1
|
Lesanavičius M, Seo D, Maurutytė G, Čėnas N. Redox Properties of Bacillus subtilis Ferredoxin:NADP + Oxidoreductase: Potentiometric Characteristics and Reactions with Pro-Oxidant Xenobiotics. Int J Mol Sci 2024; 25:5373. [PMID: 38791410 PMCID: PMC11121358 DOI: 10.3390/ijms25105373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Bacillus subtilis ferredoxin:NADP+ oxidoreductase (BsFNR) is a thioredoxin reductase-type FNR whose redox properties and reactivity with nonphysiological electron acceptors have been scarcely characterized. On the basis of redox reactions with 3-acetylpyridine adenine dinucleotide phosphate, the two-electron reduction midpoint potential of the flavin adenine dinucleotide (FAD) cofactor was estimated to be -0.240 V. Photoreduction using 5-deazaflavin mononucleotide (5-deazaFMN) as a photosensitizer revealed that the difference in the redox potentials between the first and second single-electron transfer steps was 0.024 V. We examined the mechanisms of the reduction of several different groups of non-physiological electron acceptors catalyzed by BsFNR. The reactivity of quinones and aromatic N-oxides toward BsFNR increased when increasing their single-electron reduction midpoint redox potentials. The reactivity of nitroaromatic compounds was lower due to their lower electron self-exchange rate, but it exhibited the same trend. A mixed single- and two-electron reduction reaction was characteristic of quinones, whereas reactions involving nitroaromatics proceeded exclusively via the one-electron reduction reaction. The oxidation of FADH• to FAD is the rate-limiting step during the oxidation of fully reduced FAD. The calculated electron transfer distances in the reaction with nitroaromatics were close to those of other FNRs including the plant-type enzymes, thus demonstrating their similar active site accessibility to low-molecular-weight oxidants despite the fundamental differences in their structures.
Collapse
Affiliation(s)
- Mindaugas Lesanavičius
- Department of Xenobiotics Biochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.L.); (G.M.)
| | - Daisuke Seo
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan;
| | - Gintarė Maurutytė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.L.); (G.M.)
| | - Narimantas Čėnas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania; (M.L.); (G.M.)
| |
Collapse
|
2
|
Thioredoxin Reductase-Type Ferredoxin: NADP+ Oxidoreductase of Rhodopseudomonas palustris: Potentiometric Characteristics and Reactions with Nonphysiological Oxidants. Antioxidants (Basel) 2022; 11:antiox11051000. [PMID: 35624864 PMCID: PMC9137726 DOI: 10.3390/antiox11051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Rhodopseudomonas palustris ferredoxin:NADP+ oxidoreductase (RpFNR) belongs to a novel group of thioredoxin reductase-type FNRs with partly characterized redox properties. Based on the reactions of RpFNR with the 3-acetylpyridine adenine dinucleotide phosphate redox couple, we estimated the two-electron reduction midpoint potential of the FAD cofactor to be −0.285 V. 5-Deaza-FMN-sensitized photoreduction revealed −0.017 V separation of the redox potentials between the first and second electron transfer events. We examined the mechanism of oxidation of RpFNR by several different groups of nonphysiological electron acceptors. The kcat/Km values of quinones and aromatic N-oxides toward RpFNR increase with their single-electron reduction midpoint potential. The lower reactivity, mirroring their lower electron self-exchange rate, is also seen to have a similar trend for nitroaromatic compounds. A mixed single- and two-electron reduction was characteristic of quinones, with single-electron reduction accounting for 54% of the electron flux, whereas nitroaromatics were reduced exclusively via single-electron reduction. It is highly possible that the FADH· to FAD oxidation reaction is the rate-limiting step during the reoxidation of reduced FAD. The calculated electron transfer distances in the reaction with quinones and nitroaromatics were close to those of Anabaena and Plasmodium falciparum FNRs, thus demonstrating their similar “intrinsic” reactivity.
