1
|
Wood PL, Le A, Palazzolo DL. Comparative Lipidomics of Oral Commensal and Opportunistic Bacteria. Metabolites 2024; 14:240. [PMID: 38668368 PMCID: PMC11052126 DOI: 10.3390/metabo14040240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The oral cavity contains a vast array of microbes that contribute to the balance between oral health and disease. In addition, oral bacteria can gain access to the circulation and contribute to other diseases and chronic conditions. There are a limited number of publications available regarding the comparative lipidomics of oral bacteria and fungi involved in the construction of oral biofilms, hence our decision to study the lipidomics of representative oral bacteria and a fungus. We performed high-resolution mass spectrometric analyses (<2.0 ppm mass error) of the lipidomes from five Gram-positive commensal bacteria: Streptococcus oralis, Streptococcus intermedius, Streptococcus mitis, Streptococcus sanguinis, and Streptococcus gordonii; five Gram-positive opportunistic bacteria: Streptococcus mutans, Staphylococcus epidermis, Streptococcus acidominimus, Actinomyces viscosus, and Nanosynbacter lyticus; seven Gram-negative opportunistic bacteria: Porphyromonas gingivalis. Prevotella brevis, Proteus vulgaris, Fusobacterium nucleatum, Veillonella parvula, Treponema denticola, and Alkermansia muciniphila; and one fungus: Candida albicans. Our mass spectrometric analytical platform allowed for a detailed evaluation of the many structural modifications made by microbes for the three major lipid scaffolds: glycerol, sphingosine and fatty acyls of hydroxy fatty acids (FAHFAs).
Collapse
Affiliation(s)
- Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA
| | - Annie Le
- Clinical Training Program, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA
| | - Dominic L. Palazzolo
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA;
| |
Collapse
|
2
|
Calabrese V, Brunet TA, Degli-Esposti D, Chaumot A, Geffard O, Salvador A, Clément Y, Ayciriex S. Electron-activated dissociation (EAD) for the complementary annotation of metabolites and lipids through data-dependent acquisition analysis and feature-based molecular networking, applied to the sentinel amphipod Gammarus fossarum. Anal Bioanal Chem 2024:10.1007/s00216-024-05232-w. [PMID: 38492024 DOI: 10.1007/s00216-024-05232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
The past decades have marked the rise of metabolomics and lipidomics as the -omics sciences which reflect the most phenotypes in living systems. Mass spectrometry-based approaches are acknowledged for both quantification and identification of molecular signatures, the latter relying primarily on fragmentation spectra interpretation. However, the high structural diversity of biological small molecules poses a considerable challenge in compound annotation. Feature-based molecular networking (FBMN) combined with database searches currently sets the gold standard for annotation of large datasets. Nevertheless, FBMN is usually based on collision-induced dissociation (CID) data, which may lead to unsatisfying information. The use of alternative fragmentation methods, such as electron-activated dissociation (EAD), is undergoing a re-evaluation for the annotation of small molecules, as it gives access to additional fragmentation routes. In this study, we apply the performances of data-dependent acquisition mass spectrometry (DDA-MS) under CID and EAD fragmentation along with FBMN construction, to perform extensive compound annotation in the crude extracts of the freshwater sentinel organism Gammarus fossarum. We discuss the analytical aspects of the use of the two fragmentation modes, perform a general comparison of the information delivered, and compare the CID and EAD fragmentation pathways for specific classes of compounds, including previously unstudied species. In addition, we discuss the potential use of FBMN constructed with EAD fragmentation spectra to improve lipid annotation, compared to the classic CID-based networks. Our approach has enabled higher confidence annotations and finer structure characterization of 823 features, including both metabolites and lipids detected in G. fossarum extracts.
Collapse
Affiliation(s)
- Valentina Calabrese
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France.
| | - Thomas Alexandre Brunet
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France
| | | | - Arnaud Chaumot
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, 69625, Villeurbanne, France
| | - Olivier Geffard
- Laboratoire d'écotoxicologie, INRAE, UR RiverLy, 69625, Villeurbanne, France
| | - Arnaud Salvador
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France
| | - Yohann Clément
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France
| | - Sophie Ayciriex
- Universite Claude Bernard Lyon1, ISA, UMR 5280, CNRS, 5 Rue de La Doua, 69100, Villeurbanne, France.
| |
Collapse
|
3
|
Liu Y, Wei Y, Teh TM, Liu D, Zhou Y, Zhao S, Ang EL, Zhao H, Zhang Y. Identification and Characterization of the Biosynthetic Pathway of the Sulfonolipid Capnine. Biochemistry 2022; 61:2861-2869. [PMID: 35414181 DOI: 10.1021/acs.biochem.2c00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Capnine (2-amino-3-hydroxy-15-methylhexadecane-1-sulfonate) and capnoids (N-fatty acylated capnine derivatives) are sulfonolipids present in the outer membrane of gliding bacteria in the phylum Bacteroidetes and play a role in their unique gliding motility. They are structurally similar to sphingolipids and are thought to be biosynthesized via a similar pathway. Here we report the identification and biochemical characterization of the capnine biosynthetic enzymes cysteate synthase (CapA) and cysteate-C-fatty acyltransferase (CapB) from the pathogenic gliding bacterium Capnocytophaga ochracea and NAD(P)H-dependent dehydrocapnine reductase CapC from the avian pathogen Ornithobacterium rhinotracheale. CapA catalyzes the formation of cysteate from O-phospho-l-serine and sulfite, and CapB catalyzes the formation of dehydrocapnine from cysteate and 13-methyl-myristoyl-CoA, followed by reduction by CapC. CapA is closely related to cystathionine-β-synthase but distantly related to the archaeal cysteate synthase. Close homologues of CapA, CapB, and the CapA isozyme archaeal cysteate synthase are present in many Bacteroidetes bacteria, including environmental, pathogenic, and human oral and intestinal microbiome bacteria, suggesting the widespread ability of these bacteria to biosynthesize capnine and related sulfonolipids.
Collapse
Affiliation(s)
- Yinbo Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669
| | - Tong Mei Teh
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669
| | - Dazhi Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Zhongke Meining Pharmaceutics Inc., Tianjin 300308, China
| | - Yan Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ee Lui Ang
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669
| | - Huimin Zhao
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Brinkmann S, Spohn MS, Schäberle TF. Bioactive natural products from Bacteroidetes. Nat Prod Rep 2022; 39:1045-1065. [PMID: 35315462 DOI: 10.1039/d1np00072a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Covering: up to end of January 2022Bacteria representing the phylum Bacteroidetes produce a diverse range of natural products, including polyketides, peptides and lactams. Here, we discuss unique aspects of the bioactive compounds discovered thus far, and the corresponding biosynthetic pathways if known, providing a comprehensive overview of the Bacteroidetes as a natural product reservoir.
