1
|
Muratore KE, Engelhardt BE, Srouji JR, Jordan MI, Brenner SE, Kirsch JF. Molecular function prediction for a family exhibiting evolutionary tendencies toward substrate specificity swapping: recurrence of tyrosine aminotransferase activity in the Iα subfamily. Proteins 2013; 81:1593-609. [PMID: 23671031 PMCID: PMC3823064 DOI: 10.1002/prot.24318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/11/2013] [Accepted: 04/19/2013] [Indexed: 11/17/2022]
Abstract
The subfamily Iα aminotransferases are typically categorized as having narrow specificity toward carboxylic amino acids (AATases), or broad specificity that includes aromatic amino acid substrates (TATases). Because of their general role in central metabolism and, more specifically, their association with liver-related diseases in humans, this subfamily is biologically interesting. The substrate specificities for only a few members of this subfamily have been reported, and the reliable prediction of substrate specificity from protein sequence has remained elusive. In this study, a diverse set of aminotransferases was chosen for characterization based on a scoring system that measures the sequence divergence of the active site. The enzymes that were experimentally characterized include both narrow-specificity AATases and broad-specificity TATases, as well as AATases with broader-specificity and TATases with narrower-specificity than the previously known family members. Molecular function and phylogenetic analyses underscored the complexity of this family's evolution as the TATase function does not follow a single evolutionary thread, but rather appears independently multiple times during the evolution of the subfamily. The additional functional characterizations described in this article, alongside a detailed sequence and phylogenetic analysis, provide some novel clues to understanding the evolutionary mechanisms at work in this family.
Collapse
Affiliation(s)
- Kathryn E Muratore
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | | | | | | | | | | |
Collapse
|
2
|
Fackelmayer FO. Protein arginine methyltransferases: guardians of the Arg? Trends Biochem Sci 2005; 30:666-71. [PMID: 16257219 DOI: 10.1016/j.tibs.2005.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/21/2005] [Accepted: 10/10/2005] [Indexed: 12/01/2022]
Abstract
The recent discovery of enzymes that convert methylated arginine residues in proteins to citrulline has catapulted arginine methylation into the attention of cell-signaling researchers. Long considered a rather static post-translational modification of marginal interest, it seems that arginine methylation has now joined the group of signaling pathways that operate via pairs of antagonistic enzymes. However, many questions remain unanswered, especially concerning the removal mechanism and its implication for the physiological role of arginine methylation. I propose that, in addition to the broadly discussed function as regulator of protein activity, arginine methylation might serve a second purpose: protection of arginine residues against attack by endogenous reactive dicarbonyl agents, such as methylglyoxal, which are natural by-products of normal metabolic pathways. Inefficient detoxification of these highly cytotoxic compounds results in inactivation of proteins that is causally linked to diabetes, cancer, neurodegenerative diseases and pathophysiologies of aging. This new concept of 'arginine protection' might have far-reaching implications for the development of drugs that exploit a natural protection mechanism for medical purposes.
Collapse
Affiliation(s)
- Frank O Fackelmayer
- Department of Molecular Cell Biology, Heinrich-Pette-Institute, Martinistrasse 52, 20251 Hamburg, Germany.
