1
|
Zhao Z, Rudman NA, He J, Dmochowski IJ. Programming xenon diffusion in maltose-binding protein. Biophys J 2022; 121:4635-4643. [PMID: 36271622 PMCID: PMC9748359 DOI: 10.1016/j.bpj.2022.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/15/2022] Open
Abstract
Protein interiors contain void space that can bind small gas molecules. Determination of gas pathways and kinetics in proteins has been an intriguing and challenging task. Here, we combined computational methods and the hyperpolarized xenon-129 chemical exchange saturation transfer (hyper-CEST) NMR technique to investigate xenon (Xe) exchange kinetics in maltose-binding protein (MBP). A salt bridge ∼9 Å from the Xe-binding site formed upon maltose binding and slowed the Xe exchange rate, leading to a hyper-CEST 129Xe signal from maltose-bound MBP. Xe dissociation occurred faster than dissociation of the salt bridge, as shown by 13C NMR spectroscopy and variable-B1 hyper-CEST experiments. "Xe flooding" molecular dynamics simulations identified a surface hydrophobic site, V23, that has good Xe binding affinity. Mutations at this site confirmed its role as a secondary exchange pathway in modulating Xe diffusion. This shows the possibility for site-specifically controlling xenon protein-solvent exchange. Analysis of the available MBP structures suggests a biological role of MBP's large hydrophobic cavity to accommodate structural changes associated with ligand binding and protein-protein interactions.
Collapse
Affiliation(s)
- Zhuangyu Zhao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nathan A Rudman
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jiayi He
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
2
|
Krasitskaya VV, Kudryavtsev AN, Yaroslavtsev RN, Velikanov DA, Bayukov OA, Gerasimova YV, Stolyar SV, Frank LA. Starch-Coated Magnetic Iron Oxide Nanoparticles for Affinity Purification of Recombinant Proteins. Int J Mol Sci 2022; 23:ijms23105410. [PMID: 35628220 PMCID: PMC9140719 DOI: 10.3390/ijms23105410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Starch-coated magnetic iron oxide nanoparticles have been synthesized by a simple, fast, and cost-effective co-precipitation method with cornstarch as a stabilizing agent. The structural and magnetic characteristics of the synthesized material have been studied by transmission electron microscopy, Mössbauer spectroscopy, and vibrating sample magnetometry. The nature of bonds between ferrihydrite nanoparticles and a starch shell has been examined by Fourier transform infrared spectroscopy. The data on the magnetic response of the prepared composite particles have been obtained by magnetic measurements. The determined magnetic characteristics make the synthesized material a good candidate for use in magnetic separation. Starch-coated magnetic iron oxide nanoparticles have been tested as an affinity sorbent for one-step purification of several recombinant proteins (cardiac troponin I, survivin, and melanoma inhibitory activity protein) bearing the maltose-binding protein as an auxiliary fragment. It has been shown that, due to the highly specific binding of this fragment to the starch shell, the target fusion protein is selectively immobilized on magnetic nanoparticles and eluted with the maltose solution. The excellent efficiency of column-free purification, high binding capacity of the sorbent (100–500 µg of a recombinant protein per milligram of starch-coated magnetic iron oxide nanoparticles), and reusability of the obtained material have been demonstrated.
Collapse
Affiliation(s)
- Vasilisa V. Krasitskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (A.N.K.)
| | - Alexander N. Kudryavtsev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (A.N.K.)
| | - Roman N. Yaroslavtsev
- Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (R.N.Y.); (D.A.V.); (O.A.B.); (Y.V.G.); (S.V.S.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
| | - Dmitry A. Velikanov
- Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (R.N.Y.); (D.A.V.); (O.A.B.); (Y.V.G.); (S.V.S.)
| | - Oleg A. Bayukov
- Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (R.N.Y.); (D.A.V.); (O.A.B.); (Y.V.G.); (S.V.S.)
| | - Yulia V. Gerasimova
- Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (R.N.Y.); (D.A.V.); (O.A.B.); (Y.V.G.); (S.V.S.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Sergey V. Stolyar
- Kirensky Institute of Physics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (R.N.Y.); (D.A.V.); (O.A.B.); (Y.V.G.); (S.V.S.)
- Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Ludmila A. Frank
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (A.N.K.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Correspondence:
| |
Collapse
|
3
|
Abstract
Carbohydrate recognition is crucial for biological processes ranging from development to immune system function to host-pathogen interactions. The proteins that bind glycans are faced with a daunting task: to coax these hydrophilic species out of water and into a binding site. Here, we examine the forces underlying glycan recognition by proteins. Our previous bioinformatic study of glycan-binding sites indicated that the most overrepresented side chains are electron-rich aromatic residues, including tyrosine and tryptophan. These findings point to the importance of CH-π interactions for glycan binding. Studies of CH-π interactions show a strong dependence on the presence of an electron-rich π system, and the data indicate binding is enhanced by complementary electronic interactions between the electron-rich aromatic ring and the partial positive charge of the carbohydrate C-H protons. This electronic dependence means that carbohydrate residues with multiple aligned highly polarized C-H bonds, such as β-galactose, form strong CH-π interactions, whereas less polarized residues such as α-mannose do not. This information can guide the design of proteins to recognize sugars and the generation of ligands for proteins, small molecules, or catalysts that bind sugars.
Collapse
Affiliation(s)
- Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Roger C. Diehl
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Periplasmic-binding protein-based biosensors and bioanalytical assay platforms: Advances, considerations, and strategies for optimal utility. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Nemergut M, Škrabana R, Berta M, Plückthun A, Sedlák E. Purification of MBP fusion proteins using engineered DARPin affinity matrix. Int J Biol Macromol 2021; 187:105-112. [PMID: 34298044 DOI: 10.1016/j.ijbiomac.2021.07.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/20/2021] [Accepted: 07/18/2021] [Indexed: 11/15/2022]
Abstract
Maltose binding protein (MBP) has a long history as an expression tag with the ability to increase the solubility of fused proteins. A critical step for obtaining a sufficient amount of the MBP fusion protein is purification. Commercially available amylose matrix for the affinity purification of MBP fusion proteins has two main issues: (i) low (micromolar) affinity and (ii) the limited number of uses due to the cleavage of polysaccharide matrix by the amylases, present in the crude cell extract. Here, we present a new affinity purification approach based on the protein-protein interaction. We developed the affinity matrix which contains immobilized Designed Ankyrin Repeat Protein off7 (DARPin off7) - previously identified MBP binder with nanomolar affinity. The functionality of the DARPin affinity matrix was tested on the purification of MBP-tagged green fluorescent protein and flavodoxin. The affinity purification of the MBP fusion proteins, based on the MBP-DARPin off7 interaction, enables the purification of the fusion proteins in a simple two-steps procedure. The DARPin affinity matrix - easy to construct, resistant to amylase, insensitive to maltose contamination, and reusable for multiple purification cycles - provides an alternative approach to commercially available affinity matrices for purification of proteins containing the MBP tag.
Collapse
Affiliation(s)
- Michal Nemergut
- Center for Interdisciplinary Biosciences, Technology and Innovation Park of P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia; Department of Biophysics, Faculty of Science, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Rostislav Škrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia
| | - Martin Berta
- Department of Biophysics, Faculty of Science, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park of P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia.
| |
Collapse
|
6
|
Structure dictates the mechanism of ligand recognition in the histidine and maltose binding proteins. Curr Res Struct Biol 2020; 2:180-190. [PMID: 34235478 PMCID: PMC8244415 DOI: 10.1016/j.crstbi.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/26/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
Two mechanisms, induced fit (IF) and conformational selection (CS), have been proposed to explain ligand recognition coupled conformational changes. The histidine binding protein (HisJ) adopts the CS mechanism, in which a pre-equilibrium is established between the open and the closed states with the ligand binding to the closed state. Despite being structurally similar to HisJ, the maltose binding protein (MBP) adopts the IF mechanism, in which the ligand binds the open state and induces a transition to the closed state. To understand the molecular determinants of this difference, we performed molecular dynamics (MD) simulations of coarse-grained dual structure based models. We find that intra-protein contacts unique to the closed state are sufficient to promote the conformational transition in HisJ, indicating a CS-like mechanism. In contrast, additional ligand-mimicking contacts are required to “induce” the conformational transition in MBP suggesting an IF-like mechanism. In agreement with experiments, destabilizing modifications to two structural features, the spine helix (SH) and the balancing interface (BI), present in MBP but absent in HisJ, reduce the need for ligand-mimicking contacts indicating that SH and BI act as structural restraints that keep MBP in the open state. We introduce an SH like element into HisJ and observe that this can impede the conformational transition increasing the importance of ligand-mimicking contacts. Similarly, simultaneous mutations to BI and SH in MBP reduce the barrier to conformational transitions significantly and promote a CS-like mechanism. Together, our results show that structural restraints present in the protein structure can determine the mechanism of conformational transitions and even simple models that correctly capture such structural features can predict their positions. MD simulations of such models can thus be used, in conjunction with mutational experiments, to regulate protein ligand interactions, and modulate ligand binding affinities. MBP operates by induced fit, HisJ by the conformational selection mechanism. Dual structure based models (dSBMs) encode two structures of a protein. MD simulations of dSBMs can identify the mechanism of conformational transitions. Locks, absent in HisJ, hold MBP open with ligand contacts required for closing. Binding mechanisms can be modified by altering such structural locks.
