1
|
Activity of the novel macrolide BAL19403 against ribosomes from erythromycin-resistant Propionibacterium acnes. Antimicrob Agents Chemother 2007; 51:4361-5. [PMID: 17923495 DOI: 10.1128/aac.00672-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BAL19403 is a macrolide antibiotic from a novel structural class with potent activity against propionibacteria in vitro. The antibacterial spectrum of BAL19403 covers clinical isolates with mutations in the 2057 to 2059 region of 23S rRNA that confer resistance to erythromycin and clindamycin. The basis of this improved activity was investigated by ribosome binding assays and by a coupled transcription and translation assay. The latter was specifically developed for the use of ribosomes from Propionibacterium acnes. BAL19403 inhibited protein expression by ribosomes from erythromycin-sensitive and erythromycin-resistant P. acnes with similar potencies if the resistance was due to G2057A or A2058G mutations. BAL19403 showed a >10-fold higher activity than erythromycin against ribosomes from a strain with the erm(X) gene. Erm(X) confers high levels of macrolide and lincosamide resistance by dimethylation of A2058. Assays with such ribosomes showed that BAL19403 was potent enough to inhibit half of the total activity with a 50% inhibitory concentration very close to the value measured with erythromycin-sensitive ribosomes. We concluded from our data that the P. acnes strain with the erm(X) gene had a mixed population of ribosomes, with macrolide-sensitive and macrolide-resistant species.
Collapse
|
2
|
|
3
|
Beyer D, Pepper K. The streptogramin antibiotics: update on their mechanism of action. Expert Opin Investig Drugs 2005; 7:591-9. [PMID: 15991995 DOI: 10.1517/13543784.7.4.591] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antibiotics of the streptogramin class are an association of two types of chemically different compounds, group A molecules and group B molecules, acting in synergy. The combination of these molecules generally inhibits bacterial growth at a lower concentration than does either the group A or group B molecule alone and is often bactericidal against strains of bacteria for which each type of molecule alone is only bacteriostatic. The semisynthetic streptogramin quinupristin/dalfopristin (RP 59500), the first water-soluble member of this class, is under development for the treatment of severe infections caused by methicillin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, penicillin-resistant Streptococcus pneumoniae, glycopeptide-resistant Enterococcus faecium, and other organisms. The streptogramins block the translation of mRNA into protein. Both group A and group B molecules bind to the peptidyl-transferase domain of the bacterial ribosome. The group B molecule stimulates the dissociation of peptidyl-tRNA from the ribosome and may interfere with the passage of the completed polypeptide away from the peptidyl-transferase centre. The group A molecule inhibits the elongation of the polypeptide chain by preventing both the binding of aminoacyl-tRNA to the ribosomal A site and the formation of the peptide bond. When the two types of molecule are used in combination, the binding of the group A molecule alters the conformation of the ribosome such that the affinity of the ribosome for the B molecule is increased. This accounts, in part or entirely, for the observed synergy. This synergy is unaffected by ribosomal modifications conferring resistance to the macrolides, lincosamides, and group B molecules alone.
Collapse
Affiliation(s)
- D Beyer
- Rhône-Poulenc Rorer S. A., Centre de Recherche, 13 Quai Jules Guesde, F-94403 Vitry sur Seine, France.
| | | |
Collapse
|
4
|
Dinos GP, Connell SR, Nierhaus KH, Kalpaxis DL. Erythromycin, roxithromycin, and clarithromycin: use of slow-binding kinetics to compare their in vitro interaction with a bacterial ribosomal complex active in peptide bond formation. Mol Pharmacol 2003; 63:617-23. [PMID: 12606769 DOI: 10.1124/mol.63.3.617] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a cell-free system derived from Escherichia coli, it is shown that clarithromycin and roxithromycin, like their parent compound erythromycin, do not inhibit the puromycin reaction (i.e., the peptide bond formation between puromycin and AcPhe-tRNA bound at the P-site of 70S ribosomes programmed with heteropolymeric mRNA). Nevertheless, all three antibiotics compete for binding on the ribosome with tylosin, a 16-membered ring macrolide that behaves as a slow-binding, slowly reversible inhibitor of peptidyltransferase. The mutually exclusive binding of these macrolides to ribosomes is also corroborated by the fact that they protect overlapping sites in domain V of 23S rRNA from chemical modification by dimethyl sulfate. From this competition effect, detailed kinetic analysis revealed that roxithromycin or clarithromycin (A), like erythromycin, reacts rapidly with AcPhe-tRNA.MF-mRNA x 70S ribosomal complex (C) to form the encounter complex CA which is then slowly isomerized to a more tight complex, termed C*A. The value of the overall dissociation constant, K, encompassing both steps of macrolide interaction with complex C, is 36 nM for erythromycin, 20 nM for roxithromycin, and 8 nM for clarithromycin. Because the off-rate constant of C*A complex does not significantly differ among the three macrolides, the superiority of clarithromycin as an inhibitor of translation in E. coli cells and many Gram-positive bacteria may be correlated with its greater rate of association with ribosomes.