| |
Collapse
|
3
|
Islam MM, Hayashi H, Mizuguchi H, Kagamiyama H. The substrate activation process in the catalytic reaction of Escherichia coli aromatic amino acid aminotransferase. Biochemistry 2000; 39:15418-28. [PMID: 11112527 DOI: 10.1021/bi0014709] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aromatic amino acid aminotransferase is active toward both aromatic and dicarboxylic amino acids, and the mechanism for this dual substrate recognition has been an issue in the enzymology of this enzyme. Here we show that, in the reactions with aromatic and dicarboxylic ligands, the pK(a) of the Schiff base formed between the coenzyme pyridoxal 5'-phosphate and Lys258 or the substrate increases successively from 6.6 in the unliganded enzyme to approximately 8.8 in the Michaelis complex and to >10.5 in the external Schiff base complex. Mutations of Arg292 and Arg386 to Leu, which mimic neutralization of the positive charges of the two arginine residues by the ligand carboxylate groups, increased the Schiff base pK(a) by 0.1 and 0.7 unit, respectively. In contrast to these moderate effects of the Arg mutations, the cleavage of the Lys258 side chain of the Schiff base, which was brought about by preparing a mutant enzyme in which Lys258 was changed to Ala and the Schiff base was reconstituted with methylamine, produced the Schiff base pK(a) value of 10.2, that being 3.6 units higher than that of the wild-type enzyme. The observation indicates that the Schiff base pK(a) in the enzyme is lowered by the torsion around the C4-C4' axis of the Schiff base and suggests that the pK(a) is mainly controlled by changing the torsion angle during the course of catalysis. This mechanism, first observed for the reaction of aspartate aminotransferase with aspartate [Hayashi, H., Mizuguchi, H., and Kagamiyama, H. (1998) Biochemistry 37, 15076-15085], does not require the electrostatic contribution from the omega-carboxylate group of the substrate, and can explain why in aromatic amino acid aminotransferase the aromatic substrates can increase the Schiff base pK(a) during catalysis to the same extent as the dicarboxylic substrates. This is the first example in which the torsion pK(a) coupling of the pyridoxal 5'-phosphate Schiff base has been demonstrated in pyridoxal enzymes other than aspartate aminotransferase, and suggests the generality of the mechanism in the catalysis of aminotransferases related to aspartate aminotransferase.
Collapse
Affiliation(s)
- M M Islam
- Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan
| | | | | | | |
Collapse
|
4
|
Mahon MM, Graber R, Christen P, Malthouse JP. The aspartate aminotransferase-catalysed exchange of the alpha-protons of aspartate and glutamate: the effects of the R386A and R292V mutations on this exchange reaction. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1434:191-201. [PMID: 10556573 DOI: 10.1016/s0167-4838(99)00181-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
1H-NMR was used to follow the aspartate aminotransferase-catalysed exchange of the alpha-protons of aspartate and glutamate. The effect of the concentrations of both the amino acids and the cognate keto acids on exchange rates was determined for wild-type and the R386A and R292V mutant forms of aspartate aminotransferase. The wild-type enzyme is found to be highly stereospecific for the exchange of the alpha-protons of L-aspartate and L-glutamate. The R386A mutation which removes the interaction of Arg-386 with the alpha-carboxylate group of aspartate causes an approximately 10,000-fold decrease in the first order exchange rate of the alpha-proton of L-aspartate. The R292V mutation which removes the interaction of Arg-292 with the beta-carboxylate group of L-aspartate and the gamma-carboxylate group of L-glutamate causes even larger decreases of 25,000- and 100,000-fold in the first order exchange rate of the alpha-proton of L-aspartate and L-glutamate respectively. Apparently both Arg-386 and Arg-292 must be present for optimal catalysis of the exchange of the alpha-protons of L-aspartate and L-glutamate, perhaps because the interaction of both these residues with the substrate is essential for inducing the closed conformation of the active site.
