1
|
Kimura Y, Kawakami T, Arikawa T, Li Y, Yu LJ, Ohno T, Madigan MT, Wang-Otomo ZY. C-terminal cleavage of the LH1 α-polypeptide in the Sr 2+-cultured Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2018; 135:23-31. [PMID: 28493058 DOI: 10.1007/s11120-017-0393-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
The light-harvesting 1 reaction center (LH1-RC) complex in the thermophilic purple sulfur bacterium Thermochromatium (Tch.) tepidum binds Ca ions as cofactors, and Ca-binding is largely involved in its characteristic Q y absorption at 915 nm and enhanced thermostability. Ca2+ can be biosynthetically replaced by Sr2+ in growing cultures of Tch. tepidum. However, the resulting Sr2+-substituted LH1-RC complexes in such cells do not display the absorption maximum and thermostability of those from Ca2+-grown cells, signaling that inherent structural differences exist in the LH1 complexes between the Ca2+- and Sr2+-cultured cells. In this study, we examined the effects of the biosynthetic Sr2+-substitution and limited proteolysis on the spectral properties and thermostability of the Tch. tepidum LH1-RC complex. Preferential truncation of two consecutive, positively charged Lys residues at the C-terminus of the LH1 α-polypeptide was observed for the Sr2+-cultured cells. A proportion of the truncated LH1 α-polypeptide increased during repeated subculturing in the Sr2+-substituted medium. This result suggests that the truncation is a biochemical adaptation to reduce the electrostatic interactions and/or steric repulsion at the C-terminus when Sr2+ substitutes for Ca2+ in the LH1 complex. Limited proteolysis of the native Ca2+-LH1 complex with lysyl protease revealed selective truncations at the Lys residues in both C- and N-terminal extensions of the α- and β-polypeptides. The spectral properties and thermostability of the partially digested native LH1-RC complexes were similar to those of the biosynthetically Sr2+-substituted LH1-RC complexes in their Ca2+-bound forms. Based on these findings, we propose that the C-terminal domain of the LH1 α-polypeptide plays important roles in retaining proper structure and function of the LH1-RC complex in Tch. tepidum.
Collapse
Affiliation(s)
- Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan.
| | | | - Teruhisa Arikawa
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Yong Li
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Long-Jiang Yu
- Faculty of Science, Ibaraki University, Mito, 310-8512, Japan
| | - Takashi Ohno
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Michael T Madigan
- Department of Microbiology, Southern Illinois University, Carbondale, IL, 62901, USA
| | | |
Collapse
|
2
|
Steunou AS, Liotenberg S, Soler MN, Briandet R, Barbe V, Astier C, Ouchane S. EmbRS a new two-component system that inhibits biofilm formation and saves Rubrivivax gelatinosus from sinking. Microbiologyopen 2013; 2:431-46. [PMID: 23520142 PMCID: PMC3684757 DOI: 10.1002/mbo3.82] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/11/2013] [Accepted: 02/15/2013] [Indexed: 11/06/2022] Open
Abstract
Photosynthetic bacteria can switch from planktonic lifestyle to phototrophic biofilm in mats in response to environmental changes. The mechanisms of phototrophic biofilm formation are, however, not characterized. Herein, we report a two-component system EmbRS that controls the biofilm formation in a photosynthetic member of the Burkholderiales order, the purple bacterium Rubrivivax gelatinosus. EmbRS inactivation results in cells that form conspicuous bacterial veils and fast-sinking aggregates in liquid. Biofilm analyses indicated that EmbRS represses the production of an extracellular matrix and biofilm formation. Mapping of transposon mutants that partially or completely restore the wild-type (WT) phenotype allowed the identification of two gene clusters involved in polysaccharide synthesis, one fully conserved only in Thauera sp., a floc-forming wastewater bacterium. A second two-component system BmfRS and a putative diguanylate cyclase BdcA were also identified in this screen suggesting their involvement in biofilm formation in this bacterium. The role of polysaccharides in sinking of microorganisms and organic matter, as well as the importance and the evolution of such regulatory system in phototrophic microorganisms are discussed.