Collapse
Affiliation(s)
- George P Dinos
- Laboratory of Biochemistry, School of Medicine, University of Patras, Patras, Greece.
| | | | | | | |
Collapse
|
5
|
Abstract
Streptogramins represent a unique class of antibiotics remarkable for their antibacterial activity and their unique mechanism of action. These antibiotics are produced naturally as secondary metabolites by a number of Streptomyces species and have been classified into two main groups. They consist of at least two structurally unrelated compounds, group A or M (macrolactones) and group B or S (cyclic hexadepsipeptides). Both groups bind bacterial ribosomes and inhibit protein synthesis at the elongation step and they act synergistically in vitro against many microorganisms. Streptogramins A and B act synergistically in vivo; the mixture of the two compounds is more powerful than the individual components and their combined action is irreversible. The pharmacokinetic parameters of group A and B streptogramins in blood are similar. The major gap, limiting the therapeutic use of the natural compounds, was represented by the lack dissolution in water. The synthesis of water-soluble derivatives of pristinamycin I(A) and II(B) has allowed the development of injectable, first represented by quinupristin/dalfopristin (Synercid) and oral formulations, represented by RPR-106972, streptogramins with fixed compositions. Streptogramins have demonstrated activity against Gram-positive microorganisms in vitro and in vivo, including those with multi-drug resistance. Moreover, the absence of cross-resistance to macrolides in many of these microorganisms and the rarity of cross-resistance between the two groups of antibiotics associated with the rapid bacterial killing are the principal features of the streptogramins, offering the possibility for treating the rising number of infections that are caused by multi-resistant Gram-positive bacteria.
Collapse
Affiliation(s)
- G Bonfiglio
- Dipartimento di Scienze Microbiologiche, Università di Catania, Via Androne 81, 95124 Catania, Italy.
| | | |
Collapse
|
6
|
Dinos GP, Kalpaxis DL. Kinetic studies on the interaction between a ribosomal complex active in peptide bond formation and the macrolide antibiotics tylosin and erythromycin. Biochemistry 2000; 39:11621-8. [PMID: 10995229 DOI: 10.1021/bi000811f] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibition of peptide bond formation by tylosin, a 16-membered ring macrolide, was studied in a model system derived from Escherichia coli. In this cell-free system, a peptide bond is formed between puromycin (acceptor substrate) and AcPhe-tRNA (donor substrate) bound at the P-site of poly(U)-programmed ribosomes. It is shown that tylosin inhibits puromycin reaction as a slow-binding, slowly reversible inhibitor. Detailed kinetic analysis reveals that tylosin (I) reacts rapidly with complex C, i.e., the AcPhe-tRNA. poly(U).70S ribosome complex, to form the encounter complex CI, which then undergoes a slow isomerization and is converted to a tight complex, CI, inactive toward puromycin. These events are described by the scheme C + I <==> (K(i)) CI <==> (k(4), k(5)) CI. The K(i), k(4), and k(5) values are equal to 3 microM, 1.5 min(-1), and 2.5 x 10(-3) min(-1), respectively. The extremely low value of k(5) implies that the inactivation of complex C by tylosin is almost irreversible. The irreversibility of the tylosin effect on peptide bond formation is significant for the interpretation of this antibiotic's therapeutic properties; it also renders the tylosin reaction a useful tool in the study of other macrolides failing to inhibit the puromycin reaction but competing with tylosin for common binding sites on the ribosome. Thus, the tylosin reaction, in conjunction with the puromycin reaction, was applied to investigate the erythromycin mode of action. It is shown that erythromycin (Er), like tylosin, interacts with complex C according to the kinetic scheme C + Er <==> (K(er)) CEr <==> (k(6), k(7)) C*Er and forms a tight complex, CEr, which remains active toward puromycin. The determination of K(er), k(6), and k(7) enables us to classify erythromycin as a slow-binding ligand of ribosomes.