Collapse
Affiliation(s)
- Stephan Brinkmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany.
| | - Marius S Spohn
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany.
| | - Till F Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany. .,Institute for Insect Biotechnology, Justus Liebig University of Giessen, 35392 Giessen, Germany.,German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| |
Collapse
|
5
|
Chang HY, Lo LH, Lan YH, Hong MX, Chan YT, Ko TP, Huang YR, Cheng TH, Liaw CC. Structural insights into the substrate selectivity of α-oxoamine synthases from marine Vibrio sp. QWI-06. Colloids Surf B Biointerfaces 2021; 210:112224. [PMID: 34838420 DOI: 10.1016/j.colsurfb.2021.112224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022]
Abstract
Pyridoxal phosphate (PLP)-dependent α-oxoamine synthases are generally believed to be responsible for offloading and elongating polyketides or catalyzing the condensation of amino acids and acyl-CoA thioester substrates, such as serine into sphingolipids and cysteate into sulfonolipids. Previously, we discovered vitroprocines, which are tyrosine- and phenylalanine-polyketide derivatives, as potential new antibiotics from the genus Vibrio. Using bioinformatics analysis, we identified putative genes of PLP-dependent enzyme from marine Vibrio sp. QWI-06, implying a capability to produce amino-polyketide derivatives. One of these genes was cloned, and the recombinant protein, termed Vibrio sp. QWI-06 α-oxoamine synthases-1 (VsAOS1), was overexpressed for structural and biochemical characterization. The crystal structure of the dimeric VsAOS1 was determined at 1.8-Å resolution in the presence of L-glycine. The electron density map indicated a glycine molecule occupying the pyridoxal binding site in one monomer, suggesting a snapshot of the initiation process upon the loading of amino acid substrate. In mass spectrometry analysis, VsAOS1 strictly acted to condense L-glycine with C12 or C16 acyl-CoA, including unsaturated acyl analog. Furthermore, a single residue replacement of VsAOS1 (G243S) allowed the enzyme to generate sphingoid derivative when L-serine and lauroyl-CoA were used as substrates. Our data elucidate the mechanism of substrate binding and selectivity by the VsAOS1 and provide a thorough understanding of the molecular basis for the amino acid preference of AOS members.
Collapse
Affiliation(s)
- Hsin-Yang Chang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Li-Hua Lo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Hsuan Lan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Mao-Xuan Hong
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yuen Ting Chan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ru Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tien-Hsing Cheng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
6
|
Hemkemeyer M, Schwalb SA, Heinze S, Joergensen RG, Wichern F. Functions of elements in soil microorganisms. Microbiol Res 2021; 252:126832. [PMID: 34508963 DOI: 10.1016/j.micres.2021.126832] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The soil microbial community fulfils various functions, such as nutrient cycling and carbon (C) sequestration, therefore contributing to maintenance of soil fertility and mitigation of global warming. In this context, a major focus of research has been on C, nitrogen (N) and phosphorus (P) cycling. However, from aquatic and other environments, it is well known that other elements beyond C, N, and P are essential for microbial functioning. Nonetheless, for soil microorganisms this knowledge has not yet been synthesised. To gain a better mechanistic understanding of microbial processes in soil systems, we aimed at summarising the current knowledge on the function of a range of essential or beneficial elements, which may affect the efficiency of microbial processes in soil. This knowledge is discussed in the context of microbial driven nutrient and C cycling. Our findings may support future investigations and data evaluation, where other elements than C, N, and P affect microbial processes.
Collapse
Affiliation(s)
- Michael Hemkemeyer
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany.
| | - Sanja A Schwalb
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| | - Stefanie Heinze
- Department of Soil Science & Soil Ecology, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Rainer Georg Joergensen
- Department of Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Florian Wichern
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
7
|
A novel class of sulfur-containing aminolipids widespread in marine roseobacters. ISME JOURNAL 2021; 15:2440-2453. [PMID: 33750904 PMCID: PMC8319176 DOI: 10.1038/s41396-021-00933-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Marine roseobacter group bacteria are numerically abundant and ecologically important players in ocean ecosystems. These bacteria are capable of modifying their membrane lipid composition in response to environmental change. Remarkably, a variety of lipids are produced in these bacteria, including phosphorus-containing glycerophospholipids and several amino acid-containing aminolipids such as ornithine lipids and glutamine lipids. Here, we present the identification and characterization of a novel sulfur-containing aminolipid (SAL) in roseobacters. Using high resolution accurate mass spectrometry, a SAL was found in the lipid extract of Ruegeria pomeroyi DSS-3 and Phaeobacter inhibens DSM 17395. Using comparative genomics, transposon mutagenesis and targeted gene knockout, we identified a gene encoding a putative lyso-lipid acyltransferase, designated salA, which is essential for the biosynthesis of this SAL. Multiple sequence analysis and structural modeling suggest that SalA is a novel member of the lysophosphatidic acid acyltransferase (LPAAT) family, the prototype of which is the PlsC acyltransferase responsible for the biosynthesis of the phospholipid phosphatidic acid. SAL appears to play a key role in biofilm formation in roseobacters. salA is widely distributed in Tara Oceans metagenomes and actively expressed in Tara Oceans metatranscriptomes. Our results raise the importance of sulfur-containing membrane aminolipids in marine bacteria.
Collapse
|
8
|
Cantley AM, Woznica A, Beemelmanns C, King N, Clardy J. Isolation and Synthesis of a Bacterially Produced Inhibitor of Rosette Development in Choanoflagellates. J Am Chem Soc 2016; 138:4326-9. [PMID: 26998963 PMCID: PMC4968929 DOI: 10.1021/jacs.6b01190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
The choanoflagellate Salpingoeca rosetta is a microbial marine eukaryote
that can switch between unicellular and multicellular states. As one
of the closest living relatives of animals, this organism has become
a model for understanding how multicellularity evolved in the animal
lineage. Previously our laboratories isolated and synthesized a bacterially
produced sulfonolipid that induces S. rosetta to form multicellular “rosettes.” In this study, we
report the identification of a bacterially produced inhibitor of rosettes (IOR-1) as
well as the total synthesis of this molecule and all of its stereoisomers.
Our results confirm the previously noted specificity and potency of
rosette-modulating molecules, expand our understanding of the complex
chemical ecology between choanoflagellates and rosette-inducing bacteria,
and provide a synthetic probe template for conducting further mechanistic
studies on the emergence of multicellularity.
Collapse
Affiliation(s)
- Alexandra M Cantley
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Arielle Woznica
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California , Berkeley, California 94720, United States
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll Institute (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Nicole King
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California , Berkeley, California 94720, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
9
|
Vitroprocines, new antibiotics against Acinetobacter baumannii, discovered from marine Vibrio sp. QWI-06 using mass-spectrometry-based metabolomics approach. Sci Rep 2015; 5:12856. [PMID: 26238555 PMCID: PMC4523872 DOI: 10.1038/srep12856] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/08/2015] [Indexed: 01/09/2023] Open
Abstract
A robust and convenient research strategy integrating state-of-the-art analytical techniques is needed to efficiently discover novel compounds from marine microbial resources. In this study, we identified a series of amino-polyketide derivatives, vitroprocines A-J, from the marine bacterium Vibrio sp. QWI-06 by an integrated approach using imaging mass spectroscopy and molecular networking, as well as conventional bioactivity-guided fractionation and isolation. The structure-activity relationship of vitroprocines against Acinetobacter baumannii is proposed. In addition, feeding experiments with 13C-labeled precursors indicated that a pyridoxal 5′-phosphate-dependent mechanism is involved in the biosynthesis of vitroprocines. Elucidation of amino-polyketide derivatives from a species of marine bacteria for the first time demonstrates the potential of this integrated metabolomics approach to uncover marine bacterial biodiversity.