Collapse
Affiliation(s)
- Anne Soisig Steunou
- CNRS, CGM, UPR 3404, Université Paris Sud, 1 Ave. de la Terrasse, Gif-sur-Yvette, F-91198, France
| | | | | | | | | | | | | |
Collapse
|
3
|
Rücker O, Köhler A, Behammer B, Sichau K, Overmann J. Puf operon sequences and inferred structures of light-harvesting complexes of three closely related Chromatiaceae exhibiting different absorption characteristics. Arch Microbiol 2011; 194:123-34. [DOI: 10.1007/s00203-011-0735-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 11/30/2022]
|
4
|
Suzuki H, Hirano Y, Kimura Y, Takaichi S, Kobayashi M, Miki K, Wang ZY. Purification, characterization and crystallization of the core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1057-63. [PMID: 17658456 DOI: 10.1016/j.bbabio.2007.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/23/2007] [Accepted: 06/04/2007] [Indexed: 11/22/2022]
Abstract
A light-harvesting-reaction center (LH1-RC) core complex has been highly purified from a thermophilic purple sulfur bacterium, Thermochromatium tepidum. The bacteriochlorophyll (BChl) a molecules in the LH1 exhibit a Q(y) transition at 914 nm, more than 25 nm red-shift from those of its mesophilic counterparts. The LH1-RC complex was isolated in a monomeric form as confirmed by sucrose density gradient centrifugation, blue native PAGE and size-exclusion chromatography. Four subunits (L, M, H and a tetraheme cytochrome) in RC and two polypeptides (alpha and beta) in LH1 were identified. Spirilloxanthin was determined to be the predominant carotenoid in the core complex. The purified core complex was highly stable, no significant change in the LH1 Q(y) transition was observed over 10 days of incubation at room temperature in dark. Circular dichroism spectrum of the LH1 complex was characterized by low intensity and nonconservative spectral shape, implying a high symmetry of the large LH1 ring and interaction between the BChl a and carotenoid molecules. A dimeric feature of the BChl a molecules in LH1 was revealed by magnetic circular dichroism spectrum. Crystals of the core complex were obtained which diffracted X-rays to about 10 A.
Collapse
Affiliation(s)
- Hiroaki Suzuki
- Faculty of Science, Ibaraki University, Bunkyo, Mito 310-8512, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Ranck JL, Halgand F, Laprévote O, Reiss-Husson F. Characterization of the core complex of Rubrivivax gelatinosus in a mutant devoid of the LH2 antenna. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:220-30. [PMID: 16139787 DOI: 10.1016/j.bbabio.2005.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Revised: 08/04/2005] [Accepted: 08/06/2005] [Indexed: 11/30/2022]
Abstract
The core complex of purple bacteria is a supramolecular assembly consisting of an array of light-harvesting LH1 antenna organized around the reaction center. It has been isolated and characterized in this work using a Rubrivivax gelatinosus mutant lacking the peripheral LH2 antenna. The purification did not modify the organization of the complex as shown by comparison with the intact membranes of the mutant. The protein components consisted exclusively of the reaction center, the associated tetraheme cyt c and the LH1 alphabeta subunits; no other protein which could play the role of pufX could be detected. The complex migrated as a single band in a sucrose gradient, and as a monomer in a native Blue gel electrophoresis. Comparison of its absorbance spectrum with those of the isolated RC and of the LH1 antenna as well as measurements of the bacteriochlorophyll/tetraheme cyt c ratio indicated that the mean number of LH1 subunits per RC-cyt c is near 16. The polypeptides of the LH1 antenna were shown to present several modifications. The alpha one was formylated at its N-terminal residue and the N-terminal methionine of beta was cleaved, as already observed for other Rubrivivax gelatinosus strains. Both modifications occurred possibly by post-translational processing. Furthermore the alpha polypeptides were heterogeneous, some of them having lost the 15 last residues of their C-terminus. This truncation of the hydrophobic C-terminal extension is similar to that observed previously for the alpha polypeptide of the Rubrivivax gelatinosus LH2 antenna and is probably due to proteolysis or to instability of this extension.
