facilitation of the terminal proton transfer reaction of ribulose 1,5-bisphosphate carboxylase/oxygenase by active-site Lys166. Biochemistry 1996; 35:13865-70. [PMID: 8909282 DOI: 10.1021/bi962184t] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The terminal step in the carboxylation pathway catalyzed by ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is stereospecific protonation of the C-2 aci-acid of 3-phosphoglycerate (PGA). X-ray crystallographic results favor the epsilon-amino group of Lys166 as the proton donor in this step [Knight et al. (1990) J. Mol. Biol. 215, 113]. Nonetheless, position-166 mutants are able to catalyze forward processing of isolated 2-carboxy-3-ketoarabinitol 1,5-bisphosphate (CKABP), the carboxylated reaction intermediate [Lorimer G.H., & Hartman, F.C. (1988) J. Biol. Chem. 263, 6468]. Prior assays for intermediate processing relied solely on formation of acid-stable radioactivity from acid-labile [2'-14C]CKABP. Therefore, PGA, the normal reaction product, may not have been distinguished from pyruvate, the product from beta-elimination of phosphate from the terminal aci-acid intermediate [Andrews, T.J., & Kane, H.J. (1991) J. Biol. Chem. 266, 9447]. If Lys166 indeed serves as the terminal proton donor, mutants lacking an ionizable side chain at position 166 might process the carboxylated intermediate predominantly to pyruvate. We have thus used anion exchange chromatography and enzyme coupling to separate and identify the products from turnover of [2'-14C]CKABP by wild-type, K166G, and K166S enzymes. Although PGA is the only labeled product of significance formed by wild-type enzyme, pyruvate is a major labeled product formed by the mutants. These results provide the first direct functionally-based evidence that Lys166 is crucial to the last step in Rubisco-catalyzed conversion of RuBP to PGA.
Collapse
Affiliation(s)
- M R Harpel
- Biology Division, Oak Ridge National Laboratory, Tennessee 37831-8080, USA
| | | |
Collapse
|
10
|
Harpel MR, Hartman FC. Chemical rescue by exogenous amines of a site-directed mutant of ribulose 1,5-bisphosphate carboxylase/oxygenase that lacks a key lysyl residue. Biochemistry 1994; 33:5553-61. [PMID: 8180178 DOI: 10.1021/bi00184a026] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ligand binding to ribulose 1,5-bisphosphate carboxylase/oxygenase immobilizes the flexible loop 6 of the beta/alpha barrel domain in its closed conformation. Lys329, located at the apex of this loop, interacts electrostatically with Glu48 of the adjacent subunit and with the CO2-derived carboxylate of the carboxylated reaction intermediate [Knight et al. (1990) J. Mol. Biol. 215, 113-160]. Previous studies have implicated Lys329 in the addition of CO2 to the initial enediol(ate) intermediate: mutants at position 329 catalyze enolization of ribulose 1,5-bisphosphate and processing of isolated carboxyketone intermediate, but are severely impaired in overall carboxylation and the tight-binding of the carboxylated intermediate analogue 2-carboxyarabinitol 1,5-bisphosphate. Using the chemical rescue method of Toney and Kirsch [(1989) Science 243, 1485-1488], we show that these defects are partially overcome by exogenous amines. For example, ethylamine enhances the carboxylation rate of K329A by about 80-fold and strengthens complexation of 2-carboxyarabinitol 1,5-bisphosphate. The CO2/O2 specificity of K329A is increased by amines, but remains lower than the wild-type value. Despite the pronounced enhancement of carboxylase activity, amines do not influence the rate at which ribulose 1,5-bisphosphate is enolized by K329A. Rescue of K329A follows an apparent Brønsted relationship with a beta of 1, implying complete protonation of amine in the rescued transition state. Rate saturation with respect to amine concentration and the different steric preferences for amines between K329A and K329C suggest that the amines bind to the enzyme in the position voided by the mutation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M R Harpel
- Protein Engineering Program, Oak Ridge National Laboratory, Tennessee 37831-8077
| | | |
Collapse
|
11
|
