1
|
Belotserkovskii BP, Hanawalt PC. A model for transcription-dependent R-loop formation at double-stranded DNA breaks: Implications for their detection and biological effects. J Theor Biol 2024; 595:111962. [PMID: 39384064 DOI: 10.1016/j.jtbi.2024.111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/20/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
R-loops are structures containing an RNA-DNA duplex and an unpaired DNA strand. During R-loop formation an RNA strand invades the DNA duplex, displacing the homologous DNA strand and binding the complementary DNA strand. Here we analyze a model for transcription-dependent R-loop formation at double-stranded DNA breaks (DSBs). In this model, R-loop formation is preceded by detachment of the non-template DNA strand from the RNA polymerase (RNAP). Then, strand exchange is initiated between the nascent RNA and the non-template DNA strand. During that strand exchange the length of the R-loop could either increase, or decrease in a biased random-walk fashion, in which the bias would depend upon the DNA sequence. Eventually, the restoration of the DNA duplex would completely displace the RNA. However, as long as the RNAP remains bound to the template DNA strand it prevents that displacement. Thus, according to the model, RNAPs stalled at DSBs can increase the lifespan of R-loops, increasing their detectability in experiments, and perhaps enhancing their biological effects.
Collapse
|
2
|
Schaffter SW, Kengmana E, Fern J, Byrne SR, Schulman R. Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes. ACS Synth Biol 2024; 13:1964-1977. [PMID: 38885464 DOI: 10.1021/acssynbio.3c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Bacteriophage RNA polymerases, in particular T7 RNA polymerase (RNAP), are well-characterized and popular enzymes for many RNA applications in biotechnology both in vitro and in cellular settings. These monomeric polymerases are relatively inexpensive and have high transcription rates and processivity to quickly produce large quantities of RNA. T7 RNAP also has high promoter-specificity on double-stranded DNA (dsDNA) such that it only initiates transcription downstream of its 17-base promoter site on dsDNA templates. However, there are many promoter-independent T7 RNAP transcription reactions involving transcription initiation in regions of single-stranded DNA (ssDNA) that have been reported and characterized. These promoter-independent transcription reactions are important to consider when using T7 RNAP transcriptional systems for DNA nanotechnology and DNA computing applications, in which ssDNA domains often stabilize, organize, and functionalize DNA nanostructures and facilitate strand displacement reactions. Here we review the existing literature on promoter-independent transcription by bacteriophage RNA polymerases with a specific focus on T7 RNAP, and provide examples of how promoter-independent reactions can disrupt the functionality of DNA strand displacement circuit components and alter the stability and functionality of DNA-based materials. We then highlight design strategies for DNA nanotechnology applications that can mitigate the effects of promoter-independent T7 RNAP transcription. The design strategies we present should have an immediate impact by increasing the rate of success of using T7 RNAP for applications in DNA nanotechnology and DNA computing.
Collapse
Affiliation(s)
- Samuel W Schaffter
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Eli Kengmana
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joshua Fern
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Shane R Byrne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rebecca Schulman
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Kumar C, Remus D. Looping out of control: R-loops in transcription-replication conflict. Chromosoma 2024; 133:37-56. [PMID: 37419963 PMCID: PMC10771546 DOI: 10.1007/s00412-023-00804-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Transcription-replication conflict is a major cause of replication stress that arises when replication forks collide with the transcription machinery. Replication fork stalling at sites of transcription compromises chromosome replication fidelity and can induce DNA damage with potentially deleterious consequences for genome stability and organismal health. The block to DNA replication by the transcription machinery is complex and can involve stalled or elongating RNA polymerases, promoter-bound transcription factor complexes, or DNA topology constraints. In addition, studies over the past two decades have identified co-transcriptional R-loops as a major source for impairment of DNA replication forks at active genes. However, how R-loops impede DNA replication at the molecular level is incompletely understood. Current evidence suggests that RNA:DNA hybrids, DNA secondary structures, stalled RNA polymerases, and condensed chromatin states associated with R-loops contribute to the of fork progression. Moreover, since both R-loops and replication forks are intrinsically asymmetric structures, the outcome of R-loop-replisome collisions is influenced by collision orientation. Collectively, the data suggest that the impact of R-loops on DNA replication is highly dependent on their specific structural composition. Here, we will summarize our current understanding of the molecular basis for R-loop-induced replication fork progression defects.