Collapse
|
6
|
Maki H, Matsuura K, Shimada K, Nagashima KVP. Chimeric photosynthetic reaction center complex of purple bacteria composed of the core subunits of Rubrivivax gelatinosus and the cytochrome subunit of Blastochloris viridis. J Biol Chem 2003; 278:3921-8. [PMID: 12464624 DOI: 10.1074/jbc.m209069200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A gene coding for the photosynthetic reaction center-bound cytochrome subunit, pufC, of Blastochloris viridis, which belongs to the alpha-purple bacteria, was introduced into Rubrivivax gelatinosus, which belongs to the beta-purple bacteria. The cytochrome subunit of B. viridis was synthesized in the R. gelatinosus cells, in which the native pufC gene was knocked out, and formed a chimeric reaction center (RC) complex together with other subunits of R. gelatinosus. The transformant was able to grow photosynthetically. Rapid photo-oxidization of the hemes in the cytochrome subunit was observed in the membrane of the transformant. The soluble electron carrier, cytochrome c(2), isolated from B. viridis was a good electron donor to the chimeric RC. The redox midpoint potentials and the redox difference spectra of four hemes in the cytochrome subunit of the chimeric RC were almost identical with those in the B. viridis RC. The cytochrome subunit of B. viridis seems to retain its structure and function in the R. gelatinosus cell. The chimeric RC and its mutagenesis system should be useful for further studies about the cytochrome subunit of B. viridis.
Collapse
Affiliation(s)
- Hideaki Maki
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa 1-1, Hachioji, Japan
| | | | | | | |
Collapse
|
7
|
Suyama T, Shigematsu T, Suzuki T, Tokiwa Y, Kanagawa T, Nagashima KVP, Hanada S. Photosynthetic apparatus in Roseateles depolymerans 61A is transcriptionally induced by carbon limitation. Appl Environ Microbiol 2002; 68:1665-73. [PMID: 11916683 PMCID: PMC123868 DOI: 10.1128/aem.68.4.1665-1673.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of a photosynthetic apparatus in Roseateles depolymerans 61A, a recently discovered freshwater beta-Proteobacterium showing characteristics of aerobic phototrophic bacteria, was observed when the cells were subjected to a sudden decrease in carbon sources (e.g., when cells grown with 0.1 to 0.4% Casamino Acids were diluted or transferred into medium containing <or=0.04% Casamino Acids). Accumulation of bacteriochlorophyll (BChl) a was observed in the presence of oxygen and was enhanced under semiaerobic conditions (2% oxygen) but was reduced in the presence of light. Similarly to what has been reported regarding some aerobic phototrophic bacteria belonging to the alpha subclass of the Proteobacteria, viability of the cells in the carbon source-free medium was prolonged under aerobic-light (10 W m(-2)) conditions, possibly due to photosynthetic energy conversion, but was not prolonged under aerobic-dark conditions. The puf operon, which encodes most of the apoproteins of light-harvesting and reaction center complexes, was sequenced, and the effect of changes in Casamino Acids concentrations, oxygen, and light on its expression was estimated by the accumulation of its mRNA. The expression of the puf operon was induced by the decrease in carbon sources, similarly to what was observed for the accumulation of BChl a under aerobic and semiaerobic conditions (>or=0.2% O(2)), and was reduced in the presence of light. Transcription of the R. depolymerans puf operon is considered to be controlled by changes in carbon nutrients in addition to oxygen tension and light intensity.
Collapse
Affiliation(s)
- Tetsushi Suyama
- National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Ranck J, Ruiz T, Péhau-Arnaudet G, Arnoux B, Reiss-Husson F. Two-dimensional structure of the native light-harvesting complex LH2 from Rubrivivax gelatinosus and of a truncated form. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:67-78. [PMID: 11418098 DOI: 10.1016/s0005-2728(01)00185-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The light-harvesting complex LH2 of Rubrivivax gelatinosus has an oligomeric structure built from alpha-beta heterodimers containing three bacteriochlorophylls and one carotenoid each. The alpha subunit (71 residues) presents a C-terminal hydrophobic extension (residues 51-71) which is prone to attack by an endogenous protease. This extension can also be cleaved by a mild thermolysin treatment, as demonstrated by electrophoresis and by matrix-assisted laser desorption-time of flight mass spectrometry. This cleavage does not affect the pigment binding sites as shown by absorption spectroscopy. Electron microscopy was used to investigate the structures of the native and thermolysin cleaved forms of the complexes. Two-dimensional crystals of the reconstituted complexes were examined after negative staining and cryomicroscopy. Projection maps at 10 A resolution were calculated, demonstrating the nonameric ring-like organization of alpha-beta subunits. The cleaved form presents the same structural features. We conclude that the LH2 complex is structurally homologous to the Rhodopseudomonas acidophila LH2. The hydrophobic C-terminal extension does not fold back in the membrane, but lays out on the periplasmic surface of the complex.