Collapse
Key Words
- BI, Balancing interface
- CS, conformational selection
- CTD, C-terminal domain
- Conformational selection
- Dual structure based models
- FEP, free energy profile
- HisJ, histidine binding protein
- IF, induced fit
- Induced fit
- MBP, maltose binding protein
- MD simulations
- MD, molecular dynamics
- NTD, N-terminal domain
- PBP, periplasmic binding protein
- Periplasmic binding proteins
- SH, spine helix
- Structural restraints
- WT, wild-type
- dSBM, dual structure-based model
- sSBM, single structure-based model
Collapse
|
7
|
Bacterial flagellar motor as a multimodal biosensor. Methods 2020; 193:5-15. [PMID: 32640316 DOI: 10.1016/j.ymeth.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023] Open
Abstract
Bacterial Flagellar Motor is one of nature's rare rotary molecular machines. It enables bacterial swimming and it is the key part of the bacterial chemotactic network, one of the best studied chemical signalling networks in biology, which enables bacteria to direct its movement in accordance with the chemical environment. The network can sense down to nanomolar concentrations of specific chemicals on the time scale of seconds. Motor's rotational speed is linearly proportional to the electrochemical gradients of either proton or sodium driving ions, while its direction is regulated by the chemotactic network. Recently, it has been discovered that motor is also a mechanosensor. Given these properties, we discuss the motor's potential to serve as a multifunctional biosensor and a tool for characterising and studying the external environment, the bacterial physiology itself and single molecular motor biophysics.
Collapse
|
8
|
Liu T, Marcinko TM, Vachet RW. Protein-Ligand Affinity Determinations Using Covalent Labeling-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1544-1553. [PMID: 32501685 PMCID: PMC7332385 DOI: 10.1021/jasms.0c00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Determining the binding affinity is an important aspect of characterizing protein-ligand complexes. Here, we describe an approach based on covalent labeling (CL)-mass spectrometry (MS) that can accurately provide protein-ligand dissociation constants (Kd values) using diethylpyrocarbonate (DEPC) as the labeling reagent. Even though DEPC labeling reactions occur on a time scale that is similar to the dissociation/reassociation rates of many protein-ligand complexes, we demonstrate that relatively accurate binding constants can still be obtained as long as the extent of protein labeling is kept below 30%. Using two well-established model systems and one insufficiently characterized system, we find that Kd values can be determined that are close to values obtained in previous measurements. The CL-MS-based strategy that is described here should serve as an alternative for characterizing protein-ligand complexes that are challenging to measure by other methods. Moreover, this method has the potential to provide, simultaneously, the affinity and binding site information.
Collapse
Affiliation(s)
| | | | - Richard W. Vachet
- Corresponding author: Prof. Richard W. Vachet, Department of Chemistry, University of Massachusetts, Amherst, MA 01003, , Phone: (413) 545-2733
| |
Collapse
|
9
|
Li X, Lee KH, Shorkey S, Chen J, Chen M. Different Anomeric Sugar Bound States of Maltose Binding Protein Resolved by a Cytolysin A Nanopore Tweezer. ACS NANO 2020; 14:1727-1737. [PMID: 31995359 PMCID: PMC7162534 DOI: 10.1021/acsnano.9b07385] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Conformational changes of proteins are essential to their functions. Yet it remains challenging to measure the amplitudes and time scales of protein motions. Here we show that the cytolysin A (ClyA) nanopore was used as a molecular tweezer to trap a single maltose-binding protein (MBP) within its lumen, which allows conformation changes to be monitored as electrical current fluctuations in real time. In contrast to the current two state binding model, the current measurements revealed three distinct ligand-bound states for MBP in the presence of reducing saccharides. Our analysis reveals that these three states represented MBP bound to different isomers of reducing sugars. These findings contribute to the understanding of the mechanism of substrate recognition by MBP and illustrate that the nanopore tweezer is a powerful, label-free, single-molecule approach for studying protein conformational dynamics under functional conditions.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Kuo Hao Lee
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Spencer Shorkey
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Min Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
10
|
Zernia S, van der Heide NJ, Galenkamp NS, Gouridis G, Maglia G. Current Blockades of Proteins inside Nanopores for Real-Time Metabolome Analysis. ACS NANO 2020; 14:2296-2307. [PMID: 32003969 PMCID: PMC7045694 DOI: 10.1021/acsnano.9b09434] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/31/2020] [Indexed: 05/14/2023]
Abstract
Biological nanopores are emerging as powerful and low-cost sensors for real-time analysis of biological samples. Proteins can be incorporated inside the nanopore, and ligand binding to the protein adaptor yields changes in nanopore conductance. In order to understand the origin of these conductance changes and develop sensors for detecting metabolites, we tested the signal originating from 13 different protein adaptors. We found that the quality of the protein signal depended on both the size and charge of the protein. The engineering of a dipole within the surface of the adaptor reduced the current noise by slowing the protein dynamics within the nanopore. Further, the charge of the ligand and the induced conformational changes of the adaptor defined the conductance changes upon metabolite binding, suggesting that the protein resides in an electrokinetic minimum within the nanopore, the position of which is altered by the ligand. These results represent an important step toward understanding the dynamics of the electrophoretic trapping of proteins inside nanopores and will allow developing next-generation sensors for metabolome analysis.
Collapse
Affiliation(s)
- Sarah Zernia
- Groningen
Biomolecular Sciences & Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Nieck Jordy van der Heide
- Groningen
Biomolecular Sciences & Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Nicole Stéphanie Galenkamp
- Groningen
Biomolecular Sciences & Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Giorgos Gouridis
- Rega
Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Box 1037, 3000 Leuven, Belgium
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences & Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
11
|
Abstract
Prebiotics are increasingly used as food supplements, especially in infant formulas, to modify the functioning and composition of the microbiota. However, little is currently known about the mechanisms of prebiotic recognition and transport by gut bacteria, while these steps are crucial in their metabolism. In this study, we established a new strategy to profile the specificity of oligosaccharide transporters, combining microbiomics, genetic locus and strain engineering, and state-of-the art metabolomics. We revisited the transporter classification database and proposed a new way to classify these membrane proteins based on their structural and mechanistic similarities. Based on these developments, we identified and characterized, at the molecular level, a fructooligosaccharide transporting phosphotransferase system, which constitutes a biomarker of diet and gut pathology. The deciphering of this prebiotic metabolization mechanism by a nonbeneficial bacterium highlights the controversial use of prebiotics, especially in the context of chronic gut diseases. Prebiotic oligosaccharides, such as fructooligosaccharides, are increasingly being used to modulate the composition and activity of the gut microbiota. However, carbohydrate utilization analyses and metagenomic studies recently revealed the ability of deleterious and uncultured human gut bacterial species to metabolize these functional foods. Moreover, because of the difficulties of functionally profiling transmembrane proteins, only a few prebiotic transporters have been biochemically characterized to date, while carbohydrate binding and transport are the first and thus crucial steps in their metabolization. Here, we describe the molecular mechanism of a phosphotransferase system, highlighted as a dietary and pathology biomarker in the human gut microbiome. This transporter is encoded by a metagenomic locus that is highly conserved in several human gut Firmicutes, including Dorea species. We developed a generic strategy to deeply analyze, in vitro and in cellulo, the specificity and functionality of recombinant transporters in Escherichia coli, combining carbohydrate utilization locus and host genome engineering and quantification of the binding, transport, and growth rates with analysis of phosphorylated carbohydrates by mass spectrometry. We demonstrated that the Dorea fructooligosaccharide transporter is specific for kestose, whether for binding, transport, or phosphorylation. This constitutes the biochemical proof of effective phosphorylation of glycosides with a degree of polymerization of more than 2, extending the known functional diversity of phosphotransferase systems. Based on these new findings, we revisited the classification of these carbohydrate transporters. IMPORTANCE Prebiotics are increasingly used as food supplements, especially in infant formulas, to modify the functioning and composition of the microbiota. However, little is currently known about the mechanisms of prebiotic recognition and transport by gut bacteria, while these steps are crucial in their metabolism. In this study, we established a new strategy to profile the specificity of oligosaccharide transporters, combining microbiomics, genetic locus and strain engineering, and state-of-the art metabolomics. We revisited the transporter classification database and proposed a new way to classify these membrane proteins based on their structural and mechanistic similarities. Based on these developments, we identified and characterized, at the molecular level, a fructooligosaccharide transporting phosphotransferase system, which constitutes a biomarker of diet and gut pathology. The deciphering of this prebiotic metabolization mechanism by a nonbeneficial bacterium highlights the controversial use of prebiotics, especially in the context of chronic gut diseases.
