1
|
Bargiela R, Korzhenkov AA, McIntosh OA, Toshchakov SV, Yakimov MM, Golyshin PN, Golyshina OV. Evolutionary patterns of archaea predominant in acidic environment. ENVIRONMENTAL MICROBIOME 2023; 18:61. [PMID: 37464403 DOI: 10.1186/s40793-023-00518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Archaea of the order Thermoplasmatales are widely distributed in natural acidic areas and are amongst the most acidophilic prokaryotic organisms known so far. These organisms are difficult to culture, with currently only six genera validly published since the discovery of Thermoplasma acidophilum in 1970. Moreover, known great diversity of uncultured Thermoplasmatales represents microbial dark matter and underlines the necessity of efforts in cultivation and study of these archaea. Organisms from the order Thermoplasmatales affiliated with the so-called "alphabet-plasmas", and collectively dubbed "E-plasma", were the focus of this study. These archaea were found predominantly in the hyperacidic site PM4 of Parys Mountain, Wales, UK, making up to 58% of total metagenomic reads. However, these archaea escaped all cultivation attempts. RESULTS Their genome-based metabolism revealed its peptidolytic potential, in line with the physiology of the previously studied Thermoplasmatales isolates. Analyses of the genome and evolutionary history reconstruction have shown both the gain and loss of genes, that may have contributed to the success of the "E-plasma" in hyperacidic environment compared to their community neighbours. Notable genes among them are involved in the following molecular processes: signal transduction, stress response and glyoxylate shunt, as well as multiple copies of genes associated with various cellular functions; from energy production and conversion, replication, recombination, and repair, to cell wall/membrane/envelope biogenesis and archaella production. History events reconstruction shows that these genes, acquired by putative common ancestors, may determine the evolutionary and functional divergences of "E-plasma", which is much more developed than other representatives of the order Thermoplasmatales. In addition, the ancestral hereditary reconstruction strongly indicates the placement of Thermogymnomonas acidicola close to the root of the Thermoplasmatales. CONCLUSIONS This study has analysed the metagenome-assembled genome of "E-plasma", which denotes the basis of their predominance in Parys Mountain environmental microbiome, their global ubiquity, and points into the right direction of further cultivation attempts. The results suggest distinct evolutionary trajectories of organisms comprising the order Thermoplasmatales, which is important for the understanding of their evolution and lifestyle.
Collapse
Affiliation(s)
- Rafael Bargiela
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK
| | | | - Owen A McIntosh
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK
| | - Stepan V Toshchakov
- Kurchatov Center for Genome Research, NRC Kurchatov Institute, Moscow, Russia
| | | | - Peter N Golyshin
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK
| | - Olga V Golyshina
- School of Natural Sciences and Centre for Environmental Biotechnology, Bangor University, Bangor, UK.
| |
Collapse
|
2
|
Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, Frischkorn KR, Tringe SG, Singh A, Markillie LM, Taylor RC, Williams KH, Banfield JF. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol 2015; 25:690-701. [PMID: 25702576 DOI: 10.1016/j.cub.2015.01.014] [Citation(s) in RCA: 340] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND Archaea represent a significant fraction of Earth's biodiversity, yet they remain much less well understood than Bacteria. Gene surveys, a few metagenomic studies, and some single-cell sequencing projects have revealed numerous little-studied archaeal phyla. Certain lineages appear to branch deeply and may be part of a major phylum radiation. The structure of this radiation and the physiology of the organisms remain almost unknown. RESULTS We used genome-resolved metagenomic analyses to investigate the diversity, genomes sizes, metabolic capacities, and potential roles of Archaea in terrestrial subsurface biogeochemical cycles. We sequenced DNA from complex sediment and planktonic consortia from an aquifer adjacent to the Colorado River (USA) and reconstructed the first complete genomes for Archaea using cultivation-independent methods. To provide taxonomic context, we analyzed an additional 151 newly sampled archaeal sequences. We resolved two new phyla within a major, apparently deep-branching group of phyla (a superphylum). The organisms have small genomes, and metabolic predictions indicate that their primary contributions to Earth's biogeochemical cycles involve carbon and hydrogen metabolism, probably associated with symbiotic and/or fermentation-based lifestyles. CONCLUSIONS The results dramatically expand genomic sampling of the domain Archaea and clarify taxonomic designations within a major superphylum. This study, in combination with recently published work on bacterial phyla lacking cultivated representatives, reveals a fascinating phenomenon of major radiations of organisms with small genomes, novel proteome composition, and strong interdependence in both domains.