Collapse
Affiliation(s)
- J Ranck
- Institut Curie, CNRS-UMR 168, Paris, France.
| | | | | | | | | |
Collapse
|
9
|
Osyczka A, Nagashima KV, Sogabe S, Miki K, Shimada K, Matsuura K. Different mechanisms of the binding of soluble electron donors to the photosynthetic reaction center of Rubrivivax gelatinosus and Blastochloris viridis. J Biol Chem 2001; 276:24108-12. [PMID: 11313347 DOI: 10.1074/jbc.m101141200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tetraheme cytochrome subunits of the photosynthetic reaction centers (RCs) in two species of purple bacteria, Rubrivivax gelatinosus and Blastochloris (Rhodopseudomonas) viridis, were compared in terms of their capabilities to bind different electron-donor proteins. The wild-type RCs from both species and mutated forms of R. gelatinosus RCs (with amino acid substitutions introduced to the binding domain for electron-donor proteins) were tested for their reactivity with soluble cytochromes and high potential iron-sulfur protein. Cytochromes from both species were good electron donors to the B. viridis RC and the R. gelatinosus RC. The reactivity in the R. gelatinosus RC showed a clear dependence on the polarity of the charges introduced to the binding domain, indicating the importance of the electrostatic interactions. In contrast, high potential iron-sulfur protein, presumed to operate according to the hydrophobic mechanism of binding, reacted significantly only with the R. gelatinosus RC. Evolutionary substitution of amino acids in a region of the binding domain on the cytochrome subunit surface probably caused the change in the principal mode of protein-protein interactions in the electron-transfer chains.
Collapse
Affiliation(s)
- A Osyczka
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa 1-1, Hachioji, Tokyo 192-0397, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Masuda S, Nagashima KV, Shimada K, Matsuura K. Transcriptional control of expression of genes for photosynthetic reaction center and light-harvesting proteins in the purple bacterium Rhodovulum sulfidophilum. J Bacteriol 2000; 182:2778-86. [PMID: 10781546 PMCID: PMC101986 DOI: 10.1128/jb.182.10.2778-2786.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purple photosynthetic bacterium Rhodovulum sulfidophilum synthesizes photosynthetic apparatus even under highly aerated conditions in the dark. To understand the oxygen-independent expression of photosynthetic genes, the expression of the puf operon coding for the light-harvesting 1 and reaction center proteins was analyzed. Northern blot hybridization analysis showed that puf mRNA synthesis was not significantly repressed by oxygen in this bacterium. High-resolution 5' mapping of the puf mRNA transcriptional initiation sites and DNA sequence analysis of the puf upstream regulatory region indicated that there are three possible promoters for the puf operon expression, two of which have a high degree of sequence similarity with those of Rhodobacter capsulatus, which shows a high level of oxygen repression of photosystem synthesis. Deletion analysis showed that the third promoter is oxygen independent, but the activity of this promoter was not enough to explain the aerobic level of mRNA. The posttranscriptional puf mRNA degradation is not significantly influenced by oxygen in R. sulfidophilum. From these results, we conclude that puf operon expression in R. sulfidophilum is weakly repressed by oxygen, perhaps as a result of the following: (i) there are three promoters for puf operon transcription, at least one of which is oxygen independent; (ii) readthrough transcripts which may not be affected by oxygen may be significant in maintaining the puf mRNA levels; and (iii) the puf mRNA is fairly stable even under aerobic conditions.
Collapse
Affiliation(s)
- S Masuda
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan.