Collapse
|
10
|
Beemelmanns C, Woznica A, Alegado RA, Cantley AM, King N, Clardy J. Synthesis of the rosette-inducing factor RIF-1 and analogs. J Am Chem Soc 2014; 136:10210-3. [PMID: 24983513 PMCID: PMC4111216 DOI: 10.1021/ja5046692] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Studies
on the origin of animal multicellularity have increasingly
focused on one of the closest living relatives of animals, the choanoflagellate Salpingoeca rosetta. Single cells of S. rosetta can develop into multicellular rosette-shaped
colonies through a process of incomplete cytokinesis. Unexpectedly,
the initiation of rosette development requires bacterially produced
small molecules. Previously, our laboratories reported the planar
structure and femtomolar rosette-inducing activity of one rosette-inducing
small molecule, dubbed rosette-inducing factor 1 (RIF-1), produced
by the Gram-negative Bacteroidetes bacterium Algoriphagus
machipongonensis. RIF-1 belongs to the small and poorly
explored class of sulfonolipids. Here, we report a modular total synthesis
of RIF-1 stereoisomers and structural analogs. Rosette-induction assays
using synthetic RIF-1 stereoisomers and naturally occurring analogs
defined the absolute stereochemistry of RIF-1 and revealed a remarkably
restrictive set of structural requirements for inducing rosette development.
Collapse
Affiliation(s)
- Christine Beemelmanns
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School , 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | | | | | | | | | | |
Collapse
|
11
|
Zähringer U, Ittig S, Lindner B, Moll H, Schombel U, Gisch N, Cornelis GR. NMR-based structural analysis of the complete rough-type lipopolysaccharide isolated from Capnocytophaga canimorsus. J Biol Chem 2014; 289:23963-76. [PMID: 24993825 DOI: 10.1074/jbc.m114.571489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We here describe the NMR analysis of an intact lipopolysaccharide (LPS, endotoxin) in water with 1,2-dihexanoyl-sn-glycero-3-phosphocholine as detergent. When HPLC-purified rough-type LPS of Capnocytophaga canimorsus was prepared, (13)C,(15)N labeling could be avoided. The intact LPS was analyzed by homonuclear ((1)H) and heteronuclear ((1)H,(13)C, and (1)H,(31)P) correlated one- and two-dimensional NMR techniques as well as by mass spectrometry. It consists of a penta-acylated lipid A with an α-linked phosphoethanolamine attached to C-1 of GlcN (I) in the hybrid backbone, lacking the 4'-phosphate. The hydrophilic core oligosaccharide was found to be a complex hexasaccharide with two mannose (Man) and one each of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo), Gal, GalN, and l-rhamnose residues. Position 4 of Kdo is substituted by phosphoethanolamine, also present in position 6 of the branched Man(I) residue. This rough-type LPS is exceptional in that all three negative phosphate residues are "masked" by positively charged ethanolamine substituents, leading to an overall zero net charge, which has so far not been observed for any other LPS. In biological assays, the corresponding isolated lipid A was found to be endotoxically almost inactive. By contrast, the intact rough-type LPS described here expressed a 20,000-fold increased endotoxicity, indicating that the core oligosaccharide significantly contributes to the endotoxic potency of the whole rough-type C. canimorsus LPS molecule. Based on these findings, the strict view that lipid A alone represents the toxic center of LPS needs to be reassessed.
Collapse
Affiliation(s)
- Ulrich Zähringer
- From the Division of Immunochemistry/Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a, 23845 Borstel, Germany,
| | - Simon Ittig
- Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland, and
| | - Buko Lindner
- From the Division of Immunochemistry/Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a, 23845 Borstel, Germany
| | - Hermann Moll
- From the Division of Immunochemistry/Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a, 23845 Borstel, Germany
| | - Ursula Schombel
- From the Division of Immunochemistry/Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a, 23845 Borstel, Germany
| | - Nicolas Gisch
- From the Division of Immunochemistry/Bioanalytical Chemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a, 23845 Borstel, Germany
| | - Guy R Cornelis
- Infection Biology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland, and the Department of Biology, University of Namur, B5000 Namur, Belgium
| |
Collapse
|
12
|
Alegado RA, Brown LW, Cao S, Dermenjian RK, Zuzow R, Fairclough SR, Clardy J, King N. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife 2012; 1:e00013. [PMID: 23066504 PMCID: PMC3463246 DOI: 10.7554/elife.00013] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/18/2012] [Indexed: 12/15/2022] Open
Abstract
Bacterially-produced small molecules exert profound influences on animal health, morphogenesis, and evolution through poorly understood mechanisms. In one of the closest living relatives of animals, the choanoflagellate Salpingoeca rosetta, we find that rosette colony development is induced by the prey bacterium Algoriphagus machipongonensis and its close relatives in the Bacteroidetes phylum. Here we show that a rosette inducing factor (RIF-1) produced by A. machipongonensis belongs to the small class of sulfonolipids, obscure relatives of the better known sphingolipids that play important roles in signal transmission in plants, animals, and fungi. RIF-1 has extraordinary potency (femtomolar, or 10(-15) M) and S. rosetta can respond to it over a broad dynamic range-nine orders of magnitude. This study provides a prototypical example of bacterial sulfonolipids triggering eukaryotic morphogenesis and suggests molecular mechanisms through which bacteria may have contributed to the evolution of animals.DOI:http://dx.doi.org/10.7554/eLife.00013.001.
Collapse
Affiliation(s)
- Rosanna A Alegado
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Laura W Brown
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Shugeng Cao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Renee K Dermenjian
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Richard Zuzow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Stephen R Fairclough
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Nicole King
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
13
|
Baronio M, Lattanzio VMT, Vaisman N, Oren A, Corcelli A. The acylhalocapnines of halophilic bacteria: structural details of unusual sulfonate sphingoids. J Lipid Res 2010; 51:1878-85. [PMID: 20211932 DOI: 10.1194/jlr.m004804] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfonate sphingoids or sulfonolipids are bioactive unusual compounds found in members of the Bacteroidetes family. The present report describes the structures of sulfonolipids of halophilic bacteria, sharing structural similarity with compounds of fungal origin inhibiting the serine palmitoyl transferase and with capnines, known as antagonists of von Willebrandt factor. Two sulfonolipids (SL1 and SL2) were isolated from the lipid extract of the halophile Salisaeta longa and analyzed by ESI-MS/MS. SL1 and SL2 structures have in common the long chain aminosulfonate 2-carboxy-2-amino-3,4-hydroxy-17 methyloctadec-5-ene-1-sulfonic for which the common name of halocapnine is suggested. The hydroxyl group on carbon 3 of aminosulfonate moiety is acylated: iso C15 and iso hydroxy C15 chains are present in SL1 and SL2, respectively. The levels of the two different sulfonolipids in the bacterium were found to be modulated by the proportion of sodium and magnesium ions in the environment.