Collapse
|
3
|
Keirsse-Haquin J, Picaud T, Bordes L, de Gracia AG, Desbois A. Modulation of the flavin-protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2017; 47:205-223. [PMID: 28889232 DOI: 10.1007/s00249-017-1245-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/12/2017] [Accepted: 07/26/2017] [Indexed: 10/18/2022]
Abstract
NADH peroxidase (Npx) and mercuric ion reductase (MerA) are flavoproteins belonging to the pyridine nucleotide:disulfide oxidoreductases (PNDO) and catalyzing the reduction of toxic substrates, i.e., hydrogen peroxide and mercuric ion, respectively. To determine the role of the flavin adenine dinucleotide (FAD) in the detoxification mechanism, the resonance Raman (RR) spectra of these enzymes under various redox and ligation states have been investigated using blue and/or near-UV excitation(s). These data were compared to those previously obtained for glutathione reductase (GR), another enzyme of the PNDO family, but catalyzing the reduction of oxidized glutathione. Spectral differences have been detected for the marker bands of the isoalloxazine ring of Npx, MerA, and GR. They provide evidence for different catalytic mechanisms in these flavoproteins. The RR modes of the oxidized and two-electron reduced (EH2) forms of Npx are related to very tight flavin-protein interactions maintaining a nearly planar conformation of the isoalloxazine tricycle, a low level of H-bonding at the N1/N5 and O2/O4 sites, and a strong H-bond at N3H. They also indicate minimal changes in FAD structure and environment upon either NAD(H) binding or reduction of the sulfinic redox center. All these spectroscopic data support an enzyme functioning centered on the Cys-SO-/Cys-S- redox moiety and a neighbouring His residue. On the contrary, the RR data on various functional forms of MerA are indicative of a modulation of both ring II distortion and H-bonding states of the N5 site and ring III. The Cd(II) binding to the EH2-NADP(H) complexes, biomimetic intermediates in the reaction of Hg(II) reduction, provokes important spectral changes. They are interpreted in terms of flattening of the isoalloxazine ring and large decreases in H-bonding at the N5 site and ring III. The large flexibility of the FAD structure and environment in MerA is in agreement with proposed mechanisms involving C4a(flavin) adducts.
Collapse
Affiliation(s)
- Julie Keirsse-Haquin
- Institut de Biologie Intégrative de la Cellule, UMR 9198 CNRS-CEA-Université Paris Sud, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France.,Ecole Nationale Supérieure des Mines, 44300, Nantes, France
| | - Thierry Picaud
- Institut de Biologie Intégrative de la Cellule, UMR 9198 CNRS-CEA-Université Paris Sud, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France.,Institut Supérieur des Biotechnologies de Paris (Sup'Biotech Paris), 94800, Villejuif, France
| | - Luc Bordes
- Institut de Biologie Intégrative de la Cellule, UMR 9198 CNRS-CEA-Université Paris Sud, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France.,School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Adrienne Gomez de Gracia
- Institut de Biologie Intégrative de la Cellule, UMR 9198 CNRS-CEA-Université Paris Sud, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France
| | - Alain Desbois
- Institut de Biologie Intégrative de la Cellule, UMR 9198 CNRS-CEA-Université Paris Sud, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
4
|
Li J, Kitagawa T. Resonance Raman spectroscopy. Methods Mol Biol 2014; 1146:377-400. [PMID: 24764099 DOI: 10.1007/978-1-4939-0452-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Flavin is a general name given to molecules having the heteroaromatic ring system of 7,8-dimethylisoalloxazine but practically means riboflavin (Rfl), flavin adenine dinucleotide (FAD), and flavin mononucleotide (FMN) in biological systems, whose structures are illustrated in Fig. 1, together with the atomic numbering scheme and ring numbering of the isoalloxazine moiety. As the isoalloxazine skeleton cannot be synthesized in human cells, it is obtained from diet as Rfl (vitamin B2). FAD and FMN can act as cofactors in flavoenzymes but Rfl does not. Most flavoenzymes catalyze redox reactions of substrates (Miura, Chem Rec 1:183-194, 2001). When O2 serves as the oxidant in the oxidation half cycle of an enzymic reaction, the enzyme is called "flavo-oxidase" but when others do, the enzyme is called "flavo-dehydrogenase." The difference between the two types of oxidative catalysis arises from delicate differences in the π-electron distributions in the isoalloxazine ring, which can be revealed by Raman spectroscopy (Miura, Chem Rec 1:183-194, 2001). Since a flavin is an extremely versatile molecule, the scientific field including chemistry, biochemistry, and enzymology is collectively called "flavonology." It was found recently, however, that the flavin also acts as a chromophore to initiate light-induced DNA repair and signal transductions (Sancar, Chem Rev 103:2203-2237, 2003).