Collapse
Affiliation(s)
- Cindy J Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Kelly C Wrighton
- Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA
| | - Brian C Thomas
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Laura A Hug
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Christopher T Brown
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Michael J Wilkins
- Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA; School of Earth Sciences, The Ohio State University, Columbus, OH 43210 USA
| | - Kyle R Frischkorn
- Department of Earth and Environmental Sciences and the Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, NY 10964 USA
| | - Susannah G Tringe
- Metagenome Program, DOE Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Andrea Singh
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Lye Meng Markillie
- Environmental Molecular Sciences Laboratory, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Ronald C Taylor
- Environmental Molecular Sciences Laboratory, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Kenneth H Williams
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720 USA; Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720 USA.
| |
Collapse
|
3
|
Haloferax volcanii N-glycosylation: delineating the pathway of dTDP-rhamnose biosynthesis. PLoS One 2014; 9:e97441. [PMID: 24831810 PMCID: PMC4022621 DOI: 10.1371/journal.pone.0097441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/20/2014] [Indexed: 11/19/2022] Open
Abstract
In the halophilic archaea Haloferax volcanii, the surface (S)-layer glycoprotein can be modified by two distinct N-linked glycans. The tetrasaccharide attached to S-layer glycoprotein Asn-498 comprises a sulfated hexose, two hexoses and a rhamnose. While Agl11-14 have been implicated in the appearance of the terminal rhamnose subunit, the precise roles of these proteins have yet to be defined. Accordingly, a series of in vitro assays conducted with purified Agl11-Agl14 showed these proteins to catalyze the stepwise conversion of glucose-1-phosphate to dTDP-rhamnose, the final sugar of the tetrasaccharide glycan. Specifically, Agl11 is a glucose-1-phosphate thymidylyltransferase, Agl12 is a dTDP-glucose-4,6-dehydratase and Agl13 is a dTDP-4-dehydro-6-deoxy-glucose-3,5-epimerase, while Agl14 is a dTDP-4-dehydrorhamnose reductase. Archaea thus synthesize nucleotide-activated rhamnose by a pathway similar to that employed by Bacteria and distinct from that used by Eukarya and viruses. Moreover, a bioinformatics screen identified homologues of agl11-14 clustered in other archaeal genomes, often as part of an extended gene cluster also containing aglB, encoding the archaeal oligosaccharyltransferase. This points to rhamnose as being a component of N-linked glycans in Archaea other than Hfx. volcanii.