Collapse
Affiliation(s)
- Maristella Baronio
- Department of Medical Biochemistry, Biology and Physics, University of Bari, Italy
| | | | | | | | | |
Collapse
|
14
|
Alain K, Tindall BJ, Catala P, Intertaglia L, Lebaron P. Ekhidna lutea gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from the South East Pacific Ocean. Int J Syst Evol Microbiol 2010; 60:2972-2978. [PMID: 20118290 DOI: 10.1099/ijs.0.018804-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel aerobic, heterotrophic bacterium, designated BiosLi39(T), was isolated from the South East Pacific Ocean. Cells were Gram-negative gliding rods forming yellow colonies on marine agar. The isolate was oxidase-, catalase- and alkaline phosphatase-positive and β-galactosidase-negative. Strain BiosLi39(T) grew at 20-37°C (optimum 30°C), at pH7.0-9.0 (optimum pH8.0) and with 20-60 g NaCl l(-1) (optimum 30-50 g NaCl l(-1)). The fatty acids (>1 %) comprised iso-C(14 : 0), iso-C(15 : 1) G, iso-C(15 : 0), anteiso-C(15 : 0), C(15 : 1) G, C(15 : 0), iso-C(15 : 0) 2-OH, iso-C(16 : 1) G, iso-C(16 : 0), iso-C(16 : 0) 3-OH, iso-C(16 : 0) 2-OH, iso-C(17 : 0) 3-OH, C(17 : 0) 2-OH and three unidentified components with equivalent chain lengths of 17.87, 18.10 and 18.71. A significant proportion of the hydroxylated fatty acids are amide-linked. The lipid pattern indicated the presence of phosphatidylethanolamine, two unidentified aminolipids and three unidentified polar lipids. The strain contained menaquinone 7 as the sole respiratory lipoquinone and did not produce flexirubin-type pigments. The G+C content of the genomic DNA was 37.2 mol%. Comparative 16S rRNA gene sequence analysis indicated that strain BiosLi39(T) was distantly related to all of the representatives of the phylum Bacteroidetes. Its closest relative was Marinoscillum furvescens IFO 15994(T), with which it shared 92.5 % 16S rRNA gene sequence similarity. On the basis of genotypic, phenotypic and chemotaxonomic characteristics, we propose a novel genus and species, Ekhidna gen. nov., sp. nov., with type strain BiosLi39(T) (=DSM 19307(T) =CIP 109600(T) =OOB 398(T)).
Collapse
Affiliation(s)
- Karine Alain
- Université Pierre et Marie Curie - Paris 6, CNRS, UMR7621, F-66650 Banyuls-sur-Mer, France
| | - Brian J Tindall
- DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Philippe Catala
- Université Pierre et Marie Curie - Paris 6, CNRS, UMR7621, F-66650 Banyuls-sur-Mer, France
| | - Laurent Intertaglia
- Université Pierre et Marie Curie - Paris 6, CNRS, UMR7621, F-66650 Banyuls-sur-Mer, France
| | - Philippe Lebaron
- Université Pierre et Marie Curie - Paris 6, CNRS, UMR7621, F-66650 Banyuls-sur-Mer, France
| |
Collapse
|
15
|
Geiger O, González-Silva N, López-Lara IM, Sohlenkamp C. Amino acid-containing membrane lipids in bacteria. Prog Lipid Res 2010; 49:46-60. [DOI: 10.1016/j.plipres.2009.08.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Characteristics of sulfobacin A from a soil isolate Chryseobacterium gleum. Appl Biochem Biotechnol 2008; 158:231-41. [PMID: 19034697 DOI: 10.1007/s12010-008-8417-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
A nonmotile, nonspore-forming, Gram-negative, aerobic, small rod-shaped bacterium, isolated from soil, was identified as Chryseobacterium gleum on the basis of 16S rRNA gene sequence analysis. It was observed to grow luxuriously at pH 9 and tolerate highly alkaline environment up to pH 12. Orange red color was a peculiar character of these cells which on purification obtained 60-80 mg/l and found to be sphingosine type of sulfonolipid "sulfobacin A" on the basis of infrared, nuclear magnetic resonance, and mass spectral data. Inhibition of sulfobacin A synthesis by incorporation of L: -cycloserine in culture growth medium suggested presence of serine palmitoyl transferase which is one of the important enzymes involved in its biosynthesis. Sulfobacin A from C. gleum LMG P-22264 exhibited cytotoxicity against four cell lines tested. Maximum activity against human mammary adenocarcinoma cells was indicative of its potential as an anticancer agent.
Collapse
|
17
|
Lattanzio VMT, Baronio M, Oren A, Russell NJ, Corcelli A. Characterization of polar membrane lipids of the extremely halophilic bacterium Salinibacter ruber and possible role of cardiolipin. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:25-31. [PMID: 18996223 DOI: 10.1016/j.bbalip.2008.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/24/2022]
Abstract
The lipid composition of the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) was investigated by thin layer chromatography, gas chromatography, high performance liquid chromatography and electrospray ionization-mass spectrometry. Polar lipids represent about 80% of the total lipid extract. The main polar lipids are a sulfonic acid analogue of ceramide (or capnine analogue), phosphatidylcholine, phosphatidylserine, dimethylphosphatidylethanolamine, phosphatidylglycerol, cardiolipin or bisphosphatidylglycerol, and a glycolipid. The major acyl chains in the phospholipids are C16:1 Delta9cis and C18:1 Delta11cis, while the sulfonolipid contains an amide-bound iso C15:0 fatty acid. On changing the salinity of the culture medium, no significant differences were found in the lipid profile or the unsaturation of the lipid fatty acyl chains. The structure of the cardiolipin, which represents 20% of polar lipids, has been elucidated by gas chromatography and electrospray ionization mass spectrometry analysis.
Collapse
Affiliation(s)
- Veronica M T Lattanzio
- National Research Council (CNR), Institute of Sciences of Food Production (ISPA), Via Amendola, 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
18
|
Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC, Liotta DC, Merrill AH. Biodiversity of sphingoid bases ("sphingosines") and related amino alcohols. J Lipid Res 2008; 49:1621-39. [PMID: 18499644 PMCID: PMC2444003 DOI: 10.1194/jlr.r800012-jlr200] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
"Sphingosin" was first described by J. L. W. Thudichum in 1884 and structurally characterized as 2S,3R,4E-2-aminooctadec-4-ene-1,3-diol in 1947 by Herb Carter, who also proposed the designation of "lipides derived from sphingosine as sphingolipides." This category of amino alcohols is now known to encompass hundreds of compounds that are referred to as sphingoid bases and sphingoid base-like compounds, which vary in chain length, number, position, and stereochemistry of double bonds, hydroxyl groups, and other functionalities. Some have especially intriguing features, such as the tail-to-tail combination of two sphingoid bases in the alpha,omega-sphingoids produced by sponges. Most of these compounds participate in cell structure and regulation, and some (such as the fumonisins) disrupt normal sphingolipid metabolism and cause plant and animal disease. Many of the naturally occurring and synthetic sphingoid bases are cytotoxic for cancer cells and pathogenic microorganisms or have other potentially useful bioactivities; hence, they offer promise as pharmaceutical leads. This thematic review gives an overview of the biodiversity of the backbones of sphingolipids and the broader field of naturally occurring and synthetic sphingoid base-like compounds.