Collapse
Affiliation(s)
- Jiang Li
- Graduate School of Life Science, University of Hyogo, Kamigori-cho, Aku-gum, 678-1297, Hyogo, Japan
| | | |
Collapse
|
5
|
Ewen KM, Hannemann F, Khatri Y, Perlova O, Kappl R, Krug D, Hüttermann J, Müller R, Bernhardt R. Genome mining in Sorangium cellulosum So ce56: identification and characterization of the homologous electron transfer proteins of a myxobacterial cytochrome P450. J Biol Chem 2009; 284:28590-8. [PMID: 19696019 DOI: 10.1074/jbc.m109.021717] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Myxobacteria, especially members of the genus Sorangium, are known for their biotechnological potential as producers of pharmaceutically valuable secondary metabolites. The biosynthesis of several of those myxobacterial compounds includes cytochrome P450 activity. Although class I cytochrome P450 enzymes occur wide-spread in bacteria and rely on ferredoxins and ferredoxin reductases as essential electron mediators, the study of these proteins is often neglected. Therefore, we decided to search in the Sorangium cellulosum So ce56 genome for putative interaction partners of cytochromes P450. In this work we report the investigation of eight myxobacterial ferredoxins and two ferredoxin reductases with respect to their activity in cytochrome P450 systems. Intriguingly, we found not only one, but two ferredoxins whose ability to sustain an endogenous So ce56 cytochrome P450 was demonstrated by CYP260A1-dependent conversion of nootkatone. Moreover, we could demonstrate that the two ferredoxins were able to receive electrons from both ferredoxin reductases. These findings indicate that S. cellulosum can alternate between different electron transport pathways to sustain cytochrome P450 activity.
Collapse
Affiliation(s)
- Kerstin Maria Ewen
- Department of Biochemistry, Saarland University, D-66041 Saarbrücken, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Eisenberg AS, Schelvis JPM. Contributions of the 8-methyl group to the vibrational normal modes of flavin mononucleotide and its 5-methyl semiquinone radical. J Phys Chem A 2008; 112:6179-89. [PMID: 18547041 DOI: 10.1021/jp711832g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resonance Raman spectroscopy is a powerful tool to investigate flavins and flavoproteins, and a good understanding of the flavin vibrational normal modes is essential for the interpretation of the Raman spectra. Isotopic labeling is the most effective tool for the assignment of vibrational normal modes, but such studies have been limited to labeling of rings II and III of the flavin isoalloxazine ring. In this paper, we report the resonance and pre-resonance Raman spectra of flavin mononucleotide (FMN) and its N5-methyl neutral radical semiquinone (5-CH 3FMN(*)), of which the 8-methyl group of ring I has been deuterated. The experiments indicate that the Raman bands in the low-frequency region are the most sensitive to 8-methyl deuteration. Density functional theory (DFT) calculations have been performed on lumiflavin to predict the isotope shifts, which are used to assign the calculated normal modes to the Raman bands of FMN. A first assignment of the low-frequency Raman bands on the basis of isotope shifts is proposed. Partial deuteration of the 8-methyl group reveals that the changes in the Raman spectra do not always occur gradually. These observations are reproduced by the DFT calculations, which provide detailed insight into the underlying modifications of the normal modes that are responsible for the changes in the Raman spectra. Two types of isotopic shift patterns are observed: either the frequency of the normal mode but not its composition changes or the composition of the normal mode changes, which then appears at a new frequency. The DFT calculations also reveal that the effect of H/D-exchange in the 8-methyl group on the composition of the vibrational normal modes is affected by the position of the exchanged hydrogen, i.e., whether it is in or out of the isoalloxazine plane.