Collapse
Affiliation(s)
- M M Mahon
- Department of Biochemistry, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | |
Collapse
|
5
|
Clausen T, Huber R, Messerschmidt A, Pohlenz HD, Laber B. Slow-binding inhibition of Escherichia coli cystathionine beta-lyase by L-aminoethoxyvinylglycine: a kinetic and X-ray study. Biochemistry 1997; 36:12633-43. [PMID: 9376370 DOI: 10.1021/bi970630m] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pyridoxal 5'-phosphate (PLP)-dependent cystathionine beta-lyase (CBL) was previously found to be inhibited by the natural toxins rhizobitoxine and l-aminoethoxyvinylglycine (AVG). The present study characterizes the interaction of Escherichia coli CBL with AVG and methoxyvinylglycine (MVG) by a combination of kinetic methods and X-ray crystallography. Upon AVG treatment, time-dependent, slow-binding inhibition [Morrison, J. F. (1982) Trends Biochem. Sci. 7, 102-105] was observed due to the generation of a long-lived, slowly dissociating enzyme-inhibitor complex. Kinetic analysis revealed a one-step inhibition mechanism (CBL + AVG --> CBLAVG, Ki = 1.1 +/- 0.3 microM) with an association rate constant (k1) of 336 +/- 40 M-1 s-1. This value is several orders of magnitude lower than typical bimolecular rate constants of ES formation, suggesting that additional steps occur before formation of the first detectable CBLAVG complex. Loss of activity is paralleled by the conversion of the pyridoxaldimine 426 nm chromophore to a 341 nm-absorbing species. On the basis of the recently solved structure of native CBL [Clausen, T., et al. (1996) J. Mol. Biol. 262, 202-224], it was possible to elucidate the X-ray structure of the CBLAVG complex and to refine it to an R-factor of 16.4% at 2.2 A resolution. The refined structure reveals the geometry of the bound inhibitor and its interactions with residues in the active site of CBL. Both the X-ray structure and the absorbance spectrum of the CBLAVG complex are compatible with a ketimine as the reaction product. Thus, the inhibitor seems to bind in a similar way to CBL as the substrate, but after alpha-proton abstraction, the reaction proceeds in a CBL nontypical manner, i.e. protonation of PLP-C4', resulting in the "dead-end" ketimine PLP derivative. The CBLAVG structure furthermore suggests a binding mode for rhizobitoxine and explains the failure of MVG to inhibit CBL.
Collapse
Affiliation(s)
- T Clausen
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
6
|
Malashkevich VN, Toney MD, Jansonius JN. Crystal structures of true enzymatic reaction intermediates: aspartate and glutamate ketimines in aspartate aminotransferase. Biochemistry 1993; 32:13451-62. [PMID: 7903048 DOI: 10.1021/bi00212a010] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The crystal structures of the stable, closed complexes of chicken mitochondrial aspartate aminotransferase with the natural substrates L-aspartate and L-glutamate have been solved and refined at 2.4- and 2.3-A resolution, respectively. In both cases, clear electron density at the substrate-coenzyme binding site unequivocally indicates the presence of a covalent intermediate. The crystallographically identical environments of the two subunits of the alpha 2 dimer allow a simple, direct correlation of the coenzyme absorption spectra of the crystalline enzyme with the diffraction results. Deconvolution of the spectra of the crystalline complexes using lognormal curves indicates that the ketimine intermediates constitute 76% and 83% of the total enzyme populations with L-aspartate and L-glutamate, respectively. The electron density maps accommodate the ketimine structures best in agreement with the independent spectral data. Crystalline enzyme has a much higher affinity for keto acid substrates compared to enzyme in solution. The increased affinity is interpreted in terms of a perturbation of the open/closed conformational equilibrium by the crystal lattice, with the closed form having greater affinity for substrate. The crystal lattice contacts provide energy required for domain closure normally supplied by the excess binding energy of the substrate. In solution, enzyme saturated with amino/keto acid substrate pairs has a greater total fraction of intermediates in the aldehyde oxidation state compared to crystalline enzyme. Assuming the only difference between the solution and crystalline enzymes is in conformational freedom, this difference suggests that one or more substantially populated, aldehydic intermediates in solution exist in the open conformation. Quantitative analyses of the spectra indicate that the value of the equilibrium constant for the open-closed conformational transition of the liganded, aldehydic enzyme in solution is near 1. The C4' pro-S proton in the ketimine models is oriented nearly perpendicularly to the plane of the pyridine ring, suggesting that the enzyme facilitates its removal by maximizing sigma-pi orbital overlap. The absence of a localized water molecule near Lys258 dictates that ketimine hydrolysis occurs via a transiently bound water molecule or from an alternative, possibly more open, structure in which water is appropriately bound. A prominent mechanistic role for flexibility of the Lys258 side chain is suggested by the absence of hydrogen bonds to the amino group in the aspartate structure and the relatively high temperature factors for these atoms in both structures.