Collapse
Affiliation(s)
- Sarah T Pruett
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Rosselló-Mora R, Lucio M, Peña A, Brito-Echeverría J, López-López A, Valens-Vadell M, Frommberger M, Antón J, Schmitt-Kopplin P. Metabolic evidence for biogeographic isolation of the extremophilic bacterium Salinibacter ruber. ISME JOURNAL 2008; 2:242-53. [PMID: 18239610 DOI: 10.1038/ismej.2007.93] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The biogeography of prokaryotes and the effect of geographical barriers as evolutionary constraints are currently subjected to great debate. Some clear-cut evidence for geographic isolation has been obtained by genetic methods but, in many cases, the markers used are too coarse to reveal subtle biogeographical trends. Contrary to eukaryotic microorganisms, phenotypic evidence for allopatric segregation in prokaryotes has never been found. Here we present, for the first time, a metabolomic approach based on ultrahigh resolution mass spectrometry to reveal phenotypic biogeographical discrimination. We demonstrate that strains of the cosmopolitan extremophilic bacterium Salinibacter ruber, isolated from different sites in the world, can be distinguished by means of characteristic metabolites, and that these differences can be correlated to their geographical isolation site distances. The approach allows distinct degrees of discrimination for isolates at different geographical scales. In all cases, the discriminative metabolite patterns were quantitative rather than qualitative, which may be an indication of geographically distinct transcriptional or posttranscriptional regulations.
Collapse
Affiliation(s)
- Ramon Rosselló-Mora
- Marine Microbiology Group, Institut Mediterrani d'Estudis Avançats, Esporles, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Grabowski A, Tindall BJ, Bardin V, Blanchet D, Jeanthon C. Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. Int J Syst Evol Microbiol 2005; 55:1113-1121. [PMID: 15879242 DOI: 10.1099/ijs.0.63426-0] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A mesophilic, anaerobic, fermentative bacterium, strain BN3(T), was isolated from a producing well of a biodegraded oil reservoir in Canada. Cells were Gram-negative, non-motile rods that did not form spores. The temperature range for growth was 15-40 degrees C, with optimum growth at 37-40 degrees C. The strain grew with up 4 % NaCl, with optimum growth in the absence of NaCl. Tryptone was required for growth. Yeast extract and elemental sulfur stimulated growth. Growth was also enhanced during fermentation of glucose, arabinose, galactose, maltose, mannose, rhamnose, lactose, ribose, fructose, sucrose, cellobiose, lactate, mannitol and glycerol. Acetate, hydrogen and CO(2) were produced during glucose fermentation. Elemental sulfur and nitrate were used as electron acceptors and were reduced to sulfide and ammonium, respectively. The G + C content of the genomic DNA was 40.8 mol%. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the strain was a member of the phylum 'Bacteroidetes', distantly related to the genera Bacteroides and Tannerella (similarity values of less than 90 %). The chemotaxonomic data (fatty acids, polar lipids and quinones composition) also indicated that strain BN3(T) could be clearly distinguished from its closest cultivated relatives. This novel organism possesses phenotypic, chemotaxonomic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, it is proposed that this isolate should be described as a member of a novel species of a new genus, Petrimonas gen. nov., of which Petrimonas sulfuriphila sp. nov. is the type species. The type strain is BN3(T) (= DSM 16547(T) = JCM 12565(T)).
Collapse
Affiliation(s)
- Agnès Grabowski
- UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, Centre National de la Recherche Scientifique, IFREMER and Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Place Nicolas Copernic, F-29280 Plouzané, France
- Institut Français du Pétrole, 1 et 4, avenue de Bois Préau, F-92852 Rueil-Malmaison Cedex, France
| | - Brian J Tindall
- DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Mascheroder Weg 1b, D-38124 Braunschweig, Germany
| | - Véronique Bardin
- Institut Français du Pétrole, 1 et 4, avenue de Bois Préau, F-92852 Rueil-Malmaison Cedex, France
| | - Denis Blanchet
- Institut Français du Pétrole, 1 et 4, avenue de Bois Préau, F-92852 Rueil-Malmaison Cedex, France
| | - Christian Jeanthon
- UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, Centre National de la Recherche Scientifique, IFREMER and Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Place Nicolas Copernic, F-29280 Plouzané, France
| |
Collapse
|
21
|
Corcelli A, Lattanzio VMT, Mascolo G, Babudri F, Oren A, Kates M. Novel sulfonolipid in the extremely halophilic bacterium Salinibacter ruber. Appl Environ Microbiol 2005; 70:6678-85. [PMID: 15528534 PMCID: PMC525256 DOI: 10.1128/aem.70.11.6678-6685.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salinibacter ruber is an extremely halophilic bacterium, phylogenetically affiliated with the Flavobacterium/Cytophaga branch of the domain Bacteria. Electrospray mass analyses (negative ion) of the total lipid extract of a pure culture of S. ruber shows a characteristic peak at m/z 660 as the most prominent peak in the high-mass range of the spectrum. A novel sulfonolipid, giving rise to the molecular ion [M-H]- of m/z 660, has been identified. The sulfonolipid isolated and purified by thin-layer chromatography was shown by chemical degradation, mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance analysis to have the structure 2-carboxy-2-amino-3-O-(13'-methyltetradecanoyl)-4-hydroxy-18-methylnonadec-5-ene-1-sulfonic acid. This lipid represents about 10% of total cellular lipids, and it appears to be a structural variant of the sulfonolipids found as main components of the cell envelope of gliding bacteria of the genus Cytophaga and closely related genera (W. Godchaux and E. R. Leadbetter, J. Bacteriol. 153:1238-1246, 1983) and of diatoms (R. Anderson, M. Kates, and B. E. Volcani, Biochim. Biophys. Acta 528:89-106, 1978). Since this sulfonolipid has never been observed in any other extreme halophilic microorganism, we consider the peak at m/z 660 the lipid signature of Salinibacter. This study suggests that this novel sulfonolipid may be used as a chemotaxonomic marker for the detection of Salinibacter within the halophilic microbial community in saltern crystallizer ponds and other hypersaline environments.
Collapse
Affiliation(s)
- Angela Corcelli
- Dipartimento di Biochimica Medica e Biologia Medica, Università degli Studi di Bari, IPCF-CR, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Nichols FC, Riep B, Mun J, Morton MD, Bojarski MT, Dewhirst FE, Smith MB. Structures and biological activity of phosphorylated dihydroceramides of Porphyromonas gingivalis. J Lipid Res 2004; 45:2317-30. [PMID: 15466368 DOI: 10.1194/jlr.m400278-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis, a recognized periodontal pathogen, synthesizes free ceramides as well as other phosphorylated ceramide lipids. The purpose of this study was to separate complex lipids of P. gingivalis by high-performance liquid chromatography (HPLC) and determine the structures and biological activities of the major ceramide classes. Using gas chromatography-mass spectrometry, electrospray tandem mass spectrometry (ESI-MS/MS) and NMR analyses, three major classes of dihydroceramides were identified in specific HPLC fractions, with all classes containing the same dihydroceramide base structures (3-OH isoC(17:0) in amide linkage to saturated long-chain bases of 17, 18, or 19 carbons). The free dihydroceramide class recovered in HPLC fractions 7-8 revealed little biological activity. HPLC fraction 20 dihydroceramides, substituted with 1-O-phosphoglycerol and isoC(15:0) linked to the hydroxyl of 3-OH isoC(17:0), significantly potentiated interleukin-1beta (IL-1beta)-mediated prostaglandin secretion and produced marked alterations in fibroblast morphology. HPLC fraction 28 dihydroceramides, substituted with 1-O-phosphoethanolamine, demonstrated little capacity to potentiate IL-1beta-mediated prostaglandin secretion. The novel phosphorylated dihydroceramides synthesized by P. gingivalis demonstrate varying biological activities based on the phosphorylated head group substitution and/or the addition of esterified fatty acid. These results also demonstrate the strong virulence capacity of phosphoglycerol dihydroceramides of P. gingivalis to promote inflammatory factor secretion from IL-1beta-treated fibroblasts and to produce marked alterations in cell morphology in culture.