Collapse
|
12
|
Coates C, Kerruth S, Helassa N, Török K. Kinetic Mechanisms of Fast Glutamate Sensing by Fluorescent Protein Probes. Biophys J 2019; 118:117-127. [PMID: 31787209 DOI: 10.1016/j.bpj.2019.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 01/18/2023] Open
Abstract
We have developed probes based on the bacterial periplasmic glutamate/aspartate binding protein with either an endogenously fluorescent protein or a synthetic fluorophore as the indicator of glutamate binding for studying the kinetic mechanism of glutamate binding. iGluSnFR variants termed iGluh, iGlum, and iGlul cover a broad range of Kd-s (5.8 μM and 2.1 and 50 mM, respectively), and a novel fluorescently labeled indicator, Fl-GluBP, has a Kd of 9.7 μM. The fluorescence response kinetics of all the probes are consistent with a two-step mechanism involving ligand binding and isomerization either of the apo or the ligand-bound binding protein. Although the previously characterized ultrafast indicators iGluu and iGluf had monophasic fluorescence enhancement that occurred in the rate limiting isomerization step, the sensors described here all have biphasic binding kinetics with fluorescence increases occurring both in the glutamate binding and the isomerization steps. For iGlum and iGlul, the data indicate prebinding conformational change followed by ligand binding. In contrast, for iGluh and Fl-GluBP, glutamate binding is followed by isomerization. Thus, the effects of structural heterogeneity introduced by single amino acid changes around the binding site on the kinetic path of interactions with glutamate are revealed. Remarkably, glutamate binding with a diffusion-limited rate constant to iGluh and Fl-GluBP is detected for the first time, hinting at the underlying mechanism of the supremely rapid activation of the highly homologous α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor by glutamate binding.
Collapse
Affiliation(s)
- Catherine Coates
- Molecular and Clinical Sciences Research Institute, St. George's University of London, London, United Kingdom
| | - Silke Kerruth
- Molecular and Clinical Sciences Research Institute, St. George's University of London, London, United Kingdom
| | - Nordine Helassa
- Molecular and Clinical Sciences Research Institute, St. George's University of London, London, United Kingdom
| | - Katalin Török
- Molecular and Clinical Sciences Research Institute, St. George's University of London, London, United Kingdom.
| |
Collapse
|
13
|
Ali A, Bidhuri P, Malik NA, Uzair S. Density, viscosity, and refractive index of mono-, di-, and tri-saccharides in aqueous glycine solutions at different temperatures. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Li M, Müller C, Fröhlich K, Gorka O, Zhang L, Groß O, Schilling O, Einsle O, Jessen-Trefzer C. Detection and Characterization of a Mycobacterial L-Arabinofuranose ABC Transporter Identified with a Rapid Lipoproteomics Protocol. Cell Chem Biol 2019; 26:852-862.e6. [PMID: 31006617 DOI: 10.1016/j.chembiol.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/23/2018] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
Abstract
Nutrient uptake is essential for survival of organisms, and carbohydrates serve as a crucial carbon and energy source for most microorganisms. Given the importance of mycobacteria as human pathogens a detailed knowledge of carbohydrate uptake transporters is highly desirable, but currently available information is severely limited and mainly based on in silico analyses. Moreover, there is only very little data available on the in vitro characterization of carbohydrate transporters from mycobacterial species. To overcome these significant limitations there is a strong demand for innovative approaches to experimentally match substrates to ATP-binding cassette (ABC) transporters in a straightforward manner. Our study focuses on the model organism Mycobacterium smegmatis and identifies a mycobacterial ABC transport system based on a rapid label-free mass spectrometry lipoproteomics assay with broad applicability. Further validation and X-ray structure analyses reveal a highly selective mycobacterial L-arabinose uptake system.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Pharmaceutical Biology and Biotechnology, Faculty of Chemistry and Pharmacy, University of Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany
| | - Christoph Müller
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Klemens Fröhlich
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115A, 79106 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Albertstraße 19A, 79104 Freiburg, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 66, 79106 Freiburg, Germany
| | - Lin Zhang
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 66, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115A, 79106 Freiburg, Germany
| | - Oliver Einsle
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Claudia Jessen-Trefzer
- Department of Pharmaceutical Biology and Biotechnology, Faculty of Chemistry and Pharmacy, University of Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany.
| |
Collapse
|
15
|
Bai N, Roder H, Dickson A, Karanicolas J. Isothermal Analysis of ThermoFluor Data can readily provide Quantitative Binding Affinities. Sci Rep 2019; 9:2650. [PMID: 30804351 PMCID: PMC6389909 DOI: 10.1038/s41598-018-37072-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023] Open
Abstract
Differential scanning fluorimetry (DSF), also known as ThermoFluor or Thermal Shift Assay, has become a commonly-used approach for detecting protein-ligand interactions, particularly in the context of fragment screening. Upon binding to a folded protein, most ligands stabilize the protein; thus, observing an increase in the temperature at which the protein unfolds as a function of ligand concentration can serve as evidence of a direct interaction. While experimental protocols for this assay are well-developed, it is not straightforward to extract binding constants from the resulting data. Because of this, DSF is often used to probe for an interaction, but not to quantify the corresponding binding constant (Kd). Here, we propose a new approach for analyzing DSF data. Using unfolding curves at varying ligand concentrations, our "isothermal" approach collects from these the fraction of protein that is folded at a single temperature (chosen to be temperature near the unfolding transition). This greatly simplifies the subsequent analysis, because it circumvents the complicating temperature dependence of the binding constant; the resulting constant-temperature system can then be described as a pair of coupled equilibria (protein folding/unfolding and ligand binding/unbinding). The temperature at which the binding constants are determined can also be tuned, by adding chemical denaturants that shift the protein unfolding temperature. We demonstrate the application of this isothermal analysis using experimental data for maltose binding protein binding to maltose, and for two carbonic anhydrase isoforms binding to each of four inhibitors. To facilitate adoption of this new approach, we provide a free and easy-to-use Python program that analyzes thermal unfolding data and implements the isothermal approach described herein ( https://sourceforge.net/projects/dsf-fitting ).
Collapse
Affiliation(s)
- Nan Bai
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045, USA
| | - Heinrich Roder
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Alex Dickson
- Department of Biochemistry & Molecular Biology and Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
16
|
Fukamizo T, Kitaoku Y, Suginta W. Periplasmic solute-binding proteins: Structure classification and chitooligosaccharide recognition. Int J Biol Macromol 2019; 128:985-993. [PMID: 30771387 DOI: 10.1016/j.ijbiomac.2019.02.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
Periplasmic solute-binding proteins (SBPs) serve as molecular shuttles that assist the transport of small solutes from the outer membrane to the inner membrane of all Gram-negative bacteria. Based on the available crystal structures, SBPs are classified into seven clusters, A-G, and are further divided into subclusters, IV. This minireview is focused on the classification, structure and substrate specificity of a distinct class of SBPs specific for chitooligosaccharides (CBPs). To date, only two structures of CBP homologues, VhCBP and VcCBP, have been reported in the marine Vibrio species, with exposition of their limited function. The Vibrio CBPs are structurally classified as cluster C/subcluster IV SBPs that exclusively recognize β-1,4- or β-1,3-linked linear oligosaccharides. The overall structural feature of the Vibrios CBPs is most similar to the cellobiose-binding orthologue from the hyperthermophilic bacterium Thermotoga maritima. This similarity provides an opportunity to engineer the substrate specificity of the proteins and to control the uptake of chitinous and cellulosic nutrients in marine bacteria.
Collapse
Affiliation(s)
- Tamo Fukamizo
- Biochemistry and Electrochemistry Research Unit and School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yoshihito Kitaoku
- Biochemistry and Electrochemistry Research Unit and School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wipa Suginta
- Biochemistry and Electrochemistry Research Unit and School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
17
|
Licht A, Bommer M, Werther T, Neumann K, Hobe C, Schneider E. Structural and functional characterization of a maltose/maltodextrin ABC transporter comprising a single solute binding domain (MalE) fused to the transmembrane subunit MalF. Res Microbiol 2019; 170:1-12. [DOI: 10.1016/j.resmic.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 01/21/2023]
|
18
|
Galenkamp NS, Soskine M, Hermans J, Wloka C, Maglia G. Direct electrical quantification of glucose and asparagine from bodily fluids using nanopores. Nat Commun 2018; 9:4085. [PMID: 30291230 PMCID: PMC6173770 DOI: 10.1038/s41467-018-06534-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/30/2018] [Indexed: 01/11/2023] Open
Abstract
Crucial steps in the miniaturisation of biosensors are the conversion of a biological signal into an electrical current as well as the direct sampling of bodily fluids. Here we show that protein sensors in combination with a nanopore, acting as an electrical transducer, can accurately quantify metabolites in real time directly from nanoliter amounts of blood and other bodily fluids. Incorporation of the nanopore into portable electronic devices will allow developing sensitive, continuous, and non-invasive sensors for metabolites for point-of-care and home diagnostics. Protein nanopores are emerging as sensors for a variety of biomolecules. Here the authors develop a nanopore based on the bacterial toxin ClyA, in conjunction with binding proteins for glucose and asparagine, to detect these biomolecules simultaneously from a variety of unprocessed, diluted body fluids.