Collapse
Affiliation(s)
- Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.
| |
Collapse
|
4
|
Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: The complex balancing act of R-loops in genome stability. Mol Cell 2022; 82:2267-2297. [PMID: 35508167 DOI: 10.1016/j.molcel.2022.04.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.
Collapse
Affiliation(s)
- Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Merkl PE, Schächner C, Pilsl M, Schwank K, Hergert K, Längst G, Milkereit P, Griesenbeck J, Tschochner H. Analysis of Yeast RNAP I Transcription of Nucleosomal Templates In Vitro. Methods Mol Biol 2022; 2533:39-59. [PMID: 35796981 PMCID: PMC9761914 DOI: 10.1007/978-1-0716-2501-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nuclear eukaryotic RNA polymerases (RNAPs) transcribe a chromatin template in vivo. Since the basic unit of chromatin, the nucleosome, renders the DNA largely inaccessible, RNAPs have to overcome the nucleosomal barrier for efficient RNA synthesis. Gaining mechanistical insights in the transcription of chromatin templates will be essential to understand the complex process of eukaryotic gene expression. In this article we describe the use of defined in vitro transcription systems for comparative analysis of highly purified RNAPs I-III from S. cerevisiae (hereafter called yeast) transcribing in vitro reconstituted nucleosomal templates. We also provide a protocol to study promoter-dependent RNAP I transcription of purified native 35S ribosomal RNA (rRNA) gene chromatin.
Collapse
Affiliation(s)
- Philipp E Merkl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
- TUM ForTe, Technische Universität München, Munich, Germany
| | - Christopher Schächner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Michael Pilsl
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Katrin Schwank
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Kristin Hergert
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Gernot Längst
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| | - Philipp Milkereit
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| | - Joachim Griesenbeck
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany.
| | - Herbert Tschochner
- Universität Regensburg, Regensburg Center for Biochemistry (RCB), Lehrstuhl Biochemie III, Regensburg, Germany
| |
Collapse
|
6
|
Jeanneau S, Jacques PÉ, Lafontaine DA. Investigating the role of RNA structures in transcriptional pausing using in vitro assays and in silico analyses. RNA Biol 2022; 19:916-927. [PMID: 35833713 PMCID: PMC9291695 DOI: 10.1080/15476286.2022.2096794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Transcriptional pausing occurs across the bacterial genome but the importance of this mechanism is still poorly understood. Only few pauses were observed during the previous decades, leaving an important gap in understanding transcription mechanisms. Using the well-known Escherichia coli hisL and trpL pause sites as models, we describe here the relation of pause sites with upstream RNA structures suspected to stabilize pausing. We find that the transcription factor NusA influences the pause half-life at leuL, pheL and thrL pause sites. Using a mutagenesis approach, we observe that transcriptional pausing is affected in all tested pause sites, suggesting that the upstream RNA sequence is important for transcriptional pausing. Compensatory mutations assessing the presence of RNA hairpins did not yield clear conclusions, indicating that complex RNA structures or transcriptional features may be playing a role in pausing. Moreover, using a bioinformatic approach, we explored the relation between a DNA consensus sequence important for pausing and putative hairpins among thousands of pause sites in E. coli. We identified 2125 sites presenting hairpin-dependent transcriptional pausing without consensus sequence, suggesting that this mechanism is widespread across E. coli. This study paves the way to understand the role of RNA structures in transcriptional pausing.
Collapse
Affiliation(s)
- Simon Jeanneau
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Pierre-Étienne Jacques
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
7
|
Adeyemi RO, Willis NA, Elia AEH, Clairmont C, Li S, Wu X, D'Andrea AD, Scully R, Elledge SJ. The Protexin complex counters resection on stalled forks to promote homologous recombination and crosslink repair. Mol Cell 2021; 81:4440-4456.e7. [PMID: 34597596 PMCID: PMC8588999 DOI: 10.1016/j.molcel.2021.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/11/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023]
Abstract
Protection of stalled replication forks is critical to genomic stability. Using genetic and proteomic analyses, we discovered the Protexin complex containing the ssDNA binding protein SCAI and the DNA polymerase REV3. Protexin is required specifically for protecting forks stalled by nucleotide depletion, fork barriers, fragile sites, and DNA inter-strand crosslinks (ICLs), where it promotes homologous recombination and repair. Protexin loss leads to ssDNA accumulation and profound genomic instability in response to ICLs. Protexin interacts with RNA POL2, and both oppose EXO1's resection of DNA on forks remodeled by the FANCM translocase activity. This pathway acts independently of BRCA/RAD51-mediated fork stabilization, and cells with BRCA2 mutations were dependent on SCAI for survival. These data suggest that Protexin and its associated factors establish a new fork protection pathway that counteracts fork resection in part through a REV3 polymerase-dependent resynthesis mechanism of excised DNA, particularly at ICL stalled forks.