Collapse
Affiliation(s)
- V N Malashkevich
- Department of Structural Biology, University of Basel, Switzerland
| | | | | |
Collapse
|
7
|
Bhatia M, Martinez del Pozo A, Ringe D, Yoshimura T, Soda K, Manning J. Role reversal for substrates and inhibitors. Slow inactivation of D-amino acid transaminase by its normal substrates and protection by inhibitors. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46759-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Birolo L, Arnone MI, Cubellis MV, Andreotti G, Nitti G, Marino G, Sannia G. The active site of Sulfolobus solfataricus aspartate aminotransferase. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1080:198-204. [PMID: 1954227 DOI: 10.1016/0167-4838(91)90002-h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aspartate aminotransferase from the archaebacterium Sulfolobus solfataricus binds pyridoxal 5' phosphate, via an aldimine bond, with Lys-241. This residue has been identified by reducing the enzyme in the pyridoxal form with sodium cyanoboro[3H]hydride and sequencing the specifically labeled peptic peptides. The amino acid sequence centered around the coenzyme binding site is highly conserved between thermophilic aspartate aminotransferases and differs from that found in mesophilic isoenzymes. An alignment of aspartate aminotransferase from Sulfolobus solfataricus with mesophilic isoenzymes, attempted in spite of the low degree of similarity, was confirmed by the correspondence between pyridoxal 5' phosphate binding residues. Using this alignment it was possible to insert the archaebacterial aspartate aminotransferase into a subclass, subclass I, of pyridoxal 5' phosphate binding enzymes comprising mesophilic aspartate aminotransferases, tyrosine aminotransferases and histidinol phosphate aminotransferases. These enzymes share 12 invariant amino acids most of which interact with the coenzyme or with the substrates. Some enzymes of subclass I and in particular aspartate aminotransferase from Sulfolobus solfataricus, lack a positively charged residue, corresponding to Arg-292, which in pig cytosolic aspartate aminotransferase interacts with the distal carboxylate of the substrates (and determines the specificity towards dicarboxylic acids). It was confirmed that aspartate aminotransferase from Sulfolobus solfataricus does not possess any arginine residue exposed to chemical modifications responsible for the binding of omega-carboxylate of the substrates. Furthermore, it has been found that aspartate aminotransferase from Sulfolobus solfataricus is fairly active when alanine is used as substrate and that this activity is not affected by the presence of formate. The KM value of the thermophilic aspartate aminotransferase towards alanine is at least one order of magnitude lower than that of the mesophilic analogue enzymes.
Collapse
Affiliation(s)
- L Birolo
- Dipartimento di Chimica Organica e Biologica, Università di Napoli Federico II, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Nero TL, Wong MG, Oliver SW, Iskander MN, Andrews PR. Aspartate aminotransferase: investigation of the active sites. JOURNAL OF MOLECULAR GRAPHICS 1990; 8:111-5, 92-3. [PMID: 2282353 DOI: 10.1016/0263-7855(90)80091-s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An investigation of the crystal structure of cytosolic pig-heart aspartate aminotransferase (AAT, E.C.2.6.1.1) was carried out to determine the structural requirements for ligand recognition by the active site. Structural differences were observed between the two active sites of the AAT dimer. The natural ligand, L-aspartate, was docked into both active sites using various methods. However, due to structural differences, the ligand was able to form all the necessary interactions for initial binding in only one of the active sites. The program GRID (P.J. Goodford, J. Med. Chem. 1985, 28, 849-857) was used to predict favorable binding sites for the functional groups of the aspartate ligand. These binding sites corresponded to the position of the docked aspartate ligand, indicating that substrate recognition takes place before any major conformational changes occur within the enzyme.