Collapse
Affiliation(s)
- Nicole Stéphanie Galenkamp
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, The Netherlands
| | - Misha Soskine
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, The Netherlands
| | - Jos Hermans
- Analytical Biochemistry, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Carsten Wloka
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, The Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, The Netherlands.
| |
Collapse
|
19
|
Field LD, Walper SA, Susumu K, Lasarte-Aragones G, Oh E, Medintz IL, Delehanty JB. A Quantum Dot-Protein Bioconjugate That Provides for Extracellular Control of Intracellular Drug Release. Bioconjug Chem 2018; 29:2455-2467. [DOI: 10.1021/acs.bioconjchem.8b00357] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lauren D. Field
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - Guillermo Lasarte-Aragones
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- George Mason University, College of Sciences, Fairfax, Virginia 22030 United States
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
20
|
Efficient, ultra-high-affinity chromatography in a one-step purification of complex proteins. Proc Natl Acad Sci U S A 2017; 114:E5138-E5147. [PMID: 28607052 DOI: 10.1073/pnas.1704872114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Protein purification is an essential primary step in numerous biological studies. It is particularly significant for the rapidly emerging high-throughput fields, such as proteomics, interactomics, and drug discovery. Moreover, purifications for structural and industrial applications should meet the requirement of high yield, high purity, and high activity (HHH). It is, therefore, highly desirable to have an efficient purification system with a potential to meet the HHH benchmark in a single step. Here, we report a chromatographic technology based on the ultra-high-affinity (Kd ∼ 10-14-10-17 M) complex between the Colicin E7 DNase (CE7) and its inhibitor, Immunity protein 7 (Im7). For this application, we mutated CE7 to create a CL7 tag, which retained the full binding affinity to Im7 but was inactivated as a DNase. To achieve high capacity, we developed a protocol for a large-scale production and highly specific immobilization of Im7 to a solid support. We demonstrated its utility with one-step HHH purification of a wide range of traditionally challenging biological molecules, including eukaryotic, membrane, toxic, and multisubunit DNA/RNA-binding proteins. The system is simple, reusable, and also applicable to pulldown and kinetic activity/binding assays.
Collapse
|
21
|
Planchon M, Léger T, Spalla O, Huber G, Ferrari R. Metabolomic and proteomic investigations of impacts of titanium dioxide nanoparticles on Escherichia coli. PLoS One 2017; 12:e0178437. [PMID: 28570583 PMCID: PMC5453534 DOI: 10.1371/journal.pone.0178437] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/13/2017] [Indexed: 11/18/2022] Open
Abstract
In a previous study, it was demonstrated that the toxic impact of titanium dioxide nanoparticles on Escherichia coli starts at 10 ppm and is closely related to the presence of little aggregates. It was also assumed that only a part of the bacterial population is able to adapt to this stress and attempts to survive. Proteomic analyses, supported by results from metabolomics, reveal that exposure of E. coli to nano-TiO2 induces two main effects on bacterial metabolism: firstly, the up-regulation of proteins and the increase of metabolites related to energy and growth metabolism; secondly, the down-regulation of other proteins resulting in an increase of metabolites, particularly amino acids. Some proteins, e.g. chaperonin 1 or isocitrate dehydrogenase, and some metabolites, e.g. phenylalanine or valine, might be used as biomarkers of nanoparticles stress. Astonishingly, the ATP content gradually rises in relation with the nano-TiO2 concentration in the medium, indicating a dramatic release of ATP by the damaged cells. These apparently contradictory results accredit the thesis of a heterogeneity of the bacterial population. This heterogeneity is also confirmed by SEM images which show that while some bacteria are fully covered by nano-TiO2, the major part of the bacterial population remains free from nanoparticles, resulting in a difference of proteome and metabolome. The use of combined-omics has allowed to better understand the heterogeneous bacterial response to nano-TiO2 stress due to heterogeneous contacts between the protagonists under environmental conditions.
Collapse
Affiliation(s)
- Mariane Planchon
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette, France
- Université Paris Diderot, Sorbonne Paris Cité, IPGP, UMR 7154, Paris Cedex 13 France
- iCEINT, International Consortium for the Environmental Implications of Nanotechnology
| | - Thibaut Léger
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, Paris, France
| | - Olivier Spalla
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette, France
- iCEINT, International Consortium for the Environmental Implications of Nanotechnology
| | - Gaspard Huber
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette, France
- * E-mail: (GH); (RF)
| | - Roselyne Ferrari
- Université Paris Diderot, Sorbonne Paris Cité, IPGP, UMR 7154, Paris Cedex 13 France
- Université Paris Diderot, Sorbonne Paris Cité, LIED, UMR 8236, Paris, France
- * E-mail: (GH); (RF)
| |
Collapse
|
22
|
Homburg C, Bommer M, Wuttge S, Hobe C, Beck S, Dobbek H, Deutscher J, Licht A, Schneider E. Inducer exclusion in Firmicutes: insights into the regulation of a carbohydrate ATP binding cassette transporter from Lactobacillus casei BL23 by the signal transducing protein P-Ser46-HPr. Mol Microbiol 2017; 105:25-45. [PMID: 28370477 DOI: 10.1111/mmi.13680] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2017] [Indexed: 12/24/2022]
Abstract
Catabolite repression is a mechanism that enables bacteria to control carbon utilization. As part of this global regulatory network, components of the phosphoenolpyruvate:carbohydrate phosphotransferase system inhibit the uptake of less favorable sugars when a preferred carbon source such as glucose is available. This process is termed inducer exclusion. In bacteria belonging to the phylum Firmicutes, HPr, phosphorylated at serine 46 (P-Ser46-HPr) is the key player but its mode of action is elusive. To address this question at the level of purified protein components, we have chosen a homolog of the Escherichia coli maltose/maltodextrin ATP-binding cassette transporter from Lactobacillus casei (MalE1-MalF1G1K12 ) as a model system. We show that the solute binding protein, MalE1, binds linear and cyclic maltodextrins but not maltose. Crystal structures of MalE1 complexed with these sugars provide a clue why maltose is not a substrate. P-Ser46-HPr inhibited MalE1/maltotetraose-stimulated ATPase activity of the transporter incorporated in proteoliposomes. Furthermore, cross-linking experiments revealed that P-Ser46-HPr contacts the nucleotide-binding subunit, MalK1, in proximity to the Walker A motif. However, P-Ser46-HPr did not block binding of ATP to MalK1. Together, our findings provide first biochemical evidence that P-Ser-HPr arrests the transport cycle by preventing ATP hydrolysis at the MalK1 subunits of the transporter.
Collapse
Affiliation(s)
- Constanze Homburg
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Martin Bommer
- Institut für Biologie/Strukturbiologie und Biochemie, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Steven Wuttge
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Carolin Hobe
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Sebastian Beck
- Institut für Chemie/Angewandte Analytik und Umweltchemie, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Holger Dobbek
- Institut für Biologie/Strukturbiologie und Biochemie, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Josef Deutscher
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, F-78350, France.,Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UMR8261, Paris, F-75005, France
| | - Anke Licht
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| | - Erwin Schneider
- Institut für Biologie/Physiologie der Mikroorganismen, Humboldt-Universität zu Berlin, Berlin, D-10099, Germany
| |
Collapse
|
23
|
Conformational Change of a Tryptophan Residue in BtuF Facilitates Binding and Transport of Cobinamide by the Vitamin B12 Transporter BtuCD-F. Sci Rep 2017; 7:41575. [PMID: 28128319 PMCID: PMC5269720 DOI: 10.1038/srep41575] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/20/2016] [Indexed: 01/26/2023] Open
Abstract
BtuCD-F is an ABC transporter that mediates cobalamin uptake into Escherichia coli. Early in vivo data suggested that BtuCD-F might also be involved in the uptake of cobinamide, a cobalamin precursor. However, neither was it demonstrated that BtuCD-F indeed transports cobinamide, nor was the structural basis of its recognition known. We synthesized radiolabeled cyano-cobinamide and demonstrated BtuCD-catalyzed in vitro transport, which was ATP- and BtuF-dependent. The crystal structure of cobinamide-bound BtuF revealed a conformational change of a tryptophan residue (W66) in the substrate binding cleft compared to the structure of cobalamin-bound BtuF. High-affinity binding of cobinamide was dependent on W66, because mutation to most other amino acids substantially reduced binding. The structures of three BtuF W66 mutants revealed that tight packing against bound cobinamide was only provided by tryptophan and phenylalanine, in line with the observed binding affinities. In vitro transport rates of cobinamide and cobalamin were not influenced by the substitutions of BtuF W66 under the experimental conditions, indicating that W66 has no critical role in the transport reaction. Our data present the molecular basis of the cobinamide versus cobalamin specificity of BtuCD-F and provide tools for in vitro cobinamide transport and binding assays.
Collapse
|
24
|
Abstract
Using high-resolution mass spectrometry, we have studied the synthesis of isoquinoline in a charged electrospray droplet and the complexation between cytochrome c and maltose in a fused droplet to investigate the feasibility of droplets to drive reactions (both covalent and noncovalent interactions) at a faster rate than that observed in conventional bulk solution. In both the cases we found marked acceleration of reaction, by a factor of a million or more in the former and a factor of a thousand or more in the latter. We believe that carrying out reactions in microdroplets (about 1–15 μm in diameter corresponding to 0·5 pl – 2 nl) is a general method for increasing reaction rates. The mechanism is not presently established but droplet evaporation and droplet confinement of reagents appear to be two important factors among others. In the case of fused water droplets, evaporation has been shown to be almost negligible during the flight time from where droplet fusion occurs and the droplets enter the heated capillary inlet of the mass spectrometer. This suggests that (1) evaporation is not responsible for the acceleration process in aqueous droplet fusion and (2) the droplet–air interface may play a significant role in accelerating the reaction. We argue that this ‘microdroplet chemistry’ could be a remarkable alternative to accelerate slow and difficult reactions, and in conjunction with mass spectrometry, it may provide a new arena to study chemical and biochemical reactions in a confined environment.
Collapse
|
25
|
Alvarez FJD, Orelle C, Huang Y, Bajaj R, Everly RM, Klug CS, Davidson AL. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter. Mol Microbiol 2015; 98:878-94. [PMID: 26268698 DOI: 10.1111/mmi.13165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 01/31/2023]
Abstract
MalFGK2 is an ATP-binding cassette (ABC) transporter that mediates the uptake of maltose/maltodextrins into Escherichia coli. A periplasmic maltose-binding protein (MBP) delivers maltose to the transmembrane subunits (MalFG) and stimulates the ATPase activity of the cytoplasmic nucleotide-binding subunits (MalK dimer). This MBP-stimulated ATPase activity is independent of maltose for purified transporter in detergent micelles. However, when the transporter is reconstituted in membrane bilayers, only the liganded form of MBP efficiently stimulates its activity. To investigate the mechanism of maltose stimulation, electron paramagnetic resonance spectroscopy was used to study the interactions between the transporter and MBP in nanodiscs and in detergent. We found that full engagement of both lobes of maltose-bound MBP unto MalFGK2 is facilitated by nucleotides and stabilizes a semi-open MalK dimer. Maltose-bound MBP promotes the transition to the semi-open state of MalK when the transporter is in the membrane, whereas such regulation does not require maltose in detergent. We suggest that stabilization of the semi-open MalK2 conformation by maltose-bound MBP is key to the coupling of maltose transport to ATP hydrolysis in vivo, because it facilitates the progression of the MalK dimer from the open to the semi-open conformation, from which it can proceed to hydrolyze ATP.
Collapse
Affiliation(s)
| | - Cédric Orelle
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ruchika Bajaj
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - R Michael Everly
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Amy L Davidson
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
26
|
Russo A, Scognamiglio PL, Hong Enriquez RP, Santambrogio C, Grandori R, Marasco D, Giordano A, Scoles G, Fortuna S. In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands. PLoS One 2015; 10:e0133571. [PMID: 26252476 PMCID: PMC4529233 DOI: 10.1371/journal.pone.0133571] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/27/2015] [Indexed: 12/25/2022] Open
Abstract
Short peptides can be designed in silico and synthesized through automated techniques, making them advantageous and versatile protein binders. A number of docking-based algorithms allow for a computational screening of peptides as binders. Here we developed ex-novo peptides targeting the maltose site of the Maltose Binding Protein, the prototypical system for the study of protein ligand recognition. We used a Monte Carlo based protocol, to computationally evolve a set of octapeptides starting from a polialanine sequence. We screened in silico the candidate peptides and characterized their binding abilities by surface plasmon resonance, fluorescence and electrospray ionization mass spectrometry assays. These experiments showed the designed binders to recognize their target with micromolar affinity. We finally discuss the obtained results in the light of further improvement in the ex-novo optimization of peptide based binders.
Collapse
Affiliation(s)
- Anna Russo
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe, Udine, Italy
- Department of Medical Biotechnology, University of Siena, Policlinico Le Scotte, Viale Bracci, Siena, Italy
| | - Pasqualina Liana Scognamiglio
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples “Federico II”, DFM-Scarl, Naples, Italy
| | | | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, Milan, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi- University of Naples “Federico II”, DFM-Scarl, Naples, Italy
- * E-mail: (SF); (DM)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine & Center for Biotechnology Temple University Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Surgery & Neuroscience University of Siena, Strada delle Scotte n. 6, Siena, Italy
| | - Giacinto Scoles
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe, Udine, Italy
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Sara Fortuna
- Department of Medical and Biological Sciences, University of Udine, Piazzale Kolbe, Udine, Italy
- * E-mail: (SF); (DM)
| |
Collapse
|
27
|
Bosdriesz E, Magnúsdóttir S, Bruggeman FJ, Teusink B, Molenaar D. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate. FEBS J 2015; 282:2394-407. [PMID: 25846030 DOI: 10.1111/febs.13289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/17/2015] [Accepted: 03/20/2015] [Indexed: 11/27/2022]
Abstract
Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them.
Collapse
Affiliation(s)
- Evert Bosdriesz
- Systems Bioinformatics, VU University, Amsterdam, The Netherlands
| | | | | | - Bas Teusink
- Systems Bioinformatics, VU University, Amsterdam, The Netherlands
| | - Douwe Molenaar
- Systems Bioinformatics, VU University, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Sheong FK, Silva DA, Meng L, Zhao Y, Huang X. Automatic state partitioning for multibody systems (APM): an efficient algorithm for constructing Markov state models to elucidate conformational dynamics of multibody systems. J Chem Theory Comput 2014; 11:17-27. [PMID: 26574199 DOI: 10.1021/ct5007168] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The conformational dynamics of multibody systems plays crucial roles in many important problems. Markov state models (MSMs) are powerful kinetic network models that can predict long-time-scale dynamics using many short molecular dynamics simulations. Although MSMs have been successfully applied to conformational changes of individual proteins, the analysis of multibody systems is still a challenge because of the complexity of the dynamics that occur on a mixture of drastically different time scales. In this work, we have developed a new algorithm, automatic state partitioning for multibody systems (APM), for constructing MSMs to elucidate the conformational dynamics of multibody systems. The APM algorithm effectively addresses different time scales in the multibody systems by directly incorporating dynamics into geometric clustering when identifying the metastable conformational states. We have applied the APM algorithm to a 2D potential that can mimic a protein-ligand binding system and the aggregation of two hydrophobic particles in water and have shown that it can yield tremendous enhancements in the computational efficiency of MSM construction and the accuracy of the models.
Collapse
Affiliation(s)
- Fu Kit Sheong
- HKUST Shenzhen Research Institute , Nanshan, Shenzhen 518057, China
| | | | - Luming Meng
- HKUST Shenzhen Research Institute , Nanshan, Shenzhen 518057, China
| | | | - Xuhui Huang
- HKUST Shenzhen Research Institute , Nanshan, Shenzhen 518057, China
| |
Collapse
|
29
|
Pina AS, Lowe CR, Roque ACA. Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol Adv 2014; 32:366-81. [PMID: 24334194 PMCID: PMC7125906 DOI: 10.1016/j.biotechadv.2013.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/04/2013] [Accepted: 12/08/2013] [Indexed: 01/05/2023]
Abstract
The purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs "tag-ligand" combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established "tag-ligand" systems available for fusion protein purification and also explores current unconventional strategies under development.
Collapse
Affiliation(s)
- Ana Sofia Pina
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; IBET-Instituto de Biologia Experimental Tecnológica, Oeiras, Portugal
| | - Christopher R Lowe
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, CB2 1QT Cambridge, UK
| | - Ana Cecília A Roque
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
30
|
Chu BCH, DeWolf T, Vogel HJ. Role of the two structural domains from the periplasmic Escherichia coli histidine-binding protein HisJ. J Biol Chem 2013; 288:31409-22. [PMID: 24036119 DOI: 10.1074/jbc.m113.490441] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli HisJ is a type II periplasmic binding protein that functions to reversibly capture histidine and transfer it to its cognate inner membrane ABC permease. Here, we used NMR spectroscopy to determine the structure of apo-HisJ (26.5 kDa) in solution. HisJ is a bilobal protein in which domain 1 (D1) is made up of two noncontiguous subdomains, and domain 2 (D2) is expressed as the inner domain. To better understand the roles of D1 and D2, we have isolated and characterized each domain separately. Structurally, D1 closely resembles its homologous domain in apo- and holo-HisJ, whereas D2 is more similar to the holo-form. NMR relaxation experiments reveal that HisJ becomes more ordered upon ligand binding, whereas isolated D2 experiences a significant reduction in slower (millisecond to microsecond) motions compared with the homologous domain in apo-HisJ. NMR titrations reveal that D1 is able to bind histidine in a similar manner as full-length HisJ, albeit with lower affinity. Unexpectedly, isolated D1 and D2 do not interact with each other in the presence or absence of histidine, which indicates the importance of intact interdomain-connecting elements (i.e. hinge regions) for HisJ functioning. Our results shed light on the binding mechanism of type II periplasmic binding proteins where ligand is initially bound by D1, and D2 plays a supporting role in this dynamic process.
Collapse
Affiliation(s)
- Byron C H Chu
- From the Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
31
|
Substrate-induced conformational changes in the S-component ThiT from an energy coupling factor transporter. Structure 2013; 21:861-7. [PMID: 23602660 DOI: 10.1016/j.str.2013.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 02/20/2013] [Accepted: 03/08/2013] [Indexed: 01/30/2023]
Abstract
Energy coupling factor (ECF) transporters are a recently discovered class of ABC transporters that mediate vitamin uptake in prokaryotes. Characteristic for ECF-type ABC transporters are small integral membrane proteins (S-components) that bind the transported substrates with high affinity. S-components associate with a second membrane protein (EcfT) and two peripheral ATPases to form a complete ATP-dependent transporter. Here, we have used EPR spectroscopy, stopped-flow fluorescence spectroscopy, and molecular dynamics simulations to determine the structural rearrangements that take place in the S-component ThiT from Lactococcus lactis upon binding of thiamin. Thiamin-induced conformational changes were confined to the long and partially membrane-embedded loop between transmembrane helices 1 and 2 that acts as a lid to occlude the binding site. The results indicate that solitary ThiT functions as a bona fide high-affinity substrate binding protein, which lacks a translocation pathway within the protein.
Collapse
|
32
|
Carrillo R, Morales EQ, Martín VS, Martín T. A Novel Approach for the Evaluation of Positive Cooperative Guest Binding: Kinetic Consequences of Structural Tightening. Chemistry 2013; 19:7042-8. [DOI: 10.1002/chem.201300583] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 11/10/2022]
|
33
|
myo-inositol and D-ribose ligand discrimination in an ABC periplasmic binding protein. J Bacteriol 2013; 195:2379-88. [PMID: 23504019 DOI: 10.1128/jb.00116-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The periplasmic binding protein (PBP) IbpA mediates the uptake of myo-inositol by the IatP-IatA ATP-binding cassette transmembrane transporter. We report a crystal structure of Caulobacter crescentus IbpA bound to myo-inositol at 1.45 Å resolution. This constitutes the first structure of a PBP bound to inositol. IbpA adopts a type I PBP fold consisting of two α-β lobes that surround a central hinge. A pocket positioned between the lobes contains the myo-inositol ligand, which binds with submicromolar affinity (0.76 ± 0.08 μM). IbpA is homologous to ribose-binding proteins and binds D-ribose with low affinity (50.8 ± 3.4 μM). On the basis of IbpA and ribose-binding protein structures, we have designed variants of IbpA with inverted binding specificity for myo-inositol and D-ribose. Five mutations in the ligand-binding pocket are sufficient to increase the affinity of IbpA for D-ribose by 10-fold while completely abolishing binding to myo-inositol. Replacement of ibpA with these mutant alleles unable to bind myo-inositol abolishes C. crescentus growth in medium containing myo-inositol as the sole carbon source. Neither deletion of ibpA nor replacement of ibpA with the high-affinity ribose binding allele affected C. crescentus growth on D-ribose as a carbon source, providing evidence that the IatP-IatA transporter is specific for myo-inositol. This study outlines the evolutionary relationship between ribose- and inositol-binding proteins and provides insight into the molecular basis upon which these two related, but functionally distinct, classes of periplasmic proteins specifically bind carbohydrate ligands.
Collapse
|
34
|
Edwards KA, Baeumner AJ. Periplasmic Binding Protein-Based Detection of Maltose Using Liposomes: A New Class of Biorecognition Elements in Competitive Assays. Anal Chem 2013; 85:2770-8. [DOI: 10.1021/ac303258n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Katie A. Edwards
- Cornell University, Department
of Biological and Environmental Engineering, 140 Riley-Robb Hall,
Ithaca, New York 14853, United States
| | - Antje J. Baeumner
- Cornell University, Department
of Biological and Environmental Engineering, 140 Riley-Robb Hall,
Ithaca, New York 14853, United States
| |
Collapse
|
35
|
Ha JH, Shinsky SA, Loh SN. Stepwise conversion of a binding protein to a fluorescent switch: application to Thermoanaerobacter tengcongensis ribose binding protein. Biochemistry 2013; 52:600-12. [PMID: 23302025 DOI: 10.1021/bi301105u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alternate frame folding (AFF) is a protein engineering methodology the purpose of which is to convert an ordinary binding protein into a molecular switch. The AFF modification entails duplicating an amino- or carboxy-terminal segment of the protein and appending it to the opposite end of the molecule. This duplication allows the protein to interconvert, in a ligand-dependent fashion, between two mutually exclusive native folds: the wild-type structure and a circularly permuted form. The fold shift can be detected by placement of extrinsic fluorophores at sites sensitive to the engineered conformational change. Here, we apply the AFF mechanism to create several ribose-sensing proteins derived from Thermoanaerobacter tengcongensis ribose binding protein. Our purpose is to systematically explore the parameters of the AFF design. These considerations include the site of circular permutation, the length and location of the duplicated segment, thermodynamic and kinetic optimization of the switching mechanism, and placement of extrinsic fluorophores. Three of the four AFF variants created here undergo the expected conformational shift and exhibit a ribose-dependent fluorescence change. The fourth construct fails to switch folds upon addition of ribose, likely because the circularly permuted form folds much more slowly than the nonpermuted form. This disparity apparently introduces a kinetic barrier that partitions the refolding molecules to the nonpermuted structure. The results of this study serve as a guideline for applying the AFF modification to other proteins of biomedical, diagnostic, and industrial interest.
Collapse
Affiliation(s)
- Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
36
|
Linder M, Ranganathan A, Brinck T. “Adapted Linear Interaction Energy”: A Structure-Based LIE Parametrization for Fast Prediction of Protein–Ligand Affinities. J Chem Theory Comput 2012; 9:1230-9. [DOI: 10.1021/ct300783e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mats Linder
- Applied Physical
Chemistry, KTH Royal Institute of
Technology, Teknikringen 30, S-100 44 Stockholm, Sweden
| | - Anirudh Ranganathan
- Applied Physical
Chemistry, KTH Royal Institute of
Technology, Teknikringen 30, S-100 44 Stockholm, Sweden
| | - Tore Brinck
- Applied Physical
Chemistry, KTH Royal Institute of
Technology, Teknikringen 30, S-100 44 Stockholm, Sweden
| |
Collapse
|
37
|
Abstract
Protein conformational switches alter their shape upon receiving an input signal, such as ligand binding, chemical modification, or change in environment. The apparent simplicity of this transformation--which can be carried out by a molecule as small as a thousand atoms or so--belies its critical importance to the life of the cell as well as its capacity for engineering by humans. In the realm of molecular switches, proteins are unique because they are capable of performing a variety of biological functions. Switchable proteins are therefore of high interest to the fields of biology, biotechnology, and medicine. These molecules are beginning to be exploited as the core machinery behind a new generation of biosensors, functionally regulated enzymes, and "smart" biomaterials that react to their surroundings. As inspirations for these designs, researchers continue to analyze existing examples of allosteric proteins. Recent years have also witnessed the development of new methodologies for introducing conformational change into proteins that previously had none. Herein we review examples of both natural and engineered protein switches in the context of four basic modes of conformational change: rigid-body domain movement, limited structural rearrangement, global fold switching, and folding-unfolding. Our purpose is to highlight examples that can potentially serve as platforms for the design of custom switches. Accordingly, we focus on inducible conformational changes that are substantial enough to produce a functional response (e.g., in a second protein to which it is fused), yet are relatively simple, structurally well-characterized, and amenable to protein engineering efforts.
Collapse
Affiliation(s)
| | - Stewart N. Loh
- Department of Biochemistry & Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 (USA), Tel: (315)464-8731, Fax: (315)464-8750
| |
Collapse
|
38
|
Wang Y, Tang C, Wang E, Wang J. Exploration of multi-state conformational dynamics and underlying global functional landscape of maltose binding protein. PLoS Comput Biol 2012; 8:e1002471. [PMID: 22532792 PMCID: PMC3330084 DOI: 10.1371/journal.pcbi.1002471] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/26/2012] [Indexed: 02/04/2023] Open
Abstract
An increasing number of biological machines have been revealed to have more than two macroscopic states. Quantifying the underlying multiple-basin functional landscape is essential for understanding their functions. However, the present models seem to be insufficient to describe such multiple-state systems. To meet this challenge, we have developed a coarse grained triple-basin structure-based model with implicit ligand. Based on our model, the constructed functional landscape is sufficiently sampled by the brute-force molecular dynamics simulation. We explored maltose-binding protein (MBP) which undergoes large-scale domain motion between open, apo-closed (partially closed) and holo-closed (fully closed) states responding to ligand binding. We revealed an underlying mechanism whereby major induced fit and minor population shift pathways co-exist by quantitative flux analysis. We found that the hinge regions play an important role in the functional dynamics as well as that increases in its flexibility promote population shifts. This finding provides a theoretical explanation of the mechanistic discrepancies in PBP protein family. We also found a functional “backtracking” behavior that favors conformational change. We further explored the underlying folding landscape in response to ligand binding. Consistent with earlier experimental findings, the presence of ligand increases the cooperativity and stability of MBP. This work provides the first study to explore the folding dynamics and functional dynamics under the same theoretical framework using our triple-basin functional model. A central goal of biology is to understand the function of the organism and its constituent parts at each of its scales of complexity. Function at the molecular level is often realized by changes in conformation. Unfortunately, experimental explorations of global motions critical for functional conformational changes are still challenging. In the present work, we developed a coarse grained triple-well structure-based model to explore the underlying functional landscape of maltose-binding protein (MBP). By quantitative flux analysis, we uncover the underlying mechanism by which the major induced fit and minor population shift pathways co-exist. Though we have previously lent credence to the assertion that dynamical equilibrium between open and minor closed conformations exist for all the free PBPs, the generality of this rule is still a matter of open debate. We found that the hinge flexibility is favorable to population shift mechanism. This finding provides a theoretical explanation of the mechanism discrepancies in PBP protein family. We also simulated the folding dynamics using this functional multi-basin model which successfully reproduced earlier protein melting experiment. This represents an exciting opportunity to characterize the interplay between folding and function, which is a long-standing question in the community. The theoretical approach employed in this study is general and can be applied to other systems.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Chun Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- * E-mail: (EW); (JW)
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- College of Physics, Jilin University, Changchun, Jilin, China
- Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, New York, United States of America
- * E-mail: (EW); (JW)
| |
Collapse
|
39
|
Bao H, Duong F. Discovery of an auto-regulation mechanism for the maltose ABC transporter MalFGK2. PLoS One 2012; 7:e34836. [PMID: 22529943 PMCID: PMC3328499 DOI: 10.1371/journal.pone.0034836] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 03/06/2012] [Indexed: 01/19/2023] Open
Abstract
The maltose transporter MalFGK2, together with the substrate-binding protein MalE, is one of the best-characterized ABC transporters. In the conventional model, MalE captures maltose in the periplasm and delivers the sugar to the transporter. Here, using nanodiscs and proteoliposomes, we instead find that MalE is bound with high-affinity to MalFGK2 to facilitate the acquisition of the sugar. When the maltose concentration exceeds the transport capacity, MalE captures maltose and dissociates from the transporter. This mechanism explains why the transport rate is high when MalE has low affinity for maltose, and low when MalE has high affinity for maltose. Transporter-bound MalE facilitates the acquisition of the sugar at low concentrations, but also captures and dissociates from the transporter past a threshold maltose concentration. In vivo, this maltose-forced dissociation limits the rate of transport. Given the conservation of the substrate-binding proteins, this mode of allosteric regulation may be universal to ABC importers.
Collapse
Affiliation(s)
- Huan Bao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Franck Duong
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
40
|
Braitsch M, Kählig H, Kontaxis G, Fischer M, Kawada T, Konrat R, Schmid W. Synthesis of fluorinated maltose derivatives for monitoring protein interaction by (19)F NMR. Beilstein J Org Chem 2012; 8:448-55. [PMID: 22509216 PMCID: PMC3326624 DOI: 10.3762/bjoc.8.51] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/08/2012] [Indexed: 12/05/2022] Open
Abstract
A novel reporter system, which is applicable to the 19F NMR investigation of protein interactions, is presented. This approach uses 2-F-labeled maltose as a spy ligand to indirectly probe protein–ligand or protein–protein interactions of proteins fused or tagged to the maltose-binding protein (MBP). The key feature is the simultaneous NMR observation of both 19F NMR signals of gluco/manno-type-2-F-maltose-isomers; one isomer (α-gluco-type) binds to MBP and senses the protein interaction, and the nonbinding isomers (β-gluco- and/or α/β-manno-type) are utilized as internal references. Moreover, this reporter system was used for relative affinity studies of fluorinated and nonfluorinated carbohydrates to the maltose-binding protein, which were found to be in perfect agreement with published X-ray data. The results of the NMR competition experiments together with the established correlation between 19F chemical shift data and molecular interaction patterns, suggest valuable applications for studies of protein–ligand interaction interfaces.
Collapse
Affiliation(s)
- Michaela Braitsch
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
41
|
Silva DA, Bowman GR, Sosa-Peinado A, Huang X. A role for both conformational selection and induced fit in ligand binding by the LAO protein. PLoS Comput Biol 2011; 7:e1002054. [PMID: 21637799 PMCID: PMC3102756 DOI: 10.1371/journal.pcbi.1002054] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/31/2011] [Indexed: 11/30/2022] Open
Abstract
Molecular recognition is determined by the structure and dynamics of both a protein and its ligand, but it is difficult to directly assess the role of each of these players. In this study, we use Markov State Models (MSMs) built from atomistic simulations to elucidate the mechanism by which the Lysine-, Arginine-, Ornithine-binding (LAO) protein binds to its ligand. We show that our model can predict the bound state, binding free energy, and association rate with reasonable accuracy and then use the model to dissect the binding mechanism. In the past, this binding event has often been assumed to occur via an induced fit mechanism because the protein's binding site is completely closed in the bound state, making it impossible for the ligand to enter the binding site after the protein has adopted the closed conformation. More complex mechanisms have also been hypothesized, but these have remained controversial. Here, we are able to directly observe roles for both the conformational selection and induced fit mechanisms in LAO binding. First, the LAO protein tends to form a partially closed encounter complex via conformational selection (that is, the apo protein can sample this state), though the induced fit mechanism can also play a role here. Then, interactions with the ligand can induce a transition to the bound state. Based on these results, we propose that MSMs built from atomistic simulations may be a powerful way of dissecting ligand-binding mechanisms and may eventually facilitate a deeper understanding of allostery as well as the prediction of new protein-ligand interactions, an important step in drug discovery.
Collapse
Affiliation(s)
- Daniel-Adriano Silva
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Biochemistry, Medicine School, Universidad Nacional Autónoma de México, México D.F., México
| | - Gregory R. Bowman
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Alejandro Sosa-Peinado
- Department of Biochemistry, Medicine School, Universidad Nacional Autónoma de México, México D.F., México
| | - Xuhui Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
42
|
Jin S, Veetil JV, Garrett JR, Ye K. Construction of a panel of glucose indicator proteins for continuous glucose monitoring. Biosens Bioelectron 2011; 26:3427-31. [PMID: 21333521 PMCID: PMC3074613 DOI: 10.1016/j.bios.2011.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 12/25/2010] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
Abstract
The development of implantable glucose sensors for use in diabetes treatment has been pursued for decades. However, enzyme-based glucose sensors often fail in vivo. In our previous work, we engineered a novel glucose indicator protein (GIP) that can sense glucose without relying on any enzymes and cofactors. Nevertheless, this GIP is unsuitable for blood glucose monitoring due to its low dissociation constant. Here, we report a novel approach to creating a new GIP that can be used to monitor blood glucose level. By disrupting pi-pi stacking around GIP's glucose binding site through site-directed mutagenesis, we showed that GIP's dissociation constant can be manipulated from 0.026 mM to 7.86 mM. This approach yielded four GIP mutants. We showed that one of the mutants can be used to detect glucose from 0 to 32 mM, while another mutant can be employed to visualize intracellular glucose (0-200 μM) within living cells through FRET imaging microscopy measurement.
Collapse
Affiliation(s)
- Sha Jin
- Biomedical Engineering Program, College of Engineering, University of Arkansas, 203 Engineering Hall, Fayetteville, AR 72701, USA
| | - Jithesh V. Veetil
- Biomedical Engineering Program, College of Engineering, University of Arkansas, 203 Engineering Hall, Fayetteville, AR 72701, USA
| | - Jared R Garrett
- Biomedical Engineering Program, College of Engineering, University of Arkansas, 203 Engineering Hall, Fayetteville, AR 72701, USA
| | - Kaiming Ye
- Biomedical Engineering Program, College of Engineering, University of Arkansas, 203 Engineering Hall, Fayetteville, AR 72701, USA
| |
Collapse
|
43
|
Bucher D, Grant BJ, Markwick PR, McCammon JA. Accessing a hidden conformation of the maltose binding protein using accelerated molecular dynamics. PLoS Comput Biol 2011; 7:e1002034. [PMID: 21533070 PMCID: PMC3080849 DOI: 10.1371/journal.pcbi.1002034] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/04/2011] [Indexed: 11/25/2022] Open
Abstract
Periplasmic binding proteins (PBPs) are a large family of molecular transporters that play a key role in nutrient uptake and chemotaxis in Gram-negative bacteria. All PBPs have characteristic two-domain architecture with a central interdomain ligand-binding cleft. Upon binding to their respective ligands, PBPs undergo a large conformational change that effectively closes the binding cleft. This conformational change is traditionally viewed as a ligand induced-fit process; however, the intrinsic dynamics of the protein may also be crucial for ligand recognition. Recent NMR paramagnetic relaxation enhancement (PRE) experiments have shown that the maltose binding protein (MBP) - a prototypical member of the PBP superfamily - exists in a rapidly exchanging (ns to µs regime) mixture comprising an open state (approx 95%), and a minor partially closed state (approx 5%). Here we describe accelerated MD simulations that provide a detailed picture of the transition between the open and partially closed states, and confirm the existence of a dynamical equilibrium between these two states in apo MBP. We find that a flexible part of the protein called the balancing interface motif (residues 175-184) is displaced during the transformation. Continuum electrostatic calculations indicate that the repacking of non-polar residues near the hinge region plays an important role in driving the conformational change. Oscillations between open and partially closed states create variations in the shape and size of the binding site. The study provides a detailed description of the conformational space available to ligand-free MBP, and has implications for understanding ligand recognition and allostery in related proteins.
Collapse
Affiliation(s)
- Denis Bucher
- Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California, USA.
| | | | | | | |
Collapse
|
44
|
Mulligan C, Fischer M, Thomas GH. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev 2011; 35:68-86. [PMID: 20584082 DOI: 10.1111/j.1574-6976.2010.00236.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The tripartite ATP-independent periplasmic (TRAP) transporters are the best-studied family of substrate-binding protein (SBP)-dependent secondary transporters and are ubiquitous in prokaryotes, but absent from eukaryotes. They are comprised of an SBP of the DctP or TAXI families and two integral membrane proteins of unequal sizes that form the DctQ and DctM protein families, respectively. The SBP component has a structure comprised of two domains connected by a hinge that closes upon substrate binding. In DctP-TRAP transporters, substrate binding is mediated through a conserved and specific arginine/carboxylate interaction in the SBP. While the SBP component has now been relatively well characterized, the membrane components of TRAP transporters are still poorly understood both in terms of their structure and function. We review the expanding repertoire of substrates and physiological roles for experimentally characterized TRAP transporters in bacteria and discuss mechanistic aspects of these transporters using data primarily from the sialic acid-specific TRAP transporter SiaPQM from Haemophilus influenzae, which suggest that TRAP transporters are high-affinity, Na(+)-dependent unidirectional secondary transporters.
Collapse
|
45
|
Periplasmic domain of the sensor-kinase BvgS reveals a new paradigm for the Venus flytrap mechanism. Proc Natl Acad Sci U S A 2010; 107:17351-5. [PMID: 20855615 DOI: 10.1073/pnas.1006267107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-component sensory transduction systems control important bacterial programs. In Bordetella pertussis, expression of the virulence regulon is controlled by the unorthodox BvgAS two-component system. BvgS is the prototype of a family of sensor-kinases that harbor periplasmic domains homologous to bacterial solute-binding proteins. Although BvgAS is active under laboratory conditions, no activating signal has been identified, only negative modulators. Here we show that the second periplasmic domain of BvgS interacts with modulators and adopts a Venus flytrap (VFT) fold. X-ray crystallography reveals that the two lobes of VFT2 delimitate a ligand-binding cavity enclosing fortuitous ligands. Most substitutions of putative ligand-binding residues in the VFT2 cavity keep BvgS active, and alteration of the cavity's electrostatic potential affects responsiveness to modulation. The crystal structure of this VFT2 variant conferring constitutive kinase activity to BvgS shows a closed cavity with another nonspecific ligand. Thus, VFT2 is closed and active without a specific agonist ligand, in contrast to typical VFTs. Modulators are antagonists of VFT2 that interrupt signaling. BvgAS is active for most of the B. pertussis infectious cycle, consistent with the proposed mechanism.
Collapse
|
46
|
Walker IH, Hsieh PC, Riggs PD. Mutations in maltose-binding protein that alter affinity and solubility properties. Appl Microbiol Biotechnol 2010; 88:187-97. [PMID: 20535468 PMCID: PMC2940430 DOI: 10.1007/s00253-010-2696-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/18/2010] [Accepted: 05/24/2010] [Indexed: 11/03/2022]
Abstract
Maltose-binding protein (MBP) from Escherichia coli has been shown to be a good substrate for protein engineering leading to altered binding (Marvin and Hellinga, Proc Natl Acad Sci U S A 98:4955-4960, 2001a) and increased affinity (Marvin and Hellinga, Nat Struct Biol 8:795-798, 2001b; Telmer and Shilton, J Biol Chem 278:34555-34567, 2003). It is also used in recombinant protein expression as both an affinity tag and a solubility tag. We isolated mutations in MBP that enhance binding to maltodextrins 1.3 to 15-fold, using random mutagenesis followed by screening for enhanced yield in a microplate-based affinity purification. We tested the mutations for their ability to enhance the yield of a fusion protein that binds poorly to immobilized amylose and their ability to enhance the solubility of one or more aggregation-prone recombinant proteins. We also measured dissociation constants of the mutant MBPs that retain the solubility-enhancing properties of MBP and combined two of the mutations to produce an MBP with a dissociation constant 10-fold tighter than wild-type MBP. Some of the mutations we obtained can be rationalized based on the previous work, while others indicate new ways in which the function of MBP can be modified.
Collapse
Affiliation(s)
- Iris H Walker
- New England Biolabs, 240 County Rd, Ipswich, MA 01938-2723, USA
| | | | | |
Collapse
|
47
|
Key J, Scheuermann TH, Anderson PC, Daggett V, Gardner KH. Principles of ligand binding within a completely buried cavity in HIF2alpha PAS-B. J Am Chem Soc 2010; 131:17647-54. [PMID: 19950993 DOI: 10.1021/ja9073062] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hypoxia-inducible factors (HIFs) are heterodimeric transcription factors responsible for the metazoan hypoxia response and promote tumor growth, metastasis, and resistance to cancer treatment. The C-terminal Per-ARNT-Sim (PAS) domain of HIF2alpha (HIF2alpha PAS-B) contains a preformed solvent-inaccessible cavity that binds artificial ligands that allosterically perturb the formation of the HIF heterodimer. To better understand how small molecules bind within this domain, we examined the structures and equilibrium and transition-state thermodynamics of HIF2alpha PAS-B with several artificial ligands using isothermal titration calorimetry, NMR exchange spectroscopy, and X-ray crystallography. Rapid association rates reveal that ligand binding is not dependent upon a slow conformational change in the protein to permit ligand access, despite the closed conformation observed in the NMR and crystal structures. Compensating enthalpic and entropic contributions to the thermodynamic barrier for ligand binding suggest a binding-competent transition state characterized by increased structural disorder. Finally, molecular dynamics simulations reveal conversion between open and closed conformations of the protein and pathways of ligand entry into the binding pocket.
Collapse
Affiliation(s)
- Jason Key
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, USA
| | | | | | | | | |
Collapse
|
48
|
Chen C, Malek AA, Wargo MJ, Hogan DA, Beattie GA. The ATP-binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate-binding proteins with strong specificity for distinct quaternary ammonium compounds. Mol Microbiol 2009; 75:29-45. [PMID: 19919675 DOI: 10.1111/j.1365-2958.2009.06962.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We identified a choline, betaine and carnitine transporter, designated Cbc, from Pseudomonas syringae and Pseudomonas aeruginosa that is unusual among members of the ATP-binding cassette (ABC) transporter family in its use of multiple periplasmic substrate-binding proteins (SBPs) that are highly specific for their substrates. The SBP encoded by the cbcXWV operon, CbcX, binds choline with a high affinity (K(m), 2.6 microM) and, although it also binds betaine (K(m), 24.2 microM), CbcXWV-mediated betaine uptake did not occur in the presence of choline. The CbcX orthologue ChoX from Sinorhizobium meliloti was similar to CbcX in these binding properties. The core transporter CbcWV also interacts with the carnitine-specific SBP CaiX (K(m), 24 microM) and the betaine-specific SBP BetX (K(m), 0.6 microM). Unlike most ABC transporter loci, caiX, betX and cbcXWV are separated in the genome. CaiX-mediated carnitine uptake was reduced by CbcX and BetX only when they were bound by their individual ligands, providing the first in vivo evidence for a higher affinity for ligand-bound than ligand-free SBPs by an ABC transporter. These studies demonstrate not only that the Cbc transporter serves as a useful model for exploring ABC transporter component interactions, but also that the orphan SBP genes common to bacterial genomes can encode functional SBPs.
Collapse
Affiliation(s)
- Chiliang Chen
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
49
|
Horler RSP, Müller A, Williamson DC, Potts JR, Wilson KS, Thomas GH. Furanose-specific sugar transport: characterization of a bacterial galactofuranose-binding protein. J Biol Chem 2009; 284:31156-63. [PMID: 19744923 PMCID: PMC2781514 DOI: 10.1074/jbc.m109.054296] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/06/2009] [Indexed: 12/31/2022] Open
Abstract
The widespread utilization of sugars by microbes is reflected in the diversity and multiplicity of cellular transporters used to acquire these compounds from the environment. The model bacterium Escherichia coli has numerous transporters that allow it to take up hexoses and pentoses, which recognize the more abundant pyranose forms of these sugars. Here we report the biochemical and structural characterization of a transporter protein YtfQ from E. coli that forms part of an uncharacterized ABC transporter system. Remarkably the crystal structure of this protein, solved to 1.2 A using x-ray crystallography, revealed that YtfQ binds a single molecule of galactofuranose in its ligand binding pocket. Selective binding of galactofuranose over galactopyranose was also observed using NMR methods that determined the form of the sugar released from the protein. The pattern of expression of the ytfQRTyjfF operon encoding this transporter mirrors that of the high affinity galactopyranose transporter of E. coli, suggesting that this bacterium has evolved complementary transporters that enable it to use all the available galactose present during carbon limiting conditions.
Collapse
Affiliation(s)
| | - Axel Müller
- From the Department of Biology
- York Structural Biology Laboratory,and
| | | | - Jennifer R. Potts
- From the Department of Biology
- Department of Chemistry, University of York, York YO10 5YW, United Kingdom
| | | | | |
Collapse
|
50
|
Loeffler HH, Kitao A. Collective dynamics of periplasmic glutamine binding protein upon domain closure. Biophys J 2009; 97:2541-9. [PMID: 19883597 PMCID: PMC2770614 DOI: 10.1016/j.bpj.2009.08.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/31/2009] [Accepted: 08/05/2009] [Indexed: 11/15/2022] Open
Abstract
The glutamine binding protein is a vital component of the associated ATP binding cassette transport systems responsible for the uptake of glutamine into the cell. We have investigated the global movements of this protein by molecular dynamics simulations and principal component analysis (PCA). We confirm that the most dominant mode corresponds to the biological function of the protein, i.e., a hinge-type motion upon ligand binding. The closure itself was directly observed from two independent trajectories whereby PCA was used to elucidate the nature of this closing reaction. Two intermediary states are identified and described in detail. The ligand binding induces the structural change of the hinge regions from a discontinuous beta-sheet to a continuous one, which also enhances softness of the hinge and modifies the direction of hinge motion to enable closing. We also investigated the convergence behavior of PCA modes, which were found to converge rather quickly when the associated magnitudes of the eigenvalues are well separated.
Collapse
Affiliation(s)
- Hannes H Loeffler
- Laboratory of Molecular Design, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|