Collapse
Affiliation(s)
- Richard O Adeyemi
- Department of Genetics, Harvard Medical School, and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Nicholas A Willis
- Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew E H Elia
- Department of Genetics, Harvard Medical School, and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Connor Clairmont
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ralph Scully
- Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Sharma S, Anand R, Zhang X, Francia S, Michelini F, Galbiati A, Williams H, Ronato DA, Masson JY, Rothenberg E, Cejka P, d'Adda di Fagagna F. MRE11-RAD50-NBS1 Complex Is Sufficient to Promote Transcription by RNA Polymerase II at Double-Strand Breaks by Melting DNA Ends. Cell Rep 2021; 34:108565. [PMID: 33406426 PMCID: PMC7788559 DOI: 10.1016/j.celrep.2020.108565] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/19/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) complex supports the synthesis of damage-induced long non-coding RNA (dilncRNA) by RNA polymerase II (RNAPII) from DNA double-strand breaks (DSBs) by an unknown mechanism. Here, we show that recombinant human MRN and native RNAPII are sufficient to reconstitute a minimal functional transcriptional apparatus at DSBs. MRN recruits and stabilizes RNAPII at DSBs. Unexpectedly, transcription is promoted independently from MRN nuclease activities. Rather, transcription depends on the ability of MRN to melt DNA ends, as shown by the use of MRN mutants and specific allosteric inhibitors. Single-molecule FRET assays with wild-type and mutant MRN show a tight correlation between the ability to melt DNA ends and to promote transcription. The addition of RPA enhances MRN-mediated transcription, and unpaired DNA ends allow MRN-independent transcription by RNAPII. These results support a model in which MRN generates single-strand DNA ends that favor the initiation of transcription by RNAPII.
Collapse
Affiliation(s)
- Sheetal Sharma
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy; Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona 6500, Switzerland
| | - Xuzhu Zhang
- NYU Langone Medical Center, 450 East 29th Street, New York, NY, USA
| | - Sofia Francia
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy; Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia 2700, Italy
| | - Flavia Michelini
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | | | | | - Daryl A Ronato
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 2J6, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 2J6, Canada
| | - Eli Rothenberg
- NYU Langone Medical Center, 450 East 29th Street, New York, NY, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona 6500, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland.
| | - Fabrizio d'Adda di Fagagna
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy; Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia 2700, Italy.
| |
Collapse
|
9
|
Regulation of DNA break repair by RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:23-33. [PMID: 33385412 DOI: 10.1016/j.pbiomolbio.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
Genomic stability is critical for cell survival and its effective repair when damaged is a vital process for preserving genetic information. Failure to correctly repair the genome can lead to the accumulation of mutations that ultimately drives carcinogenesis. Life has evolved sophisticated surveillance, repair pathways, and mechanisms to recognize and mend genomic lesions to preserve its integrity. Many of these pathways involve a cascade of protein effectors that act to identify the type of damage, such as double-strand (ds) DNA breaks, propagate the damage signal, and recruit an array of other protein factors to resolve the damage without loss of genetic information. It is now becoming increasingly clear that there are a number of RNA processing factors, such as the transcriptional machinery, and microRNA biogenesis components, as well as RNA itself, that facilitate the repair of DNA damage. Here, some of the recent work unravelling the role of RNA in the DNA Damage Response (DDR), in particular the dsDNA break repair pathway, will be reviewed.