Collapse
Affiliation(s)
- T L Nero
- School of Pharmaceutical Chemistry, Victorian College of Pharmacy Ltd, Parkville, Australia
| | | | | | | | | |
Collapse
|
10
|
Hayashi H, Inoue Y, Kuramitsu S, Morino Y, Kagamiyama H. Effects of replacement of tryptophan-140 by phenylalanine or glycine on the function of Escherichia coli aspartate aminotransferase. Biochem Biophys Res Commun 1990; 167:407-12. [PMID: 2182010 DOI: 10.1016/0006-291x(90)92037-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Trp140 of E. coli aspartate aminotransferase has been converted to Phe or Gly by site-directed mutagenesis. As compared to the wild-type enzyme, either of the mutant enzymes showed 10- to 100-fold increase in Km's for natural dicarboxylic substrates, but did not show appreciable changes in Km's for aromatic substrates. Teh kcat values for dicarboxylic and aromatic substrates were greatly decreased by [Trp140----Gly] mutation, but were decreased to lesser extents by [Trp140----Phe] mutation. These findings suggested that N(1) of Trp140 may not be essential for catalysis, but may be partly involved in the binding of the distal carboxylate group of the dicarboxylic substrates.
Collapse
Affiliation(s)
- H Hayashi
- Department of Medical Chemistry, Osaka Medical College, Japan
| | | | | | | | | |
Collapse
|
11
|
Mehta PK, Hale TI, Christen P. Evolutionary relationships among aminotransferases. Tyrosine aminotransferase, histidinol-phosphate aminotransferase, and aspartate aminotransferase are homologous proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 186:249-53. [PMID: 2574669 DOI: 10.1111/j.1432-1033.1989.tb15202.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A data base was compiled containing the amino acid sequences of 12 aspartate aminotransferases and 11 other aminotransferases. A comparison of these sequences by a standard alignment method confirmed the previously reported homology of all aspartate aminotransferases and Escherichia coli tyrosine aminotransferase. However, no significant similarity between these proteins and any of the other aminotransferases was detected. A more rigorous analysis, focusing on short sequence segments rather than the total polypeptide chain, revealed that rat tyrosine aminotransferase and Saccharomyces cerevisiae and Escherichia coli histidinol-phosphate aminotransferase share several homologous sequence segments with aspartate aminotransferases. For comparison of the complete sequences, a multiple sequence editor was developed to display the whole set of amino acid sequences in parallel on a single work-sheet. The editor allows gaps in individual sequences or a set of sequences to be introduced and thus facilitates their parallel analysis and alignment. Several clusters of invariant residues at corresponding positions in the amino acid sequences became evident, clearly establishing that the cytosolic and the mitochondrial isoenzyme of vertebrate aspartate aminotransferase, E. coli aspartate aminotransferase, rat and E. coli tyrosine aminotransferase, and S. cerevisiae and E. coli histidinol-phosphate aminotransferase are homologous proteins. Only 12 amino acid residues out of a total of about 400 proved to be invariant in all sequences compared; they are either involved in the binding of pyridoxal 5'-phosphate and the substrate, or appear to be essential for the conformation of the enzymes.
Collapse
Affiliation(s)
- P K Mehta
- Biochemisches Institut, Universität Zürich, Switzerland
| | | | | |
Collapse
|
12
|
Hsu LC, Okamoto M, Snell EE. L-Histidinol phosphate aminotransferase from Salmonella typhimurium. Kinetic behavior and sequence at the pyridoxal-P binding site. Biochimie 1989; 71:477-89. [PMID: 2503052 DOI: 10.1016/0300-9084(89)90178-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A coupled assay with alpha-hydroxyglutarate dehydrogenase was used to analyze the kinetic behavior of histidinol phosphate aminotransferase from Salmonella typhymurium. Data obtained from studies of initial velocity, inhibition by products or substrate analogues, isotope exchange rates, and the determination of the equilibrium constant were consistent only with a Ping-Pong Bi Bi mechanism. Variations in inhibition patterns by different substrate analogues indicate that the microenvironment about the pyridoxal phosphate and the pyridoxamine phosphate forms of histidinol phosphate amino-transferase are different, and favor the presence of one active site with partially overlapping substrate-binding subsites for these 2 forms of the enzyme. Histidinol phosphate aminotransferase also catalyzes decomposition of beta-chloro-L-alanine to pyruvate, NH3 and Cl-; no transamination of this substrate occurs and inactivation of the enzyme accompanies this reaction. After reduction of histidinol-P aminotransferase with [3H]NaBH4, carboxymethylation, and tryptic digestion, one major radioactive peptide absorbing at 325 nm was isolated. Its primary structure was determined to be TLSK*AFALAGLR, where K* is the P-pyridoxyllysine residue. Although this peptide is only 30-40% homologous with the corresponding segment reported for other transaminases, all of these peptides are similar in placement of an hydroxyamino acid residue three residues upstream from the lysine residue, and in the cluster of hydrophobic amino acid residues immediately following the lysine residue.