Collapse
|
4
|
Variation of the virus-related elements within syntenic genomes of the hyperthermophilic Archaeon Aeropyrum. Appl Environ Microbiol 2013; 79:5891-8. [PMID: 23872576 DOI: 10.1128/aem.01089-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The increasing number of genome sequences of archaea and bacteria show their adaptation to different environmental conditions at the genomic level. Aeropyrum spp. are aerobic and hyperthermophilic archaea. Aeropyrum camini was isolated from a deep-sea hydrothermal vent, and Aeropyrum pernix was isolated from a coastal solfataric vent. To investigate the adaptation strategy in each habitat, we compared the genomes of the two species. Shared genome features were a small genome size, a high GC content, and a large portion of orthologous genes (86 to 88%). The genomes also showed high synteny. These shared features may have been derived from the small number of mobile genetic elements and the lack of a RecBCD system, a recombinational enzyme complex. In addition, the specialized physiology (aerobic and hyperthermophilic) of Aeropyrum spp. may also contribute to the entire-genome similarity. Despite having stable genomes, interference of synteny occurred with two proviruses, A. pernix spindle-shaped virus 1 (APSV1) and A. pernix ovoid virus 1 (APOV1), and clustered regularly interspaced short palindromic repeat (CRISPR) elements. Spacer sequences derived from the A. camini CRISPR showed significant matches with protospacers of the two proviruses infecting A. pernix, indicating that A. camini interacted with viruses closely related to APSV1 and APOV1. Furthermore, a significant fraction of the nonorthologous genes (41 to 45%) were proviral genes or ORFans probably originating from viruses. Although the genomes of A. camini and A. pernix were conserved, we observed nonsynteny that was attributed primarily to virus-related elements. Our findings indicated that the genomic diversification of Aeropyrum spp. is substantially caused by viruses.
Collapse
|
5
|
Jahnke LL, Orphan VJ, Embaye T, Turk KA, Kubo MD, Summons RE, DES Marais DJ. Lipid biomarker and phylogenetic analyses to reveal archaeal biodiversity and distribution in hypersaline microbial mat and underlying sediment. GEOBIOLOGY 2008; 6:394-410. [PMID: 18564188 DOI: 10.1111/j.1472-4669.2008.00165.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study has utilized the tools of lipid biomarker chemistry and molecular phylogenetic analyses to assess the archaeal contribution to diversity and abundance within a microbial mat and underlying sediment from a hypersaline lagoon in Baja California. Based on abundance of ether-linked isoprenoids, archaea made up from 1 to 4% of the cell numbers throughout the upper 100 mm of mat and sediment core. Below this depth archaeal lipid was two times more abundant than bacterial. Archaeol was the primary archaeal lipid in all layers. Relatively small amounts of caldarchaeol (dibiphytanyl glyceroltetraether) were present at most depths with phytanyl to biphytanyl molar ratios lowest (approximately 10 : 1) in the 4-17 mm and 100-130 mm horizons, and highest (132 : 1) in the surface 0-2 mm. Lipids with cyclic biphytanyl cores were only detected below 100 mm. A novel polar lipid containing a C(30) isoprenoid (squalane) moiety was isolated from the upper anoxic portion of the core and partially characterized. Hydrocarbon biomarker lipids included pentamethylicosane (2-10 mm) and crocetane (primarily below 10 mm). Archaeal molecular diversity varied somewhat with depth. With the exception of samples at 0-2 mm and 35-65 mm, Thermoplasmatales of marine benthic group D dominated clone libraries. A significant number of phylotypes representing the Crenarchaeota from marine benthic group B were generally present below 17 mm and dominated the 35-65 mm sample. Halobacteriaceae family made up 80% of the clone library of the surface 2 mm, and consisted primarily of sequences affiliated with the haloalkaliphilic Natronomonas pharaonis.
Collapse
MESH Headings
- Archaea/chemistry
- Archaea/classification
- Archaea/genetics
- Archaea/isolation & purification
- Bacteria/isolation & purification
- Biodiversity
- Biomarkers
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA
- Lipids/analysis
- Mexico
- Molecular Sequence Data
- Phylogeny
- RNA, Archaeal/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Water Microbiology
Collapse
Affiliation(s)
- L L Jahnke
- Space Science Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Goodchild A, Raftery M, Saunders NFW, Guilhaus M, Cavicchioli R. Cold Adaptation of the Antarctic Archaeon, Methanococcoides burtonii Assessed by Proteomics Using ICAT. J Proteome Res 2005; 4:473-80. [PMID: 15822924 DOI: 10.1021/pr049760p] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Using isotope coded affinity tag (ICAT) chromatography and liquid chromatography-mass spectrometry, 163 proteins were identified from the cold-adapted archaeon, Methanococcoides burtonii. 14 proteins were differentially expressed during growth at 4 degrees C and 23 degrees C. Knowledge of protein abundance, protein identity and gene arrangement was used to determine mechanisms of cold adaptation. Growth temperature was found to affect proteins involved in energy generation and biosynthesis linked to methanogenesis, membrane transport, transcription and protein folding, as well as affecting the expression of two hypothetical proteins. Pooling the data from this ICAT study with data from a previous two-dimensional gel electrophoresis study highlighted consistencies and differences between the two methods, and led us to conclude that the two approaches were generally complementary. This is the first report of ICAT applied to Archaea, or for the study of cold adaptation in any organism.