Collapse
|
10
|
Burger K, Ketley RF, Gullerova M. Beyond the Trinity of ATM, ATR, and DNA-PK: Multiple Kinases Shape the DNA Damage Response in Concert With RNA Metabolism. Front Mol Biosci 2019; 6:61. [PMID: 31428617 PMCID: PMC6688092 DOI: 10.3389/fmolb.2019.00061] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
Our genome is constantly exposed to endogenous and exogenous sources of DNA damage resulting in various alterations of the genetic code. DNA double-strand breaks (DSBs) are considered one of the most cytotoxic lesions. Several types of repair pathways act to repair DNA damage and maintain genome stability. In the canonical DNA damage response (DDR) DSBs are recognized by the sensing kinases Ataxia-telangiectasia mutated (ATM), Ataxia-telangiectasia and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK), which initiate a cascade of kinase-dependent amplification steps known as DSB signaling. Recent evidence suggests that efficient recognition and repair of DSBs relies on the transcription and processing of non-coding (nc)RNA molecules by RNA polymerase II (RNAPII) and the RNA interference (RNAi) factors Drosha and Dicer. Multiple kinases influence the phosphorylation status of both the RNAPII carboxy-terminal domain (CTD) and Dicer in order to regulate RNA-dependent DSBs repair. The importance of kinase signaling and RNA processing in the DDR is highlighted by the regulation of p53-binding protein (53BP1), a key regulator of DSB repair pathway choice between homologous recombination (HR) and non-homologous end joining (NHEJ). Additionally, emerging evidence suggests that RNA metabolic enzymes also play a role in the repair of other types of DNA damage, including the DDR to ultraviolet radiation (UVR). RNAi factors are also substrates for mitogen-activated protein kinase (MAPK) signaling and mediate the turnover of ncRNA during nucleotide excision repair (NER) in response to UVR. Here, we review kinase-dependent phosphorylation events on RNAPII, Drosha and Dicer, and 53BP1 that modulate the key steps of the DDR to DSBs and UVR, suggesting an intimate link between the DDR and RNA metabolism.
Collapse
Affiliation(s)
| | | | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Biochemical methods to characterize RNA polymerase II elongation complexes. Methods 2019; 159-160:70-81. [PMID: 30684536 DOI: 10.1016/j.ymeth.2019.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Transcription of DNA into RNA is critical for all life, and RNA polymerases are enzymes tasked with this activity. In eukaryotes, RNA Polymerase II (RNAPII) is responsible for transcription of all protein coding genes and many non-coding RNAs. RNAPII carries out the remarkable feat of unwinding the stable double-stranded DNA template, synthesizing the transcript and re-forming the double helix behind it with great precision and speed. In vitro, RNAPII is capable of carrying out templated RNA chain elongation in the absence of any accessory proteins. However, in cells, the transcription of genes is influenced by several factors, including DNA structure, chromatin, co-transcriptional processes, and DNA binding proteins, which impede the smooth progression of RNAPII down the template. Many transcription elongation proteins have evolved to mitigate the complications and barriers encountered by polymerase during transcription. Many of these elongation factors physically interact with components of the RNAPII elongation complex, including the growing RNA transcript and the DNA template entering and exiting RNAPII. To better understand how transcription elongation factors (EFs) regulate RNAPII, elegant methods are required to probe the structure of the elongation complex. Here, we describe a collection of biochemical assays to interrogate the structure of the RNAPII elongation complex of Saccharomyces cerevisiae that are capable of providing insights into the function of EFs and the elongation process.
Collapse
|
12
|
Bird JG, Basu U, Kuster D, Ramachandran A, Grudzien-Nogalska E, Towheed A, Wallace DC, Kiledjian M, Temiakov D, Patel SS, Ebright RH, Nickels BE. Highly efficient 5' capping of mitochondrial RNA with NAD + and NADH by yeast and human mitochondrial RNA polymerase. eLife 2018; 7:42179. [PMID: 30526856 PMCID: PMC6298784 DOI: 10.7554/elife.42179] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Bacterial and eukaryotic nuclear RNA polymerases (RNAPs) cap RNA with the oxidized and reduced forms of the metabolic effector nicotinamide adenine dinucleotide, NAD+ and NADH, using NAD+ and NADH as non-canonical initiating nucleotides for transcription initiation. Here, we show that mitochondrial RNAPs (mtRNAPs) cap RNA with NAD+ and NADH, and do so more efficiently than nuclear RNAPs. Direct quantitation of NAD+- and NADH-capped RNA demonstrates remarkably high levels of capping in vivo: up to ~60% NAD+ and NADH capping of yeast mitochondrial transcripts, and up to ~15% NAD+ capping of human mitochondrial transcripts. The capping efficiency is determined by promoter sequence at, and upstream of, the transcription start site and, in yeast and human cells, by intracellular NAD+ and NADH levels. Our findings indicate mtRNAPs serve as both sensors and actuators in coupling cellular metabolism to mitochondrial transcriptional outputs, sensing NAD+ and NADH levels and adjusting transcriptional outputs accordingly.