Collapse
Affiliation(s)
- G P Dinos
- Laboratory of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece.
| | | |
Collapse
|
7
|
Beyer D, Vannuffel P, Pepper K. Quinupristin (RP 57669): a new tool to investigate ribosome-group B streptogramin interactions. Biol Chem 1998; 379:841-6. [PMID: 9705147 DOI: 10.1515/bchm.1998.379.7.841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Streptogramin antibiotics consist of two types of molecules, group A and group B. The group B molecule quinupristin (RP 57669) and the group A molecule dalfopristin (RP 54476) constitute the first water-soluble semisynthetic streptogramin, quinupristin/dalfopristin (RP 59500). When group B molecules bind to 50S subunits or to tightly coupled ribosomes, there is an increase in their fluorescence intensity, which is proportional to the concentration of the antibiotic-ribosome complex formed. We found here that the background fluorescence of unbound quinupristin is 10-fold lower than that of unbound virginiamycin S, a natural group B molecule often used experimentally. The association constants were found (i) to be similar for the binding of the two group B molecules to tightly coupled 70S ribosomes in the absence of the group A molecules (quinupristin: 3.5 x 10(7) M(-1); virginiamycin S: 2.8 x 10(7) M(-1)) and (ii) to similarly increase about 20-fold in the presence of the corresponding group A molecule (quinupristin + dalfopristin: 69 x 10(7) M(-1); virginiamycin S + virginiamycin M: 60 x 10(7) M(-1)). Similar results were obtained with 50S ribosomal subunits. Additionally, we provide evidence that the failure of the group B molecules to inhibit poly(Phe) synthesis is due to the displacement of the group B molecule during poly(Phe) polymerization on the ribosome, indicating that the artificial poly(Phe) peptide competes with the binding of the group B molecule.
Collapse
Affiliation(s)
- D Beyer
- Rhône-Poulenc Rorer S.A., Centre de Recherche, Vitry sur Seine, France
| | | | | |
Collapse
|
8
|
|
9
|
Di Giambattista M, Nyssen E, Pecher A, Cocito C. Affinity labeling of the virginiamycin S binding site on bacterial ribosome. Biochemistry 1990; 29:9203-11. [PMID: 2125475 DOI: 10.1021/bi00491a014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Virginiamycin S (VS, a type B synergimycin) inhibits peptide bond synthesis in vitro and in vivo. The attachment of virginiamycin S to the large ribosomal subunit (50S) is competitively inhibited by erythromycin (Ery, a macrolide) and enhanced by virginiamycin M (VM, a type A synergimycin). We have previously shown, by fluorescence energy transfer measurements, that virginiamycin S binds at the base of the central protuberance of 50S, the putative location of peptidyltransferase domain [Di Giambattista et al. (1986) Biochemistry 25, 3540-3547]. In the present work, the ribosomal protein components at the virginiamycin S binding site were affinity labeled by the N-hydroxysuccinimide ester derivative (HSE) of this antibiotic. Evidence has been provided for (a) the association constant of HSE-ribosome complex formation being similar to that of native virginiamycin S, (b) HSE binding to ribosomes being antagonized by erythromycin and enhanced by virginiamycin M, and (c) a specific linkage of HSE with a single region of 50S, with virtually no fixation to 30S. After dissociation of covalent ribosome-HSE complexes, the resulting ribosomal proteins have been fractionated by electrophoresis and blotted to nitrocellulose, and the HSE-binding proteins have been detected by an immunoenzymometric procedure. More than 80% of label was present within a double spot corresponding to proteins L18 and L22, whose Rfs were modified by the affinity-labeling reagent. It is concluded that these proteins are components of the peptidyltransferase domain of bacterial ribosomes, for which a topographical model, including the available literature data, is proposed.