Collapse
Affiliation(s)
- L C Hsu
- Department of Microbiology, University of Texas, Austin 78712
| | | | | |
Collapse
|
13
|
Padgette SR, Smith CE, Huynh QK, Kishore GM. Arginine chemical modification of Petunia hybrida 5-enol-pyruvylshikimate-3-phosphate synthase. Arch Biochem Biophys 1988; 266:254-62. [PMID: 3178227 DOI: 10.1016/0003-9861(88)90256-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Reaction of Petunia hybrida 5-enol-pyruvylshikimate-3-phosphate synthase (EPSPS) with the arginine reagents phenylglyoxal (PGO) and p-hydroxyphenylglyoxal (HPGO) leads to inactivation of the enzyme. Inactivation with HPGO leads to modification of approximately 3 mol of arginine per mole of enzyme. The modification reaction follows pseudo-first-order kinetics with a t1/2 of 1 min at 5 mM p-hydroxyphenylglyoxal in 0.1 M triethanolamine HCl, pH 7.8. By titration of HPGO-modified enzyme with 5,5'-bis(dithio-2-nitrobenzoic acid), the possibility of cysteine modification by the arginine reagent was ruled out. While shikimate 3-phosphate (S3P) afforded partial protection to the enzyme against inactivation by HPGO, complete protection could be obtained by using a mixture of S3P and glyphosate. Under the latter conditions, only 1 mol arginine was modified per mole of enzyme. This pattern of reactivity suggests that two arginines may be involved in the binding of S3P and glyphosate to EPSP synthase. A third reactive arginine appears to be nonessential for EPSPS activity. Labeling of EPSP synthase with [14C]phenylglyoxal, peptic digestion, HPLC mapping, and amino acid sequencing indicate that Arg-28 and Arg-131 are two of the reactive arginines labeled with [14C]PGO.
Collapse
Affiliation(s)
- S R Padgette
- Plant Molecular Biology and Chemistry Groups, Biological Sciences, Monsanto
| | | | | | | |
Collapse
|
14
|
Jaussi R, Behra R, Giannattasio S, Flura T, Christen P. Expression of cDNAs encoding the precursor and the mature form of chicken mitochondrial aspartate aminotransferase in Escherichia coli. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45222-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Lowe PN, Rowe AF. Probing the active sites of aspartate: 2-oxoglutarate aminotransferases from Trichomonas vaginalis and pig heart cytoplasm using substrate analogues. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1987; 88:223-7. [PMID: 3500014 DOI: 10.1016/0305-0491(87)90104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. Series of structural analogues of the substrates and products of the aspartate: 2-oxoglutarate aminotransferase reaction have been tested as reversible inhibitors of the purified aspartate aminotransferases from the protozoon Trichomonas vaginalis and from pig heart cytoplasm. 2. The results highlight differences and similarities between the active site regions of the two enzymes which are relevant to a better understanding of the nature of the enzyme/substrate interactions which influence substrate specificity.