Collapse
Affiliation(s)
- Amber Goodchild
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, NSW, Australia
| | | | | | | | | |
Collapse
|
7
|
Faguy DM, Koval SF, Jarrell KF. Physical characterization of the flagella and flagellins from Methanospirillum hungatei. J Bacteriol 1994; 176:7491-8. [PMID: 8002572 PMCID: PMC197205 DOI: 10.1128/jb.176.24.7491-7498.1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Flagellar filaments from Methanospirillum hungatei GP1 and JF1 were isolated and subjected to a variety of physical and chemical treatments. The filaments were stable to temperatures up to 80 degrees C and over the pH range of 4 to 10. The flagellar filaments were dissociated in the detergents (final concentration of 0.5%) Triton X-100, Tween 20, Tween 80, Brij 58, N-octylglucoside, cetyltrimethylammonium bromide, and Zwittergent 3-14, remaining intact in only two of the detergents tested, sodium deoxycholate and 3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate (CHAPS). Spheroplasting techniques were used to separate the internal cells from the complex sheath, S-layer (cell wall), and end plugs of M. hungatei. The flagellar basal structure was visualized after solubilization of membranes by CHAPS or deoxycholate. The basal structure appeared to be a simple knob with no apparent ring or hook structures. The multiple, glycosylated flagellins constituting the flagellar filaments were cleaved by proteases and cyanogen bromide. The cyanogen bromide-generated fragments of M. hungatei GP1 flagellins were partially sequenced to provide internal sequence information. In addition, the amino acid composition of each flagellin was determined and indicated that the flagellins are distinct gene products, rather than differentially glycosylated forms of the same gene product.
Collapse
Affiliation(s)
- D M Faguy
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
8
|
Firtel M, Southam G, Harauz G, Beveridge TJ. Characterization of the cell wall of the sheathed methanogen Methanospirillum hungatei GP1 as an S layer. J Bacteriol 1993; 175:7550-60. [PMID: 8244924 PMCID: PMC206911 DOI: 10.1128/jb.175.23.7550-7560.1993] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cell wall of Methanospirillum hungatei GP1 is a labile structure that has been difficult to isolate and characterize because the cells which it encases are contained within a sheath. Cell-sized fragments, 560 nm wide by several micrometers long, of cell wall were extracted by a novel method involving the gradual drying of the filaments in 2% (wt/vol) sodium dodecyl sulfate and 10% (wt/vol) sucrose in 50 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer containing 10 mM EDTA. The surface was a hexagonal array (a = b = 15.1 nm) possessing a helical superstructure with a ca. 2.5 degrees pitch angle. In shadowed relief, the smooth outer face was punctuated with deep pits, whereas the inner face was relatively featureless. Computer-based two-dimensional reconstructed views of the negatively stained layer demonstrated 4.0- and 2.0-nm-wide electron-dense regions on opposite sides of the layer likely corresponding to the openings of funnel-shaped channels. The face featuring the larger openings best corresponds to the outer face of the layer. The smaller opening was encircled by a stalk-like mass from which 2.2-nm-wide protrusions were resolved. The cell wall in situ was degraded at pH 9.6 at 56 degrees C but was unaffected at pH 7.4 at the same temperature. The cell wall was composed of two nonglycosylated polypeptides (114 and 110 kDa). The cell wall resembled an archaeal S layer and may function in regulating the passage of small (< 10-kDa) sheath precursor proteins.
