Chaudhuri J, Si K, Maitra U. Function of eukaryotic translation initiation factor 1A (eIF1A) (formerly called eIF-4C) in initiation of protein synthesis.
J Biol Chem 1997;
272:7883-91. [PMID:
9065455 DOI:
10.1074/jbc.272.12.7883]
[Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have used an efficient in vitro translation initiation system to show that the mammalian 17-kDa eukaryotic initiation factor, eIF1A (formerly designated eIF-4C), is essential for transfer of the initiator Met-tRNAf (as Met-tRNAf.eIF2.GTP ternary complex) to 40 S ribosomal subunits in the absence of mRNA to form the 40 S preinitiation complex (40 S.Met-tRNAf.eIF2.GTP). Furthermore, eIF1A acted catalytically in this reaction to mediate highly efficient transfer of the Met-tRNAf.eIF2.GTP ternary complex to 40 S ribosomal subunits. The 40 S complex formed was free of eIF1A indicating that its role in 40 S preinitiation complex formation is not to stabilize the binding of Met-tRNAf to 40 S ribosomes. Additionally, the eIF1A-mediated 40 S initiation complex formed in the presence of AUG codon efficiently joined 60 S ribosomal subunits in an eIF5-dependent reaction to form a functional 80 S initiation complex. In contrast to other reports, we found that eIF1A plays no role either in the subunit joining reaction or in the generation of ribosomal subunits from 80 S ribosomes. Our results indicate that the major function of eIF1A is to mediate the transfer of Met-tRNAf to 40 S ribosomal subunits to form the 40 S preinitiation complex.
Collapse