Collapse
Affiliation(s)
- P N Lowe
- Department of Biochemical Parasitology, Wellcome Research Laboratories, Beckenham, Kent, UK
| | | |
Collapse
|
16
|
UDP-glucose 4-epimerase from Saccharomyces fragilis. Presence of an essential arginine residue at the substrate-binding site of the enzyme. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38531-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Tancini B, Dominici P, Barra D, Voltattorni CB. An essential arginine residue at the binding site of pig kidney 3,4-dihydroxyphenylalanine decarboxylase. Arch Biochem Biophys 1985; 238:565-73. [PMID: 3994391 DOI: 10.1016/0003-9861(85)90201-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pig kidney 3,4-dihydroxyphenylalanine (Dopa) decarboxylase is inactivated by the arginine-specific reagent phenylglyoxal. Under these experimental conditions, the reaction follows pseudo-first-order kinetics with a second-order rate constant of 25 m-1 min-1. Holo- and apo-enzyme were inactivated at the same rate. However, inactivation seems to be related to modification of 1 and 2 arginyl residues per mol of holo- and apo-enzyme, respectively. Only one of these two residues was essential to decarboxylase activity of the enzyme. Phenylglyoxal-modified apo-Dopa decarboxylase retained the capacity to bind pyridoxal-P. Neither this reconstituted species nor the phenylglyoxal-modified holoenzyme were able to form Schiff base intermediates with aromatic amino acids in L and D forms. These data together with protection experiments suggest that the susceptible arginine residue in holoenzyme may somehow perturb the substrate binding site. However, unlike in other pyridoxal-P enzymes, this critical arginine in Dopa decarboxylase does not seem to behave as an anionic recognition site for the phosphate group of the coenzyme or the carboxy group of the substrate. It is speculated that this guanidyl group could function in hydrogen bonding of substrate side chain.
Collapse
|
18
|
Kirsch JF, Eichele G, Ford GC, Vincent MG, Jansonius JN, Gehring H, Christen P. Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure. J Mol Biol 1984; 174:497-525. [PMID: 6143829 DOI: 10.1016/0022-2836(84)90333-4] [Citation(s) in RCA: 364] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aspartate aminotransferase is a pyridoxal phosphate-dependent enzyme that catalyses the transamination reaction: L-aspartate + 2-oxoglutarate----oxaloacetate + L-glutamate. The enzyme shuttles between its pyridoxal and pyridoxamine forms in a double-displacement process. This paper proposes a mechanism of action that delineates the dynamic role of the protein moiety of this enzyme. It is based on crystallographically determined spatial structures (at 2.8 A resolution) of the mitochondrial isoenzyme in its unliganded forms and in complexes with substrate analogues, as well as on model building studies. The enzyme is composed of two identical subunits, which consist of two domains. The coenzyme is bound to the larger domain and is situated in a pocket near the subunit interface. The proximal and distal carboxylate group of dicarboxylic substrates are bound to Arg386 and Arg292 , respectively, the latter residue belonging to the adjacent subunit. These interactions largely determine the substrate specificity of the enzyme. They not only position the substrate efficient catalysis but also bring about a bulk movement of the small domain that closes the active site crevice and moves Arg386 about 3 A closer to the coenzyme. The replacement of the epsilon-amino group of Lys258 by the alpha-amino group of the substrate in the aldimine bond to pyridoxal phosphate is accompanied by a tilting of the coenzyme by approximately 30 degrees. The released epsilon-amino group of Lys258 serves as a proton acceptor/donor in the 1,3- prototropic shift producing the ketimine intermediate. At this stage, or after hydrolysis of the ketimine bond, the coenzyme rotates back to an orientation between that in the "external" aldimine intermediate and that in the pyridoxal form. Throughout this process, the protonated pyridine nitrogen atom maintains a hydrogen bond to the beta-carboxylate group of Asp222 . Upon formation of the pyridoxamine form, the small domain moves back to its original position. The proposed mechanism is compatible with the known kinetic and stereochemical features of enzymic transamination.
Collapse
|
19
|
Iriarte A, Martinez-Carrion M. A spin label substrate analogue as active site-directed modifying agent. Tryptophan 140 of aspartate aminotransferase. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32910-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|