Beta-elimination of phosphate from reaction intermediates by site-directed mutants of ribulose-bisphosphate carboxylase/oxygenase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78099-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Morell M, Paul K, O'Shea N, Kane H, Andrews T. Mutations of an active site threonyl residue promote beta elimination and other side reactions of the enediol intermediate of the ribulosebisphosphate carboxylase reaction. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37164-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Andrés J, Safont V, Tapia O. Straining the double bond in 1,2-dihydroxyethylene. A simple theoretical model for the enediol moiety in Rubisco's substrate and analogs. Chem Phys Lett 1992. [DOI: 10.1016/0009-2614(92)80037-c] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Enhanced CO2/O2 specificity of a site-directed mutant of ribulose-bisphosphate carboxylase/oxygenase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50451-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Role of asparagine-111 at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum as explored by site-directed mutagenesis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42465-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Functional analysis of the putative catalytic bases His-321 and Ser-368 of Rhodospirillum rubrum ribulose bisphosphate carboxylase/oxygenase by site-directed mutagenesis. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54291-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Lundqvist T, Schneider G. Crystal structure of activated ribulose-1,5-bisphosphate carboxylase complexed with its substrate, ribulose-1,5-bisphosphate. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98942-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Andrews T, Kane H. Pyruvate is a by-product of catalysis by ribulosebisphosphate carboxylase/oxygenase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92841-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Brändén R, Janson K, Nilsson P, Aasa R. Intermediates formed by the Co2+-activated ribulose-1,5-bisphosphate carboxylase/oxygenase from spinach studied by electron paramagnetic resonance spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 916:298-303. [PMID: 2825792 DOI: 10.1016/0167-4838(87)90173-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two enzyme-metal-bound intermediates formed by the Co2+-activated ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) have been studied by electron paramagnetic resonance (EPR) spectroscopy. Their rates of approach to a stationary state are different and their relative amounts at steady state are dependent on the concentration of ribulose 1,5-bisphosphate. It is therefore proposed that enzyme-metal-coordinated ribulose 1,5-bisphosphate and an enzyme-metal-coordinated enediolate anion of it, where bound ribulose 1,5-bisphosphate appears first, constitute the two EPR-detectable intermediates, respectively.
Collapse
Affiliation(s)
- R Brändén
- Department of Biochemistry and Biophysics, University of Göteborg, Sweden
| | | | | | | |
Collapse
|
20
|
Suzuki A. Ribulose 1,5-bisphosphate carboxylase-oxygenase. I. Structural, immunochemical and catalytic properties. Biochimie 1987; 69:723-34. [PMID: 3120806 DOI: 10.1016/0300-9084(87)90193-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Some structural, immunochemical and catalytic properties are examined for ribulose 1,5-bisphosphate carboxylase-oxygenase from various cellular organisms including bacteria, cyanobacteria, algae and higher plants. The native enzyme molecular masses and the subunit polypeptide compositions vary according to enzyme sources. The molecular masses of the large and small subunits from different cellular organisms, on the other hand, show a relatively high homology due to their well-conserved primary amino acid sequence, especially that of the large subunit. In higher plants, the native enzyme and the large subunit are recognized by the antibodies raised against either the native or large subunit, whereas the small subunit apparently cross-reacts only with the antibodies directed against itself. A wide diversity exists, however, in the serological response of the native enzyme and its subunits with antibodies directed against the native enzyme or its subunits from different cellular organisms. According to numerous kinetic studies, the carboxylase and oxygenase reactions of the enzyme with ribulose 1,5-bisphosphate and carbon dioxide or oxygen require activation by carbon dioxide and magnesium prior to catalysis with ribulose 1,5-bisphosphate and carbon dioxide or oxygen. The activation and catalysis are also under the regulation of other metal ions and a number of chloroplastic metabolites. Recent double-labeling experiments using radioactive ribulose 1,5-bisphosphate and 14CO2 have elucidated the carboxylase/oxygenase ratios of the enzymes from different organisms. Another approach, i.e., genetic experiments, has also been used to examine the modification of the carboxylase/oxygenase ratio.