Collapse
Affiliation(s)
- Frank C Nichols
- Department of Periodontology, University of Connecticut School of Dental Medicine, 263 Farmington Avenue, Farmington, CT, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
When free-living bacteria colonize biotic or abiotic surfaces, the resultant changes in physiology and morphology have important consequences on their growth, development, and survival. Surface motility, biofilm formation, fruiting body development, and host invasion are some of the manifestations of functional responses to surface colonization. Bacteria may sense the growth surface either directly through physical contact or indirectly by sensing the proximity of fellow bacteria. Extracellular signals that elicit new gene expression include autoinducers, amino acids, peptides, proteins, and carbohydrates. This review focuses mainly on surface motility and makes comparisons to features shared by other surface phenomenon.
Collapse
Affiliation(s)
- Rasika M Harshey
- Section of Molecular Genetics and Microbiology, Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, 78712, USA.
| |
Collapse
|
24
|
Abstract
Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.
Collapse
Affiliation(s)
- Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA.
| |
Collapse
|
25
|
Metzler DE, Metzler CM, Sauke DJ. Lipids, Membranes, and Cell Coats. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Batrakov SG, Mosezhnyi AE, Ruzhitsky AO, Sheichenko VI, Nikitin DI. The polar-lipid composition of the sphingolipid-producing bacterium Flectobacillus major. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1484:225-40. [PMID: 10760472 DOI: 10.1016/s1388-1981(00)00011-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Polar lipids comprise about 90% of the total chloroform-methanol extractable lipids of the Gram-negative, fresh-water, ring-forming bacterium Flectobacillus major FM and consist of at least 10 constituents. These are aminophosphosphingolipids, 2-N-(2'-D-hydroxy-13'-methyltetradecanoyl)-15-methyl-4(E)-hexad ecasph ingenyl-1-phosphoethanolamine (36.8% of the total polar lipids) and its 2'-deoxy derivative (3.7%); sulfonic-acid analogues of ceramide, 2-D-(2'-D-hydroxy-13'-methyltetradecanoyl)amino-3-D-hydroxy-15-met hyl hexadecane-1-sulfonic acid (18.1%) and its 2'-deoxy derivative (3. 5%); a lipoamino acid, N-[3-D-(15'-methylhexadecanoyloxy)-15-methylhexadecanoyl]-gl ycine (3. 7%); a lipodipeptide, N-¿N'-[3"-D-(15"'-methylhexadecanoyloxy)-15"-methylhexadecanoyl ]glycy l¿-L-serine (7.8%); 1,2-diacyl-sn-glycero-3-phosphoethanolamine (7. 7%), 1,2-diacyl-3-alpha-D-galactopyranosyl-sn-glycerol (2.9%); ceramide phospho-myo-inositol (4.9%), and a previously described unusual glycosphingolipid, 7-deoxy-7-amino-D-manno-heptulosonopyranosyl (1-hydroxycarbonyl-6-deoxy-6-amino-alpha-D-mannopyranosyl) ceramide (10.9%); the last two lipids contain only 15-methyl-4(E)-hexadecasphingenine as a long-chain base. The sole structural type of amide-bound fatty acids in the sphingolipids, including the sulfonic-acid analogues, is iso-15:0, either non-hydroxylated or hydroxylated at 2-C, whereas 15-methylhexadecanoic acid is the major ester-bound fatty acid in the remaining lipids.
Collapse
Affiliation(s)
- S G Batrakov
- Research Centre 'Hydrobios' of Ministry of Health, ul. Kosmonavtov 18, korp. 2, Moscow, Russia
| | | | | | | | | |
Collapse
|
27
|
Visscher PT, Gritzer RF, Leadbetter ER. Low-molecular-weight sulfonates, a major substrate for sulfate reducers in marine microbial mats. Appl Environ Microbiol 1999; 65:3272-8. [PMID: 10427006 PMCID: PMC91491 DOI: 10.1128/aem.65.8.3272-3278.1999] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/1999] [Accepted: 05/18/1999] [Indexed: 11/20/2022] Open
Abstract
Several low-molecular-weight sulfonates were added to microbial mat slurries to investigate their effects on sulfate reduction. Instantaneous production of sulfide occurred after taurine and cysteate were added to all of the microbial mats tested. The rates of production in the presence of taurine and cysteate were 35 and 24 microM HS(-) h(-1) in a stromatolite mat, 38 and 36 microM HS(-) h(-1) in a salt pond mat, and 27 and 18 microM HS(-) h(-1) in a salt marsh mat, respectively. The traditionally used substrates lactate and acetate stimulated the rate of sulfide production 3 to 10 times more than taurine and cysteate stimulated the rate of sulfide production in all mats, but when ethanol, glycolate, and glutamate were added to stromatolite mat slurries, the resulting increases were similar to the increases observed with taurine and cysteate. Isethionate, sulfosuccinate, and sulfobenzoate were tested only with the stromatolite mat slurry, and these compounds had much smaller effects on sulfide production. Addition of molybdate resulted in a greater inhibitory effect on acetate and lactate utilization than on sulfonate use, suggesting that different metabolic pathways were involved. In all of the mats tested taurine and cysteate were present in the pore water at nanomolar to micromolar concentrations. An enrichment culture from the stromatolite mat was obtained on cysteate in a medium lacking sulfate and incubated anaerobically. The rate of cysteate consumption by this enrichment culture was 1.6 pmol cell(-1) h(-1). Compared to the results of slurry studies, this rate suggests that organisms with properties similar to the properties of this enrichment culture are a major constituent of the sulfidogenic population. In addition, taurine was consumed at some of highest dilutions obtained from most-probable-number enrichment cultures obtained from stromatolite samples. Based on our comparison of the sulfide production rates found in various mats, low-molecular-weight sulfonates are important sources of C and S in these ecosystems.
Collapse
Affiliation(s)
- P T Visscher
- Department of Marine Sciences, and Department of Molecular and Cell Biology, University of Connecticut, Groton, Connecticut 06340, USA.
| | | | | |
Collapse
|
28
|
A glycine-containing phosphorus-free lipoaminoacid from the gram-negative marine bacterium Cyclobacterium marinus WH. Chem Phys Lipids 1999. [DOI: 10.1016/s0009-3084(99)00031-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Affiliation(s)
- I Ishizuka
- Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Chien C, Leadbetter ER, Godchaux W. Taurine-sulfur assimilation and taurine-pyruvate aminotransferase activity in anaerobic bacteria. Appl Environ Microbiol 1997; 63:3021-4. [PMID: 16535664 PMCID: PMC1389219 DOI: 10.1128/aem.63.8.3021-3024.1997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrated the ability of strictly fermentative, as well as facultatively fermentative, bacteria to assimilate sulfonate sulfur for growth. Taurine (2-aminoethanesulfonate) can be utilized by Clostridium pasteurianum C1 but does not support fermentative growth of two Klebsiella spp. and two different Clostridium spp. However, the latter are able to assimilate the sulfur of a variety of other sulfonates (e.g., cysteate, 3-sulfopyruvate, and 3-sulfolactate) anaerobically. A novel taurine-pyruvate aminotransferase activity was detected in cell extracts of C. pasteurianum C1 grown with taurine as the sole sulfur source. This activity was not detected in extracts of other bacteria examined, in C. pasteurianum C1 grown with sulfate or sulfite as the sulfur source, or in a Klebsiella isolate assimilating taurine-sulfur by aerobic respiration. More common aminotransferase activities (e.g., with aspartate or glutamate as the amino donor and pyruvate, oxalacetate, or (alpha)-ketoglutarate as the amino acceptor) were present, no matter what sulfur source was used for growth. Partial characterization of the taurine-pyruvate aminotransferase revealed an optimal temperature of 37(deg)C and a broad optimal pH range of 7.5 to 9.5.