Collapse
Affiliation(s)
- M Firtel
- Department of Microbiology, College of Biological Sciences, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
9
|
Southam G, Beveridge TJ. Detection of growth sites in and protomer pools for the sheath of Methanospirillum hungatei GP1 by use of constituent organosulfur and immunogold labeling. J Bacteriol 1992; 174:6460-70. [PMID: 1400199 PMCID: PMC207604 DOI: 10.1128/jb.174.20.6460-6470.1992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Methanospirillum hungatei GP1 integrated approximately 9% of cellular [35S]cysteine into its sheath. Autoradiography of sodium dodecyl sulfate-polyacrylamide gels revealed that [35S]cysteine was confined to the proteins released by the sodium dodecyl sulfate-beta-mercaptoethanol-EDTA solubilization method (G. Southam and T. J. Beveridge, J. Bacteriol. 173:6213-6222, 1991) and was not present in the proteins released by treatment with phenol (G. Southam and T. J. Beveridge, J. Bacteriol. 174:935-946, 1992). Limited labeling of exposed sulfhydryl groups on hoops produced from sheath material suggested that most organosulfur groups occur within hoops and therefore help contribute to resilience. Electron microscopic autoradiography demonstrated that sheath growth, which is most active at the sites of cell division (spacer region), occurs through the de novo development of hoops. For growth to occur in the spacer region, sheath precursors must transverse several periodic envelope layers, including the cell wall (a single layer) and the various lamellae of the spacer plug (T. J. Beveridge, G. D. Sprott, and P. Whippey, J. Bacteriol. 173:130-140, 1991).
Collapse
Affiliation(s)
- G Southam
- Department of Microbiology, College of Biological Science, University of Guelph, Ontario, Canada
| | | |
Collapse
|
10
|
Choquet CG, Sprott G. Metal chelate affinity chromatography for the purification of the F420-reducing (Ni,Fe) hydrogenase of Methanospirillum hungatei. J Microbiol Methods 1991. [DOI: 10.1016/0167-7012(91)90016-j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Beveridge TJ, Sprott GD, Whippey P. Ultrastructure, inferred porosity, and gram-staining character of Methanospirillum hungatei filament termini describe a unique cell permeability for this archaeobacterium. J Bacteriol 1991; 173:130-40. [PMID: 1702777 PMCID: PMC207166 DOI: 10.1128/jb.173.1.130-140.1991] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
By light microscopy, Methanospirillum hungatei GP1 stains gram positive at the terminal ends of each multicellular filament and gram negative at all regions in between. This phenomenon was studied further by electron microscopy and energy-dispersive X-ray spectroscopy of Gram-stained cells, using a platinum compound to replace Gram's iodine (J. A. Davies, G. K. Anderson, T. J. Beveridge, and H. C. Clark, J. Bacteriol. 156:837-845, 1983). Crystal violet-platinum precipitates could be found only in the terminal cells of each filament, which suggested that the multilamellar plugs at the filament ends were involved with stain penetration. When sheaths were isolated by sodium dodecyl sulfate-dithiothreitol treatment, the end plugs could be ejected and their layers could be separated from one another by 0.1 M NaOH treatment. Each plug consisted of at least three individual layers; two were particulate and possessed 14.0-nm particles hexagonally arranged on their surfaces with a spacing of a = b = 18.0 nm, whereas the other was a netting of 12.5-nm holes with spacings and symmetry identical to those of the particulate layers. Optical diffraction and computer image reconstruction were used to clarify the structures of each layer in an intact plug and to provide a high-resolution image of their interdigitated structures. The holes through this composite were three to six times larger than those through the sheath. Accordingly, we propose that the terminal plugs of M. hungatei allow the access of larger solutes than does the sheath and that this is the reason why the end cells of each filament stain gram positive whereas more internal cells are gram negative. Intuitively, since the cell spacers which partition the cells from one another along the filament contain plugs identical in structure to terminal plugs, the diffusion of large solutes for these cells would be unidirectional along the filament-cell axis.