Collapse
Affiliation(s)
- A Suzuki
- Laboratoire du Métabolisme et de la Nutrition des Plantes, INRA, Versailles, France
| |
Collapse
|
21
|
Fong FK, Butcher KA. Photoreductive path of carbon fixation in green plant photosynthesis. Reaction pathway of six-carbon ribulose 1,5-bisphosphate carboxylation adduct intermediate. Biochem Biophys Res Commun 1987; 142:732-7. [PMID: 3827899 DOI: 10.1016/0006-291x(87)91475-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this paper we examine the six-carbon intermediate pathway of ribulose 1,5-bisphosphate (RuBP) carboxylation reaction in photosynthesis. Based on the observed reactions of purified RuBP carboxylase, mechanisms are described for carbon dioxide assimilation leading to the hydrolytic splitting of the six-carbon intermediate to two enzyme-bound glycerate-3-P (3-PGA) molecules. It is concluded that, under photosynthetic conditions, the reduction of enzyme-bound NADP+ by the chlorophyll is responsible for the rapid carboxylase turnover rate given by the lifetime, tau L = 0.4 s, which is nearly two orders of magnitude shorter than the corresponding value, tau D = 11 +/- 3 s, for the dark decay of enzyme-bound RuBP. The nocturnal inhibition and photoactivation of RuBP carboxylation are described in terms of the reversible light-dark cycles of the NADP+/NADPH redox couple and endogenous changes that accompany the 2-carboxy-D-arabinitol-1-phosphate binding to the enzyme active site.
Collapse
|
22
|
Abstract
The interconversion of mannose-6-P and mannose-1-P in brain has been shown to be catalyzed by a distinct enzyme. The enzyme has been separated from most of the phosphoglucomutase activity of the brain. The residual phosphoglucomutase activity (less than 1%) may be associated with phosphomannomutase itself. Mannose-1,6-P2 or glucose-1,6-P2 is required for the reaction as well as a divalent cation (Mg2+ greater than Co2+ greater than Ni2+ greater than Mn2+). Glucose-1-P, glucose-6-P, and 2-deoxyglucose-6-P are also substrates or inhibitors. Other phosphorylated sugars tested, glucosamine-6-P, N-acetylglucosamine-6-P, galactose-6-P, fructose-6-P, ribose-5-P, and arabinose-5-P, do not affect the rate of the reaction when assayed in the presence of mannose-6-32P.
Collapse
|
23
|
Styring S, Brändén R. Co2+- and Cu2+-incubated ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum studied with electron paramagnetic resonance spectroscopy. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/0167-4838(85)90179-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Roeske CA, O'Leary MH. Carbon isotope effect on carboxylation of ribulose bisphosphate catalyzed by ribulosebisphosphate carboxylase from Rhodospirillum rubrum. Biochemistry 1985; 24:1603-7. [PMID: 3924094 DOI: 10.1021/bi00328a005] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The carbon isotope effect at CO2 has been measured in the carboxylation of ribulose 1,5-bisphosphate by the ribulosebisphosphate carboxylase from Rhodospirillum rubrum. The isotope effect is obtained by comparing the isotopic composition of carbon 1 of the 3-phosphoglyceric acid formed in the reaction with that of the carbon dioxide source. A correction is made for carbon 1 of 3-phosphoglyceric acid which arises from carbon 3 of the starting ribulose bisphosphate. The isotope effect is k12/k13 = 1.0178 +/- 0.0008 at 25 degrees C, pH 7.8. This value is smaller than the corresponding value for the spinach enzyme. It appears that substrate addition with the R. rubrum enzyme is principally ordered, with ribulose bisphosphate binding first, whereas substrate addition is random with the spinach enzyme. The carboxylation step is partially rate limiting with both enzymes.
Collapse
|
25
|
|
26
|
|