Collapse
|
31
|
Affiliation(s)
- B J Rawlings
- Department of Chemistry, University of Leicester, UK.
| |
Collapse
|
32
|
Drijber RA, McGill WB. Cytophaga hutchinsoniiATCC 33406 contains a structural variant of the sulfonolipidN-acylcapnine. Can J Microbiol 1997. [DOI: 10.1139/m97-099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gliding bacteria of the genera Cytophaga and Flexibacter contain unusual sulfonolipids, called capnoids, in their outer membrane. The parent compound capnine has been identified as 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid. Structural studies on N-acylaminosulfonates purified from a cellulolytic cytophaga, Cytophaga hutchinsonii ATCC 33406, revealed a structural variant of the aminosulfonate core in addition to a unique 2-hydroxy fatty acyl group, i17:0(2-OH), in amide linkage with the core. The source of the structural variation in the aminosulfonate core of Cytophaga hutchinsonii arose from the addition of two carbons to the acyl chain and the insertion of two trans-double bonds. Thus, the aminosulfonate core purified from Cytophaga hutchinsonii was identified as 2-amino-3-hydroxy-tras, trans-17-methylocta-4,7-diene-1-sulfonic acid and assigned the trivial name capnosine. A second cellulolytic cytophaga, CyP2, also showed this structural variation, which was absent from the noncellulolytic isolate CyS1. Further structural studies on sulfonolipids isolated from other cellulolytic and noncellulolytic isolates will determine the taxonomic significance of this structural variant of capnine.Key words: N-acylcapnine, N-acylaminosulfonates, capnosine, Cytophaga, cellulolytic cytophagas.
Collapse
|
33
|
Chien CC, Leadbetter E, Godchaux W. Sulfonate-sulfur can be assimilated for fermentative growth. FEMS Microbiol Lett 1995. [DOI: 10.1111/j.1574-6968.1995.tb07578.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Abstract
Deinococcus radiodurans contains novel phospholipids of which the structures of three have been previously described. These three lipids contain both fatty acids and alkylamines. Both the fatty acid and alkylamine constituents were found to be composed of a mixture of species, of which C15, C16, and C17 saturated and monounsaturated alkyl chains predominated. Alkylamines contained a relatively higher proportion of saturated species. Progression of bacterial growth through the mid-log to stationary phases was accompanied by an increase in the proportions of C15 and C17 alkyl chains in both fatty acid and alkylamine constituents. Radiolabeled palmitic acid was found to be rapidly incorporated into both fatty acid and alkylamine components of phosphatidylglyceroylalkylamine, which is the precursor of the more-complex phosphoglycolipids found in major amounts in D. radiodurans. After culturing D. radiodurans in the presence of a mixture of palmitic acids labeled with 14C and 3H in the 1 and 9,10 positions, respectively, the same 14C/3H ratio was recovered in both fatty acid and alkylamine constituents, strongly suggesting that alkylamines are derived from intact fatty acids rather than by a de novo pathway. The results identify a novel product of fatty acid metabolism which has not to date been observed in any other organism.
Collapse
Affiliation(s)
- R Anderson
- Department of Microbiology and Infectious Diseases, University of Calgary, Alberta, Canada
| | | |
Collapse
|
35
|
Kawazoe R, Monde K, Reichardt W, Okuyama H. Lipoamino acids and sulfonoplipids in Cytophaga johnsonae Stanier strain C21 and six related species of Cytophaga. Arch Microbiol 1992. [DOI: 10.1007/bf00290812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Kaneda T. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 1991; 55:288-302. [PMID: 1886522 PMCID: PMC372815 DOI: 10.1128/mr.55.2.288-302.1991] [Citation(s) in RCA: 456] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Branched-chain fatty acids of the iso and anteiso series occur in many bacteria as the major acyl constituents of membrane lipids. In addition, omega-cyclohexyl and omega-cycloheptyl fatty acids are present in several bacterial species. These two types of fatty acids are synthesized by the repeated condensation of malonyl coenzyme A with one of the branched-chain and cyclic primers by the same enzyme system. The pathway of de novo branched-chain fatty acid synthesis differs only in initial steps of synthesis from that of the common straight-chain fatty acid (palmitic acid) present in most organisms. The cell membranes composed largely of iso-, anteiso-, and omega-alicyclic acids support growth of bacteria, which inhabit normal as well as extreme environments. The occurrence of these types of fatty acids as major cellular fatty acids is an important criterion used to aid identification and classification of bacteria.
Collapse
Affiliation(s)
- T Kaneda
- Alberta Research Council, Edmonton, Canada
| |
Collapse
|
37
|
Pate JL, De Jong DM. Use of nonmotile mutants to identify a set of membrane proteins related to gliding motility in Cytophaga johnsonae. J Bacteriol 1990; 172:3117-24. [PMID: 2345138 PMCID: PMC209115 DOI: 10.1128/jb.172.6.3117-3124.1990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nonmotile mutants of the gliding bacterium Cytophaga johnsonae were examined to identify proteins that might be involved in gliding motility. Wild-type and mutant cell proteins were solubilized and fractionated by using Triton X-114, and the proteins that partitioned into the aqueous phase or the detergent phase were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis for proteins that differed between wild-type and mutant cells. Seventeen proteins, ranging in size from 16 to 150 kilodaltons, were implicated by this technique as having some relationship to gliding and were designated Gld-1 through Gld-17. All Gld proteins behaved as integral membrane proteins, partitioning into the detergent phase. All 56 mutants examined exhibited changes in 1 or more of the Gld proteins, with the number of proteins altered in any mutant varying from 1 to 11. Several lines of evidence suggested that proteins Gld-12 through Gld-15 are glycoproteins. Analysis of banding patterns of detergent-fraction proteins of motile revertants supported the idea that the Gld proteins have a role in gliding motility.