| | | | | | | |
Collapse
|
11
|
Masuda S, Yoshida M, Nagashima KV, Shimada K, Matsuura K. A new cytochrome subunit bound to the photosynthetic reaction center in the purple bacterium, Rhodovulum sulfidophilum. J Biol Chem 1999; 274:10795-801. [PMID: 10196154 DOI: 10.1074/jbc.274.16.10795] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleotide sequence of the puf operon, which contains the genes encoding the B870 light-harvesting protein and the reaction center complex of the purple photosynthetic bacterium, Rhodovulum sulfidophilum, was determined. The operon, which consisted of six genes, pufQ, pufB, pufA, pufL, pufM, and pufC, is a new variety in photosynthetic bacteria in the sense that pufQ and pufC coexist. The amino acid sequence of the cytochrome subunit of the reaction center deduced from the pufC sequence revealed that this cytochrome contains only three possible heme-binding motifs; the heme-1-binding motif of the corresponding tetraheme cytochrome subunits was not present. This is the first exception of the "tetraheme" cytochrome family in purple bacteria and green filamentous bacteria. The pufC sequence also revealed that the sixth axial ligands to heme-1 and heme-2 irons were not present in the cytochrome either. This cytochrome was actually detected in membrane preparation as a 43-kDa protein and shown to associate functionally with the photosynthetic reaction center as the immediate electron donor to the photo-oxidized special pair of bacteriochlorophyll. This new cytochrome should be useful for studies on the role of each heme in the cytochrome subunit of the bacterial reaction center and the evolution of proteins in photosynthetic electron transfer systems.
Collapse
Affiliation(s)
- S Masuda
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan.
| | | | | | | | | |
Collapse
|
12
|
Agalidis I, Othman S, Boussac A, Reiss-Husson F, Desbois A. Purification, redox and spectroscopic properties of the tetraheme cytochrome c isolated from Rubrivivax gelatinosus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:325-36. [PMID: 10103066 DOI: 10.1046/j.1432-1327.1999.00277.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tetraheme cytochrome c subunit of the Rubrivivax gelatinosus reaction center was isolated in the presence of octyl beta-D-thioglucoside by ammonium sulfate precipitation and solubilization at pH 9 in a solution of Deriphat 160. Several biochemical properties of this purified cytochrome were characterized. In particular, it forms small oligomers and its N-terminal amino acid is blocked. In the presence or absence of diaminodurene, ascorbate and dithionite, different oxidation/reduction states of the isolated cytochrome were studied by absorption, EPR and resonance Raman spectroscopies. All the data show two hemes quickly reduced by ascorbate, one heme slowly reduced by ascorbate and one heme only reduced by dithionite. The quickly ascorbate-reduced hemes have paramagnetic properties very similar to those of the two low-potential hemes of the reaction center-bound cytochrome (gz = 3.34), but their alpha band is split with two components peaking at 552 nm and 554 nm in the reduced state. Their axial ligands did not change, being His/Met and His/His, as indicated by the resonance Raman spectra. The slowly ascorbate-reduced heme and the dithionite-reduced heme are assigned to the two high-potential hemes of the bound cytochrome. Their alpha band was blue-shifted at 551 nm and the gz values decreased to 2.96, although the axial ligations (His/Met) were conserved. It was concluded that the estimated 300 mV potential drop of these hemes reflected changes in their solvent accessibility, while the reduction in gz indicates an increased symmetry of their cooordination spheres. These structural modifications impaired the cytochrome's essential function as the electron donor to the photooxidized bacteriochlorophyll dimer of the reaction center. In contrast to its native state, the isolated cytochrome was unable to reduce efficiently the reaction center purified from a Rubrivivax gelatinosus mutant in which the tetraheme was absent. Despite the conformational changes of the cytochrome, its four hemes are still divided into two groups with a pair of low-potential hemes and a pair of high-potential hemes.
Collapse
Affiliation(s)
- I Agalidis
- Centre de Génétique Moléculaire, CNRS 91198, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
13
|
Kortlüke C, Breese K, Gad'on N, Labahn A, Drews G. Structure of the puf operon of the obligately aerobic, bacteriochlorophyll alpha-containing bacterium Roseobacter denitrificans OCh114 and its expression in a Rhodobacter capsulatus puf puc deletion mutant. J Bacteriol 1997; 179:5247-58. [PMID: 9286973 PMCID: PMC179389 DOI: 10.1128/jb.179.17.5247-5258.1997] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Roseobacter denitrificans (Erythrobacter species strain OCh114) synthesizes bacteriochlorophyll a (BChl) and the photosynthetic apparatus only in the presence of oxygen and is unable to carry out primary photosynthetic reactions and to grow photosynthetically under anoxic conditions. The puf operon of R. denitrificans has the same five genes in the same order as in many photosynthetic bacteria, i.e., pufBALMC. PufC, the tetraheme subunit of the reaction center (RC), consists of 352 amino acids (Mr, 39,043); 20 and 34% of the total amino acids are identical to those of PufC of Chloroflexus aurantiacus and Rubrivivax gelatinosus, respectively. The N-terminal hydrophobic domain is probably responsible for anchoring the subunit in the membrane. Four heme-binding domains are homologous to those of PufC in several purple bacteria. Sequences similar to pufQ and pufX of Rhodobacter capsulatus were not detected on the chromosome of R. denitrificans. The puf operon of R. denitrificans was expressed in trans in Escherichia coli, and all gene products were synthesized. The Roseobacter puf operon was also expressed in R. capsulatus CK11, a puf puc double-deletion mutant. For the first time, an RC/light-harvesting complex I core complex was heterologously synthesized. The strongest expression of the R. denitrificans puf operon was observed under the control of the R. capsulatus puf promoter, in the presence of pufQ and pufX and in the absence of pufC. Charge recombination between the primary donor P+ and the primary ubiquinone Q(A)- was observed in the transconjugant, showing that the M and L subunits of the RC were correctly assembled. The transconjugants did not grow photosynthetically under anoxic conditions.
Collapse
Affiliation(s)
- C Kortlüke
- Institute of Biology II, Microbiology, Albert Ludwigs University, Freiburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Nagashima KV, Hiraishi A, Shimada K, Matsuura K. Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 1997; 45:131-6. [PMID: 9236272 DOI: 10.1007/pl00006212] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phylogenetic trees were drawn and analyzed based on the nucleotide sequences of the 1.5-kb gene fragment coding for the L and M subunits of the photochemical reaction center of various purple photosynthetic bacteria. These trees are mostly consistent with phylogenetic trees based on 16S rRNA and soluble cytochrome c, but differ in some significant details. This inconsistency implies horizontal transfer of the genes that code for the photosynthetic apparatus in purple bacteria. Possibilities of similar transfers of photosynthesis genes during the evolution of photosynthesis are discussed especially for the establishment of oxygenic photosynthesis.
Collapse
Affiliation(s)
- K V Nagashima
- Department of Biology, Faculty of Science, Tokyo Metropolitan University, Minamiohsawa 1-1, Hachioji, Tokyo 192-03, Japan
| | | | | | | |
Collapse
|
15
|
Agalidis I, Ivancich A, Mattioli TA, Reiss-Husson F. Characterization of the Rhodocyclus tenuis photosynthetic reaction center. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1997. [DOI: 10.1016/s0005-2728(97)00045-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Osyczka A, Yoshida M, Nagashima KV, Shimada K, Matsuura K. Electron transfer from high-potential iron-sulfur protein and low-potential cytochrome c-551 to the primary donor of Rubrivivax gelatinosus reaction center mutationally devoid of the bound cytochrome subunit. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1997. [DOI: 10.1016/s0005-2728(97)00041-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Ouchane S, Picaud M, Vernotte C, Reiss-Husson F, Astier C. Pleiotropic effects of puf interposon mutagenesis on carotenoid biosynthesis in Rubrivivax gelatinosus. A new gene organization in purple bacteria. J Biol Chem 1997; 272:1670-6. [PMID: 8999844 DOI: 10.1074/jbc.272.3.1670] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rubrivivax gelatinosus mutants affected in the carotenoid biosynthesis pathways were created by interposon mutagenesis within the puf operon. Genetic and biochemical analysis of several constructed mutants suggest that at least crtC is localized downstream of the puf operon and that it is cotranscribed with this operon. Sequence analysis confirmed the genetic data and showed the presence of crtD and crtC genes downstream of the puf operon, a localization different from that known for other purple bacteria. Inactivation of the crtD gene indicated that the two crt genes are cotranscribed and that they are involved not only in the hydroxyspheroidene biosynthesis pathway as in Rhodobacter sphaeroides and R. capsulatus, but also in the spirilloxanthin biosynthesis pathway. Carotenoid genes implicated in the spirilloxanthin biosynthesis pathway were thus identified for the first time. Furthermore, analysis of carotenoid synthesis in the mutants gave genetic evidence that crtD and crtC genes are cotranscribed with the puf operon using the oxygen-regulated puf promoter.
Collapse
Affiliation(s)
- S Ouchane
- Centre de Génétique Moléculaire du CNRS (UPR 9061) Associé à l'Université Pierre et Marie Curie, Bâtiment 24, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | | | | | | | | |
Collapse
|
18
|
Nagashima KV, Matsuura K, Shimada K. The nucleotide sequence of the puf operon from the purple photosynthetic bacterium, Rhodospirillum molischianum: Comparative analyses of light-harvesting proteins and the cytochrome subunits associated with the reaction centers. PHOTOSYNTHESIS RESEARCH 1996; 50:61-70. [PMID: 24271822 DOI: 10.1007/bf00018221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/1996] [Accepted: 09/12/1996] [Indexed: 06/02/2023]
Abstract
The nucleotide sequence of the puf operon of the purple bacterium, Rhodospirillum molischianum, was determined. The operon includes genes coding for the β and α subunits of the light-harvesting 1 (LH1) complex and the L, M, and cytochrome subunits of the reaction center complex. As in other purple bacteria, the genes are arranged within the operon in this order. As in Rubrivivax gelatinosus, the deduced amino acid sequence of the cytochrome subunit in Rsp. molischianum contains significant deletions at the attachment site to the M subunit compared with that of Rhodopseudomonas viridis. This suggests that the interaction between the cytochrome subunit and the LM core in Rsp. molischianum and Rvi. gelatinosus is different from that in Rps. viridis. Phylogenetic analysis of the light-harvesting proteins indicated that the LH1 α and β subunits of Rsp. molischianum are included in the lineage of LH1 polypeptides of the purple bacteria, while the LH2 α and β subunits are positioned apart from LH2 polypeptides of the other purple bacteria together with those of Chromatium vinosum. Based on these phylogenetic analyses, the classification of the light-harvesting proteins in purple bacteria is discussed.
Collapse
Affiliation(s)
- K V Nagashima
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa 1-1, Hachioji, 192-03, Tokyo, Japan
| | | | | |
Collapse
|
19
|
Gerhart D. Forty-five years of developmental biology of photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 1996; 48:325-352. [PMID: 24271475 DOI: 10.1007/bf00029467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/1996] [Accepted: 03/20/1996] [Indexed: 06/02/2023]
Abstract
Developmental biology and cell differentiation of photosynthetic prokaryotes are less noticed fields than the showpieces of eukaryotes, e.g. Drosophila melanogaster. The large metabolic versatility of the facultative purple bacteria and their great capability to adapt to different ecological conditions, however, aroused the inquisitiveness to investigate the process of cell differentiation and to use these bacteria as model system to study structure, function and biosynthesis of the photosynthetic apparatus. The great progress in research in this field paved the way to study principal mechanisms of cellular organization and differentiation in these bacteria. In this article, the history of the research on membrane structure and development of anoxygenic photosynthetic prokaryotes during the last 45 years is described. A personal account of how I entered the field through research on the phototaxis of cyanobacteria is given. Intracytoplasmic membranes (ICM) were detected by electron microscopy in cyanobacteria and in purple non-sulfur bacteria. The formation of ICM by invagination of the cytoplasmic membrane in purple bacteria was observed for the first time. Investigations on the effect of changes in oxygen tension and light intensity on the formation of pigments and intracytoplasmic membranes followed. The isolation, purification, and analysis of light-harvesting complexes and of pigment-binding proteins was the next step of our research. Lipopolysaccharides and peptidoglycans were detected and analyzed in the outer membrane of photosynthetic bacteria. Functional membrane differentiation includes variations in the rates of photophosphorylation and electron transport. Molecular genetic approaches have initiated the investigation of transcriptional regulation and the analysis of correlation between pigment and protein synthesis. Molecular analysis of assembly of light-harvesting complexes and membrane differentiation are the present aspects of our research. Cell differentiation has been considered under evolutionary view.
Collapse
Affiliation(s)
- D Gerhart
- Institut für Biologie 2, Mikrobiologie, Albert-Ludwigs-Universität, Schänzlestr. 1, 79104, Freiburg, Germany
| |
Collapse
|
20
|
Nagashima KV, Shimada K, Matsuura K. Shortcut of the photosynthetic electron transfer in a mutant lacking the reaction center-bound cytochrome subunit by gene disruption in a purple bacterium, Rubrivivax gelatinosus. FEBS Lett 1996; 385:209-13. [PMID: 8647253 DOI: 10.1016/0014-5793(96)00382-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A mutant lacking the reaction center-bound cytochrome subunit was constructed in a purple photosynthetic bacterium, Rubrivivax gelatinosus IL144, by inactivation of the cytochrome gene. Photosynthetic growth of the C244 mutant strain occurred at approximately half the rate of the wild-type strain. Although mutagenesis resulted in a greatly reduced amount of membrane-bound cytochromes c, illumination induced cyclic electron transfer and the generation of membrane potential in the mutant as observed in the wild-type strain. These findings are consistent with previous observations that the cytochrome subunit is absent in the reaction center complex in some species of purple bacteria and that the biochemical removal of the subunit did not significantly affect the in vitro electron transfer from the soluble cytochrome c to the photosynthetic reaction center. These results suggest that the cytochrome subunit in purple bacteria is not essential for photosynthetic electron transfer and growth, even in those species generally containing the subunit.
Collapse
Affiliation(s)
- K V Nagashima
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | |
Collapse
|
21
|
Agalidis I, Sebban P. Energetics of the quinone electron acceptor complex in Rubrivivax gelatinosus. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1232:180-6. [PMID: 8534672 DOI: 10.1016/0005-2728(95)00110-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pH and temperature dependences of the free energy stabilization of the Q-A and Q-B semiquinone anions (QA and QB are respectively the primary and secondary quinone electron acceptors) were studied in antenna-reaction centre complex from Rubrivivax (R.) gelatinosus. This was achieved by measuring the rate constants of the P+Q-A (kAP) and P+Q-B (kBP) (P is the primary electron donor) charge recombination processes by flash-induced absorption spectroscopy. Despite the high primary sequence analogies of the QA and QB protein pockets between R. gelatinosus and the much more studied species as Rps. viridis, Rb. sphaeroides and Rb. capsulatus, the energetic behaviour of the quinone complex of R. gelatinosus appears to be somewhat different: (i) above pH 10, kAP decreases, whereas it increases in Rps. viridis; this suggests the presence of a protonatable group that stabilizes I- (I is a bacteriopheophytin electron acceptor) rather than Q-A; (ii) the pH dependence of kBP is unusually flat in the range 4-7.5, possibly reflecting that a substantial part of the P+Q-B charge recombination proceeds via the direct route through the protein by an electron tunnelling mechanism, at variance to what is observed in the three species mentioned above; (iii) the very substantial increase of kBP observed above pH 7.5 is reasonably well described by the presence of two apparent protonatable groups: pK1QB = 9.4, pK1Q-B = 11 and pK2QB = 8.5, pK2Q-B = 9.4. The latter group was not reported in Rps. viridis, Rb. sphaeroides or Rb. capsulatus. We conclude that the apparent pK values measured here in R. gelatinosus may reflect the contribution as a whole of several and/or distant groups rather than of well-defined residues.
Collapse
Affiliation(s)
- I Agalidis
- Centre de Génétique Moléculaire, Photosynthèse, Bât. 24, CNRS, Gif sur Yvette, France
| | | |
Collapse
|
22
|
Ouchane S, Picaud M, Astier C. A new mutation in the pufL gene responsible for the terbutryn resistance phenotype in Rubrivivax gelatinosus. FEBS Lett 1995; 374:130-4. [PMID: 7589500 DOI: 10.1016/0014-5793(95)01055-j] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rubrivivax gelatinosus is a facultative phototrophic non-sulfur bacterium belonging to the beta subclass of the purple bacteria. A terbutryn-resistant mutant of R. gelatinosus has been isolated and characterized. Increased resistance levels to terbutryn (300-fold), atrazine (6-fold) and o-phenanthroline (3-fold) were observed for the mutant compared with wild type. Sequence analysis of the mutant revealed a new mutation in the pufL gene coding for the L subunit of the reaction centre (RC) at codon 192 leading to an amino-acid substitution from Gly in the wild type to Asp in the mutant. This substitution is located in the D helix of the L subunit, suggesting an interaction between terbutryn and this part of the polypeptide in the RC of R. gelatinosus. This is the first report of a mutation leading to herbicide resistance and affecting the D helix in purple bacteria. Furthermore R. gelatinosus wild type is highly sensitive to o-phenanthroline compared with other purple bacteria (Rhodobacter capsulatus and Rhodobacter sphaeroides). Sequence comparison of the L subunit from six purple bacteria in which o-phenanthroline sensitivity was measured suggests that SerL226 might be responsible for this phenotype.
Collapse
Affiliation(s)
- S Ouchane
- CNRS, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
| | | | | |
Collapse
|