Collapse
Affiliation(s)
- Jeremy G Bird
- Department of Genetics and Waksman Institute, Rutgers University, United States.,Department of Chemistry and Waksman Institute, Rutgers University, United States
| | - Urmimala Basu
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, United States.,Biochemistry PhD Program, School of Graduate Studies, Rutgers University, United States
| | - David Kuster
- Department of Genetics and Waksman Institute, Rutgers University, United States.,Department of Chemistry and Waksman Institute, Rutgers University, United States.,Biochemistry Center Heidelberg, Heidelberg University, Germany
| | - Aparna Ramachandran
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, United States
| | | | - Atif Towheed
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, United States
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, United States.,Department of Pediatrics, Division of Human Genetics, The Children's Hospital of Philadelphia, Perelman School of Medicine, United States
| | | | - Dmitry Temiakov
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, United States
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, United States
| | - Richard H Ebright
- Department of Chemistry and Waksman Institute, Rutgers University, United States
| | - Bryce E Nickels
- Department of Genetics and Waksman Institute, Rutgers University, United States
| |
Collapse
|
13
|
Šviković S, Crisp A, Tan-Wong SM, Guilliam TA, Doherty AJ, Proudfoot NJ, Guilbaud G, Sale JE. R-loop formation during S phase is restricted by PrimPol-mediated repriming. EMBO J 2018; 38:embj.201899793. [PMID: 30478192 PMCID: PMC6356060 DOI: 10.15252/embj.201899793] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/08/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
Abstract
During DNA replication, conflicts with ongoing transcription are frequent and require careful management to avoid genetic instability. R‐loops, three‐stranded nucleic acid structures comprising a DNA:RNA hybrid and displaced single‐stranded DNA, are important drivers of damage arising from such conflicts. How R‐loops stall replication and the mechanisms that restrain their formation during S phase are incompletely understood. Here, we show in vivo how R‐loop formation drives a short purine‐rich repeat, (GAA)10, to become a replication impediment that engages the repriming activity of the primase‐polymerase PrimPol. Further, the absence of PrimPol leads to significantly increased R‐loop formation around this repeat during S phase. We extend this observation by showing that PrimPol suppresses R‐loop formation in genes harbouring secondary structure‐forming sequences, exemplified by G quadruplex and H‐DNA motifs, across the genome in both avian and human cells. Thus, R‐loops promote the creation of replication blocks at susceptible structure‐forming sequences, while PrimPol‐dependent repriming limits the extent of unscheduled R‐loop formation at these sequences, mitigating their impact on replication.
Collapse
Affiliation(s)
| | | | | | - Thomas A Guilliam
- Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Aidan J Doherty
- Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | | | | | | |
Collapse
|
14
|
Abstract
The nucleosome serves as a general gene repressor, preventing all initiation of transcription except that which is brought about by specific positive regulatory mechanisms. The positive mechanisms begin with chromatin-remodeling by complexes that slide, disrupt, or otherwise alter the structure and organization of nucleosomes. RSC in yeast and its counterpart PBAF in human cells are the major remodeling complexes for transcription. RSC creates a nucleosome-free region in front of a gene, flanked by strongly positioned +1 and -1 nucleosomes, with the transcription start site typically 10-15 bp inside the border of the +1 nucleosome. RSC also binds stably to nucleosomes harboring regulatory elements and to +1 nucleosomes, perturbing their structures in a manner that partially exposes their DNA sequences. The cryo-electron microscope structure of a RSC-nucleosome complex reveals such a structural perturbation, with the DNA largely unwrapped from the nucleosome and likely interacting with a positively charged surface of RSC. Such unwrapping both exposes the DNA and enables its translocation across the histone octamer of the nucleosome by an ATP-dependent activity of RSC. Genetic studies have revealed additional roles of RSC in DNA repair, chromosome segregation, and other chromosomal DNA transactions. These functions of RSC likely involve the same fundamental activities, DNA unwrapping and DNA translocation.