Collapse
Affiliation(s)
- T J Beveridge
- Department of Microbiology, College of Biological Science, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
12
|
Isolation and physicochemical characterization of the half-unit membranes of oilseed lipid bodies. J AM OIL CHEM SOC 1990. [DOI: 10.1007/bf02539689] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Affiliation(s)
- K F Jarrell
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
14
|
Dharmavaram RM, Konisky J. Identification of a vanadate-sensitive, membrane-bound ATPase in the archaebacterium Methanococcus voltae. J Bacteriol 1987; 169:3921-5. [PMID: 2957358 PMCID: PMC213688 DOI: 10.1128/jb.169.9.3921-3925.1987] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Membrane-bound ATPase activity was detected in the methanogen Methanococcus voltae. The ATPase was inhibited by vanadate, a characteristic inhibitor of E1E2 ATPases. The enzyme activity was also inhibited by diethylstilbestrol. However, it was insensitive to N,N'-dicyclohexylcarbodiimide, ouabain, and oligomycin. The enzyme displayed a high preference for ATP as substrate, was dependent on Mg2+, and had a pH optimum of approximately 7.5. The enzyme was completely solubilized with 2% Triton X-100. The enzyme was insensitive to oxygen and was stabilized by ATP. There was no homology with the Escherichia coli F0F1 ATPase at the level of DNA and protein. The membrane-bound M. voltae ATPase showed properties similar to those of E1E2 ATPases.
Collapse
|
15
|
Conway De Macario E, Macario AJ. Immunology of archaebacteria: Identification, antigenic relationships and immunochemistry of surface structures. Syst Appl Microbiol 1986. [DOI: 10.1016/s0723-2020(86)80026-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
de Macario EC, König H, Macario AJL. Antigenic determinants distinctive of Methanospirillum hungatei and Methanogenium cariaci identified by monoclonal antibodies. Arch Microbiol 1986. [DOI: 10.1007/bf00454950] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Beveridge TJ, Stewart M, Doyle RJ, Sprott GD. Unusual stability of the Methanospirillum hungatei sheath. J Bacteriol 1985; 162:728-37. [PMID: 3988711 PMCID: PMC218911 DOI: 10.1128/jb.162.2.728-737.1985] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The proteinaceous sheath of Methanospirillum hungatei was isolated by lysing cells in 50 mM dithiothreitol, separating the sheath from other cellular material by discontinuous sucrose density centrifugation, and removing the "cell spacers" with dilute NaOH. The isolated sheath material consisted of hollow tubes which had a highly ordered surface array. The stability of the sheath to treatment with denaturants and to enzymatic digestion was examined by a turbidimetric assay in conjunction with electron microscopy and optical or electron diffraction. The sheath was resistant to a range of proteases and also was not digested by peptidoglycan-degrading enzymes, a lipase, a cellulase, a glucosidase, or Rhozyme (a mixture of galactosidases, acetylglucosaminidase, acetylgalactosaminidase, fucosidase, and mannosidases). In addition to being unaffected by common salts, thiol-reducing agents, and EDTA, the layer was resistant to powerful denaturants such as 6 M urea, 6 M guanidinium hydrochloride, 10 M LiSCN, cyanogen bromide, sodium periodate, and 1% sodium dodecyl sulfate. Strong bases, boiling 3 N HCl, and performic acid did attack the sheath; in these cases, the array was systematically disassembled in a progressive manner, which was followed by electron microscopy. The layer was slightly modified by N-bromosuccinimide in urea, but the array remained intact. The stability of the sheath was remarkable, not only as compared to other bacterial surface arrays, but also as compared to proteins generally, and possibly indicated the presence of covalent cross-links between protein subunits.