Collapse
Affiliation(s)
- M Di Giambattista
- Unit of Microbiology and Genetics, ICP, Medical School, University of Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
10
|
Nyssen E, Di Giambattista M, Cocito C. Analysis of the reversible binding of virginiamycin M to ribosome and particle functions after removal of the antibiotic. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1009:39-46. [PMID: 2506929 DOI: 10.1016/0167-4781(89)90076-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Type A synergimycins (VM) were shown to act catalytically and to induce two ribosomal alterations: (a) inability to promote polypeptide synthesis; (b) high-affinity binding of type B synergimycins (VS). A claim for irreversible binding of type A synergimycins to ribosomes has promoted the present reinvestigation. Submission of ribosomes from VM-treated bacteria to a purification procedure (supposed to remove the drug, according to a low association constant previously reported) yielded particles still holding residual VM. The formation of VM.ribosome complexes, more stable than previously inferred but without covalent linkage, was deduced from the extractability of complexed VM by organic solvents. Moreover, incubation of these complexes with increasing amounts of anti-VM immunoglobulins progressively restored ribosome activity in protein synthesis. Binding of VS to ribosomes, by fluorimetric titrations in the presence of substoichiometric concentrations of VM, was incompatible with catalytic action of type A synergimycins. Ribosomes from VM-treated bacteria displayed also a higher affinity for VS than did control ribosomes. This property did not disappear when ribosome.VM complexes were incubated with anti-VM IgG, nor when VM-IgG complexes were withdrawn from the reaction mixture by protein A-agarose binding. We can conclude that VM binding produces: (1) an inhibition of ribosome-promoted peptide bond formation, which occurs only in the presence of the drug; and (2) an increase of ribosome affinity for VS, which lasts after VM removal. The linkage of this drug with ribosomes is tight but reversible and its action is stoichiometric.
Collapse
Affiliation(s)
- E Nyssen
- Microbiology & Genetics Unit, ICP, University of Lowvain Medical School, Brussels, Belgium
| | | | | |
Collapse
|
11
|
Chinali G, Nyssen E, Di Giambattista M, Cocito C. Action of erythromycin and virginiamycin S on polypeptide synthesis in cell-free systems. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 951:42-52. [PMID: 3142522 DOI: 10.1016/0167-4781(88)90023-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Erythromycin (a 14-membered macrolide) and virginiamycin S (a type B synergimycin) block protein biosynthesis in bacteria, but are virtually inactive on poly(U)-directed poly(Phe) synthesis. We have recently shown, however, that these antibiotics inhibit the in vitro polypeptide synthesis directed by synthetic copolymers: this effect is analyzed further in the present work. We were unable to find any consistent alteration produced by these antibiotics on coupled and uncoupled EF-G- and EF-Tu-dependent GTPases, on the EF-Tu-directed binding of aminoacyl-tRNA to ribosomes, and on the EF-G- and GTP-mediated translocation of peptidyl-tRNA bound to poly(U,C).ribosome complexes. With these complexes, the peptidyl transfer reaction, as measured by peptidylpuromycin synthesis, was 10-30% inhibited by virginiamycin S and erythromycin. A direct relationship between the virginiamycin S- and erythromycin-promoted inhibition of poly(A,C)-directed polypeptide synthesis, on the one hand, and the EF-G concentration and the rate of the polymerization reaction, on the other hand, was observed, in agreement with a postulated reversible inhibitor action of these antibiotics. The increased inhibitory activity, which was observed during the first 4-6 rounds of elongation, in the presence of virginiamycin S or erythromycin, was suggestive of a specific action of these antibiotics on the correct positioning of peptidyl-tRNA at the P site. The marked stimulation of premature release of peptidyl-tRNA from poly(A,C).ribosome complexes can be referred to an altered interaction of the C-terminal aminoacyl residue of the growing peptidyl chain with the ribosome. We conclude that the action of virginiamycin S and erythromycin entails a template-dependent alteration of the interaction of peptidyl-tRNA with the donor site of peptidyltransferase, which may lead to a transient functional block of the ribosome and in some instances to a premature release of peptidyl-tRNA and termination of the elongation process.
