1
|
Maranha A, Costa M, Ripoll-Rozada J, Manso JA, Miranda V, Mendes VM, Manadas B, Macedo-Ribeiro S, Ventura MR, Pereira PJB, Empadinhas N. Self-recycling and partially conservative replication of mycobacterial methylmannose polysaccharides. Commun Biol 2023; 6:108. [PMID: 36707645 PMCID: PMC9883506 DOI: 10.1038/s42003-023-04448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/10/2023] [Indexed: 01/29/2023] Open
Abstract
The steep increase in nontuberculous mycobacteria (NTM) infections makes understanding their unique physiology an urgent health priority. NTM synthesize two polysaccharides proposed to modulate fatty acid metabolism: the ubiquitous 6-O-methylglucose lipopolysaccharide, and the 3-O-methylmannose polysaccharide (MMP) so far detected in rapidly growing mycobacteria. The recent identification of a unique MMP methyltransferase implicated the adjacent genes in MMP biosynthesis. We report a wide distribution of this gene cluster in NTM, including slowly growing mycobacteria such as Mycobacterium avium, which we reveal to produce MMP. Using a combination of MMP purification and chemoenzymatic syntheses of intermediates, we identified the biosynthetic mechanism of MMP, relying on two enzymes that we characterized biochemically and structurally: a previously undescribed α-endomannosidase that hydrolyses MMP into defined-sized mannoligosaccharides that prime the elongation of new daughter MMP chains by a rare α-(1→4)-mannosyltransferase. Therefore, MMP biogenesis occurs through a partially conservative replication mechanism, whose disruption affected mycobacterial growth rate at low temperature.
Collapse
Affiliation(s)
- Ana Maranha
- grid.8051.c0000 0000 9511 4342CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342IIIUC - Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Mafalda Costa
- grid.8051.c0000 0000 9511 4342CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Jorge Ripoll-Rozada
- grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal ,grid.507090.b0000 0004 5303 6218Present Address: Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander, Spain
| | - José A. Manso
- grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vanessa Miranda
- grid.10772.330000000121511713Bioorganic Chemistry Group, Instituto de Tecnologia Química Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Vera M. Mendes
- grid.8051.c0000 0000 9511 4342CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- grid.8051.c0000 0000 9511 4342CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra Macedo-Ribeiro
- grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - M. Rita Ventura
- grid.10772.330000000121511713Bioorganic Chemistry Group, Instituto de Tecnologia Química Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Pedro José Barbosa Pereira
- grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Nuno Empadinhas
- grid.8051.c0000 0000 9511 4342CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342IIIUC - Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
2
|
Biosynthesis of mycobacterial methylmannose polysaccharides requires a unique 1- O-methyltransferase specific for 3- O-methylated mannosides. Proc Natl Acad Sci U S A 2019; 116:835-844. [PMID: 30606802 DOI: 10.1073/pnas.1813450116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mycobacteria are a wide group of organisms that includes strict pathogens, such as Mycobacterium tuberculosis, as well as environmental species known as nontuberculous mycobacteria (NTM), some of which-namely Mycobacterium avium-are important opportunistic pathogens. In addition to a distinctive cell envelope mediating critical interactions with the host immune system and largely responsible for their formidable resistance to antimicrobials, mycobacteria synthesize rare intracellular polymethylated polysaccharides implicated in the modulation of fatty acid metabolism, thus critical players in cell envelope assembly. These are the 6-O-methylglucose lipopolysaccharides (MGLP) ubiquitously detected across the Mycobacterium genus, and the 3-O-methylmannose polysaccharides (MMP) identified only in NTM. The polymethylated nature of these polysaccharides renders the intervening methyltransferases essential for their optimal function. Although the knowledge of MGLP biogenesis is greater than that of MMP biosynthesis, the methyltransferases of both pathways remain uncharacterized. Here, we report the identification and characterization of a unique S-adenosyl-l-methionine-dependent sugar 1-O-methyltransferase (MeT1) from Mycobacterium hassiacum that specifically blocks the 1-OH position of 3,3'-di-O-methyl-4α-mannobiose, a probable early precursor of MMP, which we chemically synthesized. The high-resolution 3D structure of MeT1 in complex with its exhausted cofactor, S-adenosyl-l-homocysteine, together with mutagenesis studies and molecular docking simulations, unveiled the enzyme's reaction mechanism. The functional and structural properties of this unique sugar methyltransferase further our knowledge of MMP biosynthesis and provide important tools to dissect the role of MMP in NTM physiology and resilience.