Collapse
|
18
|
Comita PB, Gagosian RB, Pang H, Costello CE. Structural elucidation of a unique macrocyclic membrane lipid from a new, extremely thermophilic, deep-sea hydrothermal vent archaebacterium, Methanococcus jannaschii. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42540-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Daniels L, Sparling R, Sprott GD. The bioenergetics of methanogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 768:113-63. [PMID: 6236847 DOI: 10.1016/0304-4173(84)90002-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The reduction of CO2 or any other methanogenic substrate to methane serves the same function as the reduction of oxygen, nitrate or sulfate to more reduced products. These exergonic reactions are coupled to the production of usable energy generated through a charge separation and a protonmotive-force-driven ATPase. For the understanding of how methanogens derive energy from C-1 unit reduction one must study the biochemistry of the chemical reactions involved and how these are coupled to the production of a charge separation and subsequent electron transport phosphorylation. Data on methanogenesis by a variety of organisms indicates ubiquitous use of CH3-S-CoM as the final electron acceptor in the production of methane through the methyl CoM reductase and of 5-deazaflavin as a primary source of reducing equivalents. Three known enzymes serve as catalysts in the production of reduced 5-deazaflavin: hydrogenase, formate dehydrogenase and CO dehydrogenase. All three are potential candidates for proton pumps. In the organisms that must oxidize some of their substrate to obtain electrons for the reduction of another portion of the substrate to methane (e.g., those using formate, methanol or acetate), the latter two enzymes may operate in the oxidizing direction. CO2 is the most frequent substrate for methanogenesis but is the only substrate that obligately requires the presence of H2 and hydrogenase. Growth on methanol requires a B12-containing methanol-CoM methyl transferase and does not necessarily need any other methanogenic enzymes besides the methyl-CoM reductase system when hydrogenase is present. When bacteria grow on methanol alone it is not yet clear if they get their reducing equivalents from a reversal of methanogenic enzymes, thus oxidizing methyl groups to CO2. An alternative (since these and acetate-catabolizing methanogens possess cytochrome b) is electron transport and possible proton pumping via a cytochrome-containing electron transport chain. Several of the actual components of the methanogenic pathway from CO2 have been characterized. Methanofuran is apparently the first carbon-carrying cofactor in the pathway, forming carboxy-methanofuran. Formyl-FAF or formyl-methanopterin (YFC, a very rapidly labelled compound during 14C pulse labeling) has been implicated as an obligate intermediate in methanogenesis, since methanopterin or FAF is an essential component of the carbon dioxide reducing factor in dialyzed extract methanogenesis. FAF also carries the carbon at the methylene and methyl oxidation levels.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
20
|
Ekiel I, Smith IC, Sprott GD. Biosynthetic pathways in Methanospirillum hungatei as determined by 13C nuclear magnetic resonance. J Bacteriol 1983; 156:316-26. [PMID: 6619097 PMCID: PMC215085 DOI: 10.1128/jb.156.1.316-326.1983] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The main metabolic pathways in Methanospirillum hungatei GP1 were followed by using 13C nuclear magnetic resonance, with 13C-labeled acetate and CO2 as carbon sources. The labeling patterns found in carbohydrates, amino acids, lipids, and nucleosides were consistent with the formation of pyruvate from acetate and CO2 as the first step in biosynthesis. Carbohydrates are formed by the glucogenic pathway, and no scrambling of label was observed, indicating that the oxidative or reductive pentose phosphate pathways are not functioning at significant rates. The pathways for amino acid biosynthesis are the usual ones, with the exception of that for isoleucine. The tricarboxylic acid pathway is incomplete and operates in a reductive direction to form alpha-ketoglutarate. The phytanyl chains of lipids are synthesized from acetate via mevalonic acid.
Collapse
|