Collapse
Affiliation(s)
- Azaria S Eisenberg
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, USA
| | | |
Collapse
|
7
|
One-electron photoreduction of flavin mononucleotide: time-resolved resonance Raman and absorption study. J Mol Struct 1996. [DOI: 10.1016/0022-2860(95)09176-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Sano S, Miyake C, Mikami B, Asada K. Molecular characterization of monodehydroascorbate radical reductase from cucumber highly expressed in Escherichia coli. J Biol Chem 1995; 270:21354-61. [PMID: 7545669 DOI: 10.1074/jbc.270.36.21354] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Monodehydroascorbate radical (MDA) reductase, an FAD-enzyme, is the first enzyme to be identified whose substrate is an organic radical and catalyzes the reduction of MDA to ascorbate by NAD(P)H. Its cDNA has been cloned from cucumber seedlings (Sano, S., and Asada, K. (1994) Plant Cell Physiol. 35, 425-437), and a plasmid was constructed in the present study that allowed a high level expression in Escherichia coli of the cDNA-encoding MDA reductase using the T7 RNA polymerase expression system. The recombinant MDA reductase was purified to a crystalline state, with a yield of over 20 mg/liter of culture, and it exhibited spectroscopic properties of the FAD similar to those of the enzyme purified from cucumber fruits during redox reactions with NADH and MDA. The red semiquinone of the FAD of MDA reductase was generated by photoreduction. p-Chloromercuribenzoate inhibited the reduction of the enzyme-FAD by NADH, and dicumarol suppressed electron transfer from the reduced enzyme to MDA. The specificity of electron acceptors of the recombinant enzyme appeared to be similar to that of MDA reductase, even though the amino acid sequence encoded by the cDNA was somewhat different from that of the enzyme purified from cucumber fruits. The Km values for NADH and NADPH of the recombinant enzyme indicated a high affinity of the enzyme for NADH. The reaction catalyzed by the enzyme did not exhibit saturation kinetics with MDA up to 3 microM. A second order rate constant for the reduction of the enzyme-FAD with NADH was 1.25 x 10(8) M-1 s-1, as determined by a stopped-flow method, and its value decreased with increases in ionic strength, an indication of the enhanced electrostatic guidance of NADH to the enzyme-FAD.
Collapse
Affiliation(s)
- S Sano
- Research Institute for Food Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
9
|
Kobayashi K, Iyanagi T, Ohara H, Hayashi K. One-electron reduction of hepatic NADH-cytochrome b5 reductase as studied by pulse radiolysis. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68525-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Abe M, Kyogoku Y. Vibrational analysis of flavin derivatives: Normal coordinate treatments of lumiflavin. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/0584-8539(87)80175-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Batie CJ, Kamin H. Association of ferredoxin-NADP+ reductase with NADP(H) specificity and oxidation-reduction properties. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67370-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Iyanagi T, Watanabe S, Anan KF. One-electron oxidation-reduction properties of hepatic NADH-cytochrome b5 reductase. Biochemistry 1984; 23:1418-25. [PMID: 6326802 DOI: 10.1021/bi00302a013] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The one-electron oxidation-reduction properties of flavin in hepatic NADH-cytochrome b5 reductase were investigated by optical absorption spectroscopy, electron paramagnetic resonance (EPR), and potentiometric titration. An intermediate with a peak at 375 nm previously described by Iyanagi (1977) [ Iyanagi , T. (1977) Biochemistry 16, 2725-2730] was confirmed to be a red anionic semiquinone. The NAD+-bound reduced enzyme was oxidized by cytochrome b5 via the semiquinone intermediate. This indicates that electron transfer from flavin to cytochrome b5 proceeds in two successive one-electron steps. Autoxidation of the NAD+-bound reduced enzyme was slower than that of the NAD+-free reduced enzyme and was accompanied by the appearance of an EPR signal. Midpoint redox potentials of the consecutive one-electron-transfer steps in the presence of excess NAD+ were Em,1 = -88 mV and Em,2 = 147 mV at pH 7.0. This corresponds to a semiquinone formation constant of 8. The values of Em,1 and Em,2 were also studied as a function of pH. A mechanism for electron transfer from NADH to cytochrome b5 is discussed on the basis of the one-electron redox potentials of the enzyme and is compared with the electron-transfer mechanism of NADPH-cytochrome P-450 reductase.
Collapse
|
13
|
Benecky MJ, Copeland RA, Spiro TG. Resonance Raman spectra of flavin semiquinones stabilized by N5 methylation. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 760:163-8. [PMID: 6688536 DOI: 10.1016/0304-4165(83)90138-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Resonance Raman spectra are reported for the semiquinone of N5-methyl derivatives of FMN (flavin mononucleotide) in H2O and 2H2O, 8-chloro FMN and FAD (flavin adenine dinucleotide) with 647.1 nm excitation, in the first pi-pi absorption band, using KI to quench fluorescence. The spectral pattern is similar to that of oxidized flavin, in its first absorption band, but with appreciable shifts, up to approx. 50 cm-1, in corresponding frequencies. There are also significant shifts with respect to the previously reported resonance Raman spectrum of flavodoxin semiquinone, reflecting the substitution of CH3 for H at N5. The N5-methyl FAD semiquinone spectrum is also reported for 514.5 nm excitation, in resonance with the second pi-pi transition. The intensity pattern is quite different, the spectrum being dominated by a band at 1611 cm-1, assigned to a mode localized primarily on the central pyrazine ring.
Collapse
|