Collapse
|
3
|
Structure of O-specific polysaccharide of Oligotropha carboxidovorans OM5 - a wastewater bacterium. Carbohydr Res 2017; 439:30-34. [DOI: 10.1016/j.carres.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/02/2017] [Accepted: 01/02/2017] [Indexed: 11/19/2022]
|
4
|
|
5
|
Xia L, Lowary TL. Amphiphilic cytosolic glycans from mycobacteria: occurrence, lipid-binding properties, biosynthesis, and synthesis. Biopolymers 2013; 99:697-712. [PMID: 23703393 DOI: 10.1002/bip.22290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 11/10/2022]
Abstract
Polymethylated polysaccharides (PMPSs), glycans composed of 10-20 carbohydrate residues the majority of which carry a single methyl group, are produced by some mycobacterial species. O-Methylation thus occurs on 20-30% of all the hydroxyl groups within the molecule, rendering them amphiphilic. A property of PMPSs is their ability to form high-affinity complexes with fatty acids and their derivatives, suggesting a role in mycobacterial fatty acid biosynthesis. However, direct evidence for their in vivo function is still lacking. Over the past several decades the lipid-binding properties, biosynthesis, and chemical synthesis of PMPSs have been explored and this review will provide an overview of progress made in these areas.
Collapse
Affiliation(s)
- Li Xia
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, AB T6G 2G2, Canada
| | | |
Collapse
|
6
|
Xia L, Zheng RB, Lowary TL. Revisiting the Specificity of an α-(1→4)-Mannosyltransferase Involved in Mycobacterial Methylmannose Polysaccharide Biosynthesis. Chembiochem 2012; 13:1139-51. [DOI: 10.1002/cbic.201200121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Indexed: 11/08/2022]
|
7
|
Narasaki CT, Toman R. Lipopolysaccharide of Coxiella burnetii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 984:65-90. [PMID: 22711627 DOI: 10.1007/978-94-007-4315-1_4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A lipopolysaccharide (LPS) is considered to be one of the major determinants of virulence expression and infection of virulent Coxiella burnetii. The LPSs from virulent phase I (LPS I) and from avirulent phase II (LPS II) bacteria were investigated for their chemical composition, structure and biological properties. LPS II is of rough (R) type in contrast to LPS I, which is phenotypically smooth (S) and contains a noticeable amount of two sugars virenose (Vir) and dihydrohydroxystreptose (Strep), which have not been found in other LPSs and can be considered as unique biomarkers of the bacterium. Both sugars were suggested to be located mostly in terminal positions of the O-specific chain of LPS I (O-PS I) and to be involved in the immunobiology of Q fever. There is a need to establish a more detailed chemical structure of LPS I in connection with prospective, deeper studies on mechanisms of pathogenesis and immunity of Q fever, its early and reliable diagnosis, and effective prophylaxis against the disease. This will also help to better understanding of host-pathogen interactions and contribute to improved modulation of pathological reactions which in turn are prerequisite for research and development of vaccines of new type. A fundamental understanding of C. burnetii LPS biosynthesis is still lacking. The intracellular nature of the bacterium, lack of genetic tools and its status as a selected agent have made elucidating basic physiological mechanisms challenging. The GDP-β-D-Vir biosynthetic pathway proposed most recently is an important initial step in this endeavour. The current advanced technologies providing the genetic tools necessary to screen C. burnetii mutants and propagate isogenic mutants might speed the discovery process.
Collapse
Affiliation(s)
- Craig T Narasaki
- Center Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Science, College Station, TX 77843, USA
| | | |
Collapse
|
8
|
Cao B, Williams SJ. Chemical approaches for the study of the mycobacterial glycolipids phosphatidylinositol mannosides, lipomannan and lipoarabinomannan. Nat Prod Rep 2010; 27:919-47. [DOI: 10.1039/c000604a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Pereira PJB, Empadinhas N, Albuquerque L, Sá-Moura B, da Costa MS, Macedo-Ribeiro S. Mycobacterium tuberculosis glucosyl-3-phosphoglycerate synthase: structure of a key enzyme in methylglucose lipopolysaccharide biosynthesis. PLoS One 2008; 3:e3748. [PMID: 19015727 PMCID: PMC2581804 DOI: 10.1371/journal.pone.0003748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 10/31/2008] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis constitutes today a serious threat to human health worldwide, aggravated by the increasing number of identified multi-resistant strains of Mycobacterium tuberculosis, its causative agent, as well as by the lack of development of novel mycobactericidal compounds for the last few decades. The increased resilience of this pathogen is due, to a great extent, to its complex, polysaccharide-rich, and unusually impermeable cell wall. The synthesis of this essential structure is still poorly understood despite the fact that enzymes involved in glycosidic bond synthesis represent more than 1% of all M. tuberculosis ORFs identified to date. One of them is GpgS, a retaining glycosyltransferase (GT) with low sequence homology to any other GTs of known structure, which has been identified in two species of mycobacteria and shown to be essential for the survival of M. tuberculosis. To further understand the biochemical properties of M. tuberculosis GpgS, we determined the three-dimensional structure of the apo enzyme, as well as of its ternary complex with UDP and 3-phosphoglycerate, by X-ray crystallography, to a resolution of 2.5 and 2.7 A, respectively. GpgS, the first enzyme from the newly established GT-81 family to be structurally characterized, displays a dimeric architecture with an overall fold similar to that of other GT-A-type glycosyltransferases. These three-dimensional structures provide a molecular explanation for the enzyme's preference for UDP-containing donor substrates, as well as for its glucose versus mannose discrimination, and uncover the structural determinants for acceptor substrate selectivity. Glycosyltransferases constitute a growing family of enzymes for which structural and mechanistic data urges. The three-dimensional structures of M. tuberculosis GpgS now determined provide such data for a novel enzyme family, clearly establishing the molecular determinants for substrate recognition and catalysis, while providing an experimental scaffold for the structure-based rational design of specific inhibitors, which lay the foundation for the development of novel anti-tuberculosis therapies.
Collapse
|
10
|
Stadthagen G, Sambou T, Guerin M, Barilone N, Boudou F, Korduláková J, Charles P, Alzari PM, Lemassu A, Daffé M, Puzo G, Gicquel B, Rivière M, Jackson M. Genetic basis for the biosynthesis of methylglucose lipopolysaccharides in Mycobacterium tuberculosis. J Biol Chem 2007; 282:27270-27276. [PMID: 17640872 DOI: 10.1074/jbc.m702676200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacteria produce two unusual polymethylated polysaccharides, the 6-O-methylglucosyl-containing lipopolysaccharides (MGLP) and the 3-O-methylmannose polysaccharides, which have been shown to regulate fatty acid biosynthesis in vitro. A cluster of genes dedicated to the synthesis of MGLP was identified in Mycobacterium tuberculosis and Mycobacterium smegmatis. Overexpression of the putative glycosyltransferase gene Rv3032 in M. smegmatis greatly stimulated MGLP production, whereas the targeted disruption of Rv3032 in M. tuberculosis and that of the putative methyltransferase gene MSMEG2349 in M. smegmatis resulted in a dramatic reduction in the amounts of MGLP synthesized and in the accumulation of precursors of these molecules. Disruption of Rv3032 also led to a significant decrease in the glycogen content of the tubercle bacillus, indicating that the product of this gene is likely to be involved in the elongation of more than one alpha-(1-->4)-glucan in this bacterium. Results thus suggest that Rv3032 encodes the alpha-(1-->4)-glucosyltransferase responsible for the elongation of MGLP, whereas MSMEG2349 encodes the O-methyltransferase required for the 6-O-methylation of these compounds.
Collapse
Affiliation(s)
| | - Tounkang Sambou
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Marcelo Guerin
- Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France and the
| | - Nathalie Barilone
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France
| | - Frédéric Boudou
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France
| | - Jana Korduláková
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France
| | - Patricia Charles
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France
| | - Pedro M Alzari
- Unité de Biochimie Structurale, Institut Pasteur, 75015 Paris, France and the
| | - Anne Lemassu
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Mamadou Daffé
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Germain Puzo
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Brigitte Gicquel
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France
| | - Michel Rivière
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, CNRS, 31077 Toulouse, France
| | - Mary Jackson
- UnitédeGénétique Mycobactérienne Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
11
|
Abstract
The requirement of vitamin A (retinoids) for vision has been recognized for decades. In addition, vitamin A is involved in fetal development and in the regulation of proliferation and differentiation of cells throughout life. This fat-soluble organic compound cannot be synthesized endogenously by humans and thus is an essential nutrient; a well-regulated transport and storage system provides tissues with the correct amounts of retinoids in spite of normal fluctuations in daily vitamin A intake. An overview is presented here of current knowledge and hypotheses about the absorption, transport, storage, and metabolism of vitamin A. Some information is also presented about a group of ligand-dependent transcription factors, the retinoic acid receptors, that apparently mediate many of the extravisual effects of retinoids.
Collapse
Affiliation(s)
- R Blomhoff
- Institute for Nutrition Research, School of Medicine, University of Oslo, Norway
| | | | | | | |
Collapse
|
12
|
Kiho T, Ballou CE. Thermodynamic parameters and shape of the mycobacterial polymethylpolysaccharide-fatty acid complex. Biochemistry 1988; 27:5824-8. [PMID: 3179280 DOI: 10.1021/bi00415a064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Properties of the mycobacterial polymethylpolysaccharide-lipid complex have been investigated by fluorometric techniques. From the dissociation constant for the O-methyglucose polysaccharide-parinaric acid complex at 293 K, a Gibbs free energy (delta G degree) of -33.65 kJ/mol was obtained. The Kd decreased with increasing temperature, giving an enthalpy (delta H degree) of 15.4 kJ/mol. From these data, a molar entropy (delta S degree) of 167.4 J K-1 was obtained. Thus, the reaction is slightly endothermic, but the large positive entropy change leads to an overall negative free energy favoring complex formation. From fluorescence depolarization measurements, the methylglucose polysaccharide-parinaric acid complex appears to display isotropic rotation with a correlation time of 2.55 ns at 23 degrees C. This may be compared to a rotational correlation time of 6.17 ps for free parinaric acid in water at 23 degrees C calculated from the value determined in cyclohexanol at the same temperature, which demonstrates that the mobility of the fatty acid in the complex is restricted. Assuming the complex is spherical, it was calculated to have a diameter of 23-26 A, whereas a helical methyglucose polysaccharide molecule assembled from space-filling models has the dimensions of a cylinder of 18 X 24 A. The polysaccharide and fatty acid chain-length dependence of the interaction shows a discontinuity for helical polysaccharide segments shorter than 12 sugars and for fatty acids shorter than palmitate.
Collapse
Affiliation(s)
- T Kiho
- Department of Biochemistry, University of California, Berkeley 94720
| | | |
Collapse
|
13
|
Abstract
Mycobacterium smegmatis cells produce [3H]methanol when incubated with [methyl-3H]methionine. The methanol is derived from S-adenosylmethionine rather than methyltetrahydrofolate. M. smegmatis cells carboxymethylate several proteins, and some of the methanol probably results from their demethylation, but most of the methanol may come from an unidentified component with a high gel mobility. Although methanol in the medium reached 19 microM, it was not incorporated into the methylated mannose polysaccharide, a lipid carrier in this organism.
Collapse
Affiliation(s)
- L S Weisman
- Department of Biochemistry, University of California, Berkeley 94720
| | | |
Collapse
|
14
|
Kamisango K, Dell A, Ballou C. Biosynthesis of the mycobacterial O-methylglucose lipopolysaccharide. Characterization of putative intermediates in the initiation, elongation, and termination reactions. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61232-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Biosynthesis of the mycobacterial methylmannose polysaccharide. Identification of an alpha 1—-4-mannosyltransferase. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43115-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|