Collapse
|
15
|
Michelini F, Jalihal AP, Francia S, Meers C, Neeb ZT, Rossiello F, Gioia U, Aguado J, Jones-Weinert C, Luke B, Biamonti G, Nowacki M, Storici F, Carninci P, Walter NG, d'Adda di Fagagna F. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond. Chem Rev 2018; 118:4365-4403. [PMID: 29600857 DOI: 10.1021/acs.chemrev.7b00487] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.
Collapse
Affiliation(s)
- Flavia Michelini
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Ameya P Jalihal
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Sofia Francia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Chance Meers
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zachary T Neeb
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | | | - Ubaldo Gioia
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | - Julio Aguado
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy
| | | | - Brian Luke
- Institute of Developmental Biology and Neurobiology , Johannes Gutenberg University , 55099 Mainz , Germany.,Institute of Molecular Biology (IMB) , 55128 Mainz , Germany
| | - Giuseppe Biamonti
- Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| | - Mariusz Nowacki
- Institute of Cell Biology , University of Bern , Baltzerstrasse 4 , 3012 Bern , Switzerland
| | - Francesca Storici
- School of Biological Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Piero Carninci
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku , Yokohama City , Kanagawa 230-0045 , Japan
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Fabrizio d'Adda di Fagagna
- IFOM - The FIRC Institute of Molecular Oncology , Milan , 20139 , Italy.,Istituto di Genetica Molecolare , CNR - Consiglio Nazionale delle Ricerche , Pavia , 27100 , Italy
| |
Collapse
|
16
|
Boyaci H, Chen J, Lilic M, Palka M, Mooney RA, Landick R, Darst SA, Campbell EA. Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts. eLife 2018; 7:34823. [PMID: 29480804 PMCID: PMC5837556 DOI: 10.7554/elife.34823] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/13/2018] [Indexed: 01/22/2023] Open
Abstract
Fidaxomicin (Fdx) is an antimicrobial RNA polymerase (RNAP) inhibitor highly effective against Mycobacterium tuberculosis RNAP in vitro, but clinical use of Fdx is limited to treating Clostridium difficile intestinal infections due to poor absorption. To identify the structural determinants of Fdx binding to RNAP, we determined the 3.4 Å cryo-electron microscopy structure of a complete M. tuberculosis RNAP holoenzyme in complex with Fdx. We find that the actinobacteria general transcription factor RbpA contacts fidaxomycin, explaining its strong effect on M. tuberculosis. Additional structures define conformational states of M. tuberculosis RNAP between the free apo-holoenzyme and the promoter-engaged open complex ready for transcription. The results establish that Fdx acts like a doorstop to jam the enzyme in an open state, preventing the motions necessary to secure promoter DNA in the active site. Our results provide a structural platform to guide development of anti-tuberculosis antimicrobials based on the Fdx binding pocket. Tuberculosis (TB) is an infectious disease that affects over ten million people every year. The Mycobacterium tuberculosis bacteria that cause the disease spread through the air from one person to another and mainly infect the lungs. Although curable, TB is difficult to eradicate because it is remarkably widespread, with one third of the world’s population estimated to carry the bacteria. Treatment for TB involves a mix of antibiotics that should be taken for several months to a year. The number of multidrug-resistant TB cases, where the infection is not treatable by the common cocktail of antibiotics, is rapidly increasing. There is therefore a need to discover new drugs that can kill the M. tuberculosis bacteria. An antibiotic called fidaxomicin is used to treat intestinal infections. Although it can kill Mycobacterium tuberculosis cells in culture, it is not absorbed from the intestines to the blood and thus cannot reach the lungs to kill the bacteria. It may be possible to change the structure of the drug so that it can enter the bloodstream. Before this can be done, researchers need to understand exactly how fidaxomicin kills the bacteria so that they know which parts of the drug they can alter without making it less effective. Fidaxomicin kills bacterial cells by binding to an enzyme called RNA polymerase. The antibiotic prevents the enzyme from reading and ‘transcribing’ DNA to form molecules that are essential for life. To learn more about how fidaxomicin has this effect, Boyaci, Chen et al. used cryo-electron microscopy to look at structures of the M. tuberculosis RNA polymerase in different states, including when it was bound to fidaxomicin. The structures reveal the chemical details of the interactions between the RNA polymerase and the antibiotic. The two molecules bind to each other through a region of the RNA polymerase that is unique to M. tuberculosis and closely related bacