1
|
Vessella G, Traboni S, Cimini D, Iadonisi A, Schiraldi C, Bedini E. Development of Semisynthetic, Regioselective Pathways for Accessing the Missing Sulfation Patterns of Chondroitin Sulfate. Biomacromolecules 2019; 20:3021-3030. [DOI: 10.1021/acs.biomac.9b00590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Giulia Vessella
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Donatella Cimini
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, via de Crecchio 7, I-80138 Napoli, Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, via de Crecchio 7, I-80138 Napoli, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte
S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| |
Collapse
|
2
|
Restaino OF, Finamore R, Diana P, Marseglia M, Vitiello M, Casillo A, Bedini E, Parrilli M, Corsaro MM, Trifuoggi M, De Rosa M, Schiraldi C. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate. Anal Chim Acta 2016; 958:59-70. [PMID: 28110685 DOI: 10.1016/j.aca.2016.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/22/2016] [Accepted: 12/03/2016] [Indexed: 11/19/2022]
Abstract
Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core.
Collapse
Affiliation(s)
- Odile Francesca Restaino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples, Italy.
| | - Rosario Finamore
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples, Italy.
| | - Paola Diana
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples, Italy.
| | - Mariacarmela Marseglia
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples, Italy.
| | - Mario Vitiello
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples, Italy.
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Michelangelo Parrilli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples, Italy.
| | - Mario De Rosa
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples, Italy.
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
3
|
Irrechukwu ON, Von Thaer S, Frank EH, Lin PC, Reiter DA, Grodzinsky AJ, Spencer RG. Prediction of cartilage compressive modulus using multiexponential analysis of T(2) relaxation data and support vector regression. NMR IN BIOMEDICINE 2014; 27:468-77. [PMID: 24519878 PMCID: PMC4608539 DOI: 10.1002/nbm.3083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/04/2013] [Accepted: 01/07/2014] [Indexed: 05/14/2023]
Abstract
Evaluation of mechanical characteristics of cartilage by magnetic resonance imaging would provide a noninvasive measure of tissue quality both for tissue engineering and when monitoring clinical response to therapeutic interventions for cartilage degradation. We use results from multiexponential transverse relaxation analysis to predict equilibrium and dynamic stiffness of control and degraded bovine nasal cartilage, a biochemical model for articular cartilage. Sulfated glycosaminoglycan concentration/wet weight (ww) and equilibrium and dynamic stiffness decreased with degradation from 103.6 ± 37.0 µg/mg ww, 1.71 ± 1.10 MPa and 15.3 ± 6.7 MPa in controls to 8.25 ± 2.4 µg/mg ww, 0.015 ± 0.006 MPa and 0.89 ± 0.25MPa, respectively, in severely degraded explants. Magnetic resonance measurements were performed on cartilage explants at 4 °C in a 9.4 T wide-bore NMR spectrometer using a Carr-Purcell-Meiboom-Gill sequence. Multiexponential T2 analysis revealed four water compartments with T2 values of approximately 0.14, 3, 40 and 150 ms, with corresponding weight fractions of approximately 3, 2, 4 and 91%. Correlations between weight fractions and stiffness based on conventional univariate and multiple linear regressions exhibited a maximum r(2) of 0.65, while those based on support vector regression (SVR) had a maximum r(2) value of 0.90. These results indicate that (i) compartment weight fractions derived from multiexponential analysis reflect cartilage stiffness and (ii) SVR-based multivariate regression exhibits greatly improved accuracy in predicting mechanical properties as compared with conventional regression.
Collapse
Affiliation(s)
- Onyi N. Irrechukwu
- National Institute on Aging, National Institutes of Health, Baltimore MD 21224
| | - Sarah Von Thaer
- National Institute on Aging, National Institutes of Health, Baltimore MD 21224
| | - Eliot H. Frank
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ping-Chang Lin
- National Institute on Aging, National Institutes of Health, Baltimore MD 21224
| | - David A. Reiter
- National Institute on Aging, National Institutes of Health, Baltimore MD 21224
| | - Alan J. Grodzinsky
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard G. Spencer
- National Institute on Aging, National Institutes of Health, Baltimore MD 21224
| |
Collapse
|
4
|
Kerr RS, Newgreen DF. Isolation and characterization of chondroitin sulfate proteoglycans from embryonic quail that influence neural crest cell behavior. Dev Biol 1997; 192:108-24. [PMID: 9405101 DOI: 10.1006/dbio.1997.8731] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The movement of neural crest cells is controlled in part by extracellular matrix. Aggrecan, the chondroitin sulfate proteoglycan from adult cartilage, curtails the ability of neural crest cells to adhere, spread, and move across otherwise favorable matrix substrates in vitro. Our aim was to isolate, characterize, and compare the structure and effect on neural crest cells of aggrecan and proteoglycans purified from the tissues through which neural crest cells migrate. We metabolically radiolabeled proteoglycans in E2.5 quail embryos and isolated and characterized proteoglycans from E3.3 quail trunk and limb bud. The major labeled proteoglycan was highly negatively charged, similar in hydrodynamic size to chick limb bud versican/PG-M, smaller than adult cartilage aggrecan but larger than reported for embryonic sternal cartilage aggrecan. The molecular weight of the iodinated core protein was about 400 kDa, which is more than reported for aggrecan but less than that of chick versican/PG-M. The proteoglycan bore chondroitin sulfate glycosaminoglycan chains of 45 kDa, which is larger than those of aggrecan. It lacked dermatan sulfate, heparan sulfate, or keratan sulfate chains. It bound to collagen type I, like aggrecan, but not to fibronectin (unlike versican/PG-M), collagen type IV, or laminin-1 in solid-phase assays and it bound to hyaluronate in gel-shift assays. When added at concentrations between 10 and 30 microg/ml to substrates of fibronectin, trunk proteoglycan inhibited neural crest cell spreading and migration. Attenuation of cell spreading was shown to be the most sensitive and titratable measure of the effect on neural crest cells. This effect was sensitive to digestion with chondroitinase ABC. Similar cell behavior was also produced by aggrecan and the small dermatan sulfate proteoglycan decorin; however, 30-fold more aggrecan was required to produce an effect of similar magnitude. When added in solution to neural crest cells which were already spread and migrating on fibronectin, the embryonic proteoglycan rapidly and reversibly caused complete rounding of the cells, being at least 30-fold more potent than aggrecan in this activity.
Collapse
Affiliation(s)
- R S Kerr
- The Murdoch Institute for Research into Birth Defects, Royal Children's Hospital, Flemington Road, Parkville, Victoria, 3052, Australia
| | | |
Collapse
|
6
|
Das BR, Kanungo MS. In vitro ADP-ribosylation of chromosomal proteins of the brain of developing rats. Mol Biol Rep 1986; 11:63-8. [PMID: 3736541 DOI: 10.1007/bf00364815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In vitro ADP-ribosylation of chromosomal proteins and its modulation by spermine, 3-aminobenzamide (3-AB) and benzamide were studied by incubating the nuclei of cerebral hemisphere of 3-, 14- and 30-day old rats with 32P-NAD+. Histones get ADP-ribosylated more than the non-histone chromosomal (NHC) proteins. H1 is the major target for ADP-ribosylation. Among the nucleosomal histones, H2B is ADP-ribosylated most. The other core histones also get ADP-ribosylated to a lesser extent. ADP-ribosylation of both histones and NHC proteins decreases during development. Spermine stimulates, whereas 3-AB and benzamide inhibit, 32P-ADP-ribose incorporation into histones and NHC proteins. These effects decrease with development. Mild digestion of chromatin by micrococcal nuclease (MNase), EcoRI and AluI prior to ADP-ribosylation stimulates incorporation of 32P-ADP-ribose. The degree of stimulation decreases as development proceeds. Such alterations indicate progressive condensation of chromatin with development.
Collapse
|