Collapse
Affiliation(s)
- J L Pate
- Department of Bacteriology, University of Wisconsin, Madison 53706
| | | |
Collapse
|
38
|
Nishi Y, Hatano S, Aihara K, Kihara M. [Significance of copper analysis in clinical tests]. Mol Nutr Food Res 1990; 60:119-33. [PMID: 2622002 DOI: 10.1002/mnfr.201500243] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/14/2022]
|
39
|
Godchaux W, Gorski L, Leadbetter ER. Outer membrane polysaccharide deficiency in two nongliding mutants of Cytophaga johnsonae. J Bacteriol 1990; 172:1250-5. [PMID: 2307648 PMCID: PMC208590 DOI: 10.1128/jb.172.3.1250-1255.1990] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phenol-extractable polysaccharides firmly associated with the outer membrane of the gliding bacterium Cytophaga johnsonae could be resolved by gel filtration in sodium dodecyl sulfate (SDS) or by SDS-polyacrylamide gel electrophoresis into a high-molecular-weight (H) fraction (excluded by Sephadex G-200) and a low-molecular-weight (L) fraction. Fraction L was rich in components typical of lipid A and the core region of lipopolysaccharide (P, 3-hydroxy fatty acids, and 2-keto-3-deoxyoctonate) and evidently was a lipopolysaccharide with a limited number of distal, repeating polysaccharide units, as judged by SDS-polyacrylamide gel electrophoresis. In relation to total carbohydrate, the H fraction was rich in amino sugar but poor in (possibly devoid of) the lipid A and core components. Two nongliding mutants were highly deficient in the H fraction; one of these was deficient in sulfonolipid but could be cured by provision of a specific sulfonolipid precursor, a process that also resulted in the return of both the H fraction and gliding, as well as the ability to move polystyrene latex spheres over the cell surface. Hence, the polysaccharide may be the component that is directly involved in motility, and the presence of sulfonolipids in the outer membrane is necessary for the synthesis or accumulation of the polysaccharide. This conclusion was reinforced by the fact that the second nongliding, polysaccharide-deficient mutant had a normal sulfonolipid content.
Collapse
Affiliation(s)
- W Godchaux
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-2131
| | | | | |
Collapse
|
40
|
|
41
|
Godchaux W, Leadbetter ER. Sulfonolipids are localized in the outer membrane of the gliding bacterium Cytophaga johnsonae. Arch Microbiol 1988. [DOI: 10.1007/bf00409716] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Surface-induced synthesis of new sulfonolipids in the gliding bacterium Cytophaga johnsonae. Arch Microbiol 1988. [DOI: 10.1007/bf00411656] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Baumann H, Bühler M, Fochem H, Hirsinger F, Zoebelein H, Falbe J. Natürliche Fette und Öle – nachwachsende Rohstoffe für die chemische Industrie. Angew Chem Int Ed Engl 1988. [DOI: 10.1002/ange.19881000107] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Giovannoni SJ, Godchaux W, Schabtach E, Castenholz RW. Cell wall and lipid composition of Isosphaera pallida, a budding eubacterium from hot springs. J Bacteriol 1987; 169:2702-7. [PMID: 3584067 PMCID: PMC212166 DOI: 10.1128/jb.169.6.2702-2707.1987] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Isosphaera pallida is an unusual gliding, budding eubacterium recently isolated from North American hot springs. Electron micrographs of ultrathin sections revealed a cell wall atypical of eubacteria: two electrondense layers separated by an electron-transparent layer, with no evident peptidoglycan layer. Growth was not inhibited by penicillin. Cell walls were isolated from sheared cells by velocity sedimentation. The rigid-layer fraction, prepared from cell walls by treatment with boiling 10% sodium dodecyl sulfate, was hydrolyzed and chemically analyzed for muramic acid. This essential component of peptidoglycan was absent. Amino acid analysis demonstrated a proteinaceous wall structure. Pitlike surface structures seen in negatively stained whole cells and thin sections were correlated with periodically spaced perforations of the rigid sacculus. An analysis of the lipid composition of I. pallida revealed typical ester-linked lipids with unbranched fatty acids, in contrast to the isoprenyl ether-linked lipids of archaebacteria, which also have proteinaceous cell walls. Capnoids, unusual sulfonolipids which are present in gliding bacteria of the Cytophaga-Flexibacter group, were absent.
Collapse
|
45
|
|
46
|
Guidon PT, Hightower LE. The 73 kilodalton heat shock cognate protein purified from rat brain contains nonesterified palmitic and stearic acids. J Cell Physiol 1986; 128:239-45. [PMID: 3733888 DOI: 10.1002/jcp.1041280215] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A protein related to the 71 kilodalton inducible rat heat shock protein was purified to electrophoretic homogeneity in milligram amounts from brain tissue of nonheat-stressed rats. The protein has been designated as a stress cognate protein based on previous studies and data presented herein that this protein cross-reacted with a monoclonal antibody originally raised against the Drosophila 70 kilodalton heat shock protein. The purified protein had an apparent molecular mass of 73 kilodaltons when analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and an apparent mass of 150 kilodaltons as determined by nondissociative gel chromatography, suggesting that the purified protein is a homodimer. The purified protein had isoelectric points of 5.0 under nondissociative conditions and 5.6 when exposed to protein denaturants, suggesting loss of bound anionic molecules and/or net exposure of basic residues upon denaturation. Chloroform/methanol extraction of the purified protein and subsequent analyses by thin layer and gas-liquid chromatography resulted in the identification of palmitic and stearic acids noncovalently bound to the protein. Approximately four molecules of fatty acids were bound per dimer with palmitic and stearic acids present in a one-to-one ratio. The purified protein did not bind exogenously added radioactive palmitate, indicating that the fatty acid-binding sites of the cognate protein were fully occupied and that the associated fatty acids were too tightly bound to exchange readily. The possible significance of the fatty acids associated with the 73 kilodalton stress cognate protein is discussed.
Collapse
|
47
|
Abstract
Gliding bacteria of the genus Cytophaga synthesize sulfonolipids (1,2) that contain capnine (1-deoxy-15-methylhexadecasphinganine-1-sulfonic acid). Studies of the incorporation of radiolabeled compounds by C. johnsonae show that cysteate is utilized preferentially to both cystine and inorganic sulfate as a precursor of capnine sulfur and to both cystine and serine as a precursor of carbons 1 and 2 of capnine. The results are consistent with a pathway in which capnine is formed by condensation of cysteate with a fatty acyl CoA. Cystine, added as the sole sulfur source in the presence of glucose, provides the sulfur but not the carbon for capnine. Hence, these cells form cysteate not by direct oxidation of cystine (or cysteine), but by transfer of its sulfur to a different carbon compound.
Collapse
|
48
|
White RH. Biosynthesis of the sulfonolipid 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid in the gliding bacterium Cytophaga johnsonae. J Bacteriol 1984; 159:42-6. [PMID: 6330048 PMCID: PMC215589 DOI: 10.1128/jb.159.1.42-46.1984] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The biosynthesis of the sulfonolipid 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid (capnine) was studied by measuring the incorporation of possible precursors into the lipid by cells grown in the presence of precursors which were labeled with stable isotopes. Cells grown on yeast extract in the presence of DL-[3,3-2H2]serine contained 40.1 mol% of the protein-bound serine and 5.0 mol% of the protein-bound cysteine derived from the labeled serine. Cells grown in the presence of DL-[3,3-2H2]cystine acid contained 86.4 mol% of the molecules that had two deuteriums. These results are consistent with the possibility that biosynthesis of capnine occurs by the condensation of 13-methylmyristoyl-coenzyme A with cysteic acid, in a reaction analogous to the condensation of a palmitoyl-coenzyme A with serine to form 3-keto-sphinganine during the biosynthesis of sphingolipids.
Collapse
|