Single p197 molecules of the mitochondrial genome segregation system of
Trypanosoma brucei determine the distance between basal body and outer membrane.
Proc Natl Acad Sci U S A 2022;
119:e2204294119. [PMID:
36161893 PMCID:
PMC9546609 DOI:
10.1073/pnas.2204294119]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Segregation of the replicated single unit mitochondrial genome of Trypanosoma brucei requires a large hardwired structure that connects the organellar DNA with the flagellar basal body. The cytosolic part of this structure consists of filaments made of p197 molecules, a protein with a molecular weight of approximately 660 kDa. The N terminus of p197 is anchored to the peripheral mitochondrial outer membrane protein TAC65, whereas its C terminus connects to the base of the basal body. The large α-helical central domain of p197 consists of approximately 26 repeats each 175 aa in length. It provides a flexible spacer that connects the outer membrane with the basal body and determines the distance between the two structures.
The tripartite attachment complex (TAC) couples the segregation of the single unit mitochondrial DNA of trypanosomes with the basal body (BB) of the flagellum. Here, we studied the architecture of the exclusion zone filament (EZF) of the TAC, the only known component of which is p197, that connects the BB with the mitochondrial outer membrane (OM). We show that p197 has three domains that are all essential for mitochondrial DNA inheritance. The C terminus of p197 interacts with the mature and probasal body (pro-BB), whereas its N terminus binds to the peripheral OM protein TAC65. The large central region of p197 has a high α-helical content and likely acts as a flexible spacer. Ultrastructure expansion microscopy (U-ExM) of cell lines exclusively expressing p197 versions of different lengths that contain both N- and C-terminal epitope tags demonstrates that full-length p197 alone can bridge the ∼270-nm distance between the BB and the cytosolic face of the OM. Thus U-ExM allows the localization of distinct domains within the same molecules and suggests that p197 is the TAC subunit most proximal to the BB. In addition, U-ExM revealed that p197 acts as a spacer molecule, as two shorter versions of p197, with the repeat domain either removed or replaced by the central domain of the Trypanosoma cruzi p197 ortholog reduced the distance between the BB and the OM in proportion to their predicted molecular weight.
Collapse