Collapse
Affiliation(s)
- G Chinali
- Istituto di Strutture Biologiche ed Ultrastruttura Cellulare, Ila Facoltà di Medicina, Università di Napoli, Italy
| | | | | | | |
Collapse
|
12
|
Chinali G, Nyssen E, Di Giambattista M, Cocito C. Inhibition of polypeptide synthesis in cell-free systems by virginiamycin S and erythromycin. Evidence for a common mode of action of type B synergimycins and 14-membered macrolides. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 949:71-8. [PMID: 3120788 DOI: 10.1016/0167-4781(88)90056-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Macrolides, lincosamides and type B synergimycins are powerful inhibitors of protein synthesis in vivo, but many of them were found to be inactive in vitro. In the present work, we confirm that virginiamycin S (a type B synergimycin) and erythromycin (a 14-membered macrolide) have no effect on poly(U)-directed poly(Phe) synthesis. However, the amino-acid polymerization reactions directed by poly(U,G), poly(U,C), poly(A,G) and poly(A,C) were increasingly inhibited (20-50%) by both antibiotics. The action of these inhibitors proved to be template-dependent and favored by the incorporation of proline and of basic amino acids into peptides. Under these conditions, virginiamycin S and erythromycin markedly stimulated a release of peptidyl-tRNA from the ribosomes. In the poly(A,C) model system, these antibiotics produced a 50% inhibition of amino-acid incorporation into total peptides, a 70% release of ribosome-bound peptidyl-tRNA, and a 95% repression of the synthesis of long peptide chains. The production of equivalent effects at saturating concentrations of these antibiotics in the four model systems examined is suggestive of a similarity in their mode of action. Our results indicate that 14-membered macrolides and type B synergimycins can act on ribosomes during the whole elongation process. The functional block produced by both antibiotics is usually reversible, but may result in a premature release of peptidyl-tRNA when the stability of ribosomal complexes is lowered by the incorporation of basic amino acids.
Collapse
Affiliation(s)
- G Chinali
- Istituto di Strutture Biologiche ed Ultrastruttura Cellulare, IIa Facoltà di Medicina, Università di Napoli, Italy
| | | | | | | |
Collapse
|
13
|
|
14
|
A fluorescence stopped flow study of the competition and displacement kinetics of podophyllotoxin and the colchicine analog 2-methoxy-5-(2′,3′,4′-trimethoxyphenyl) tropone on tubulin. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61174-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Chinali G, Di Giambattista M, Cocito C. Ribosome protection by tRNA derivatives against inactivation by virginiamycin M: evidence for two types of interaction of tRNA with the donor site of peptidyl transferase. Biochemistry 1987; 26:1592-7. [PMID: 3109469 DOI: 10.1021/bi00380a016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Virginiamycin M (VM) was previously shown to interfere with the function of both the A and P sites of ribosomes and to inactivate tRNA-free ribosomes but not particles bearing peptidyl-tRNA. To explain these findings, the shielding ability afforded by tRNA derivatives positioned at the A and P sites against VM-produced inactivation was explored. Unacylated tRNA(Phe) was ineffective, irrespective of its position on the ribosome. Phe-tRNA and Ac-Phe-tRNA provided little protection when bound directly to the P site but were active when present at the A site. Protection by these tRNA derivatives was markedly enhanced by the formation of the first peptide bond and increased further upon elongation of peptide chains. Most of the shielding ability of Ac-Phe-tRNA and Phe-tRNA positioned at the A site was conserved when these tRNAs were translocated to the P site by the action of elongation factor G and GTP. Thus, a 5-10-fold difference in the protection afforded by these tRNAs was observed, depending on their mode of entry to the P site. This indicates the occurrence of two types of interaction of tRNA derivatives with the donor site of peptidyl transferase: one shared by acylated tRNAs directly bound to the ribosomal P site (no protection against VM) and the other characteristic of aminoacyl- or peptidyl-tRNA translocated from the A site (protection of peptidyl transferase against VM). To explain these data and previous observations with other protein synthesis inhibitors, a new model of peptidyl transferase is proposed.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
16
|
Action of synergimycins and macrolides on in vivo and in vitro protein synthesis in archaebacteria. ACTA ACUST UNITED AC 1985. [DOI: 10.1007/bf00330275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Di Giambattista M, Ide G, Engelborghs Y, Cocito C. Analysis of fluorescence quenching of ribosome-bound virginiamycin S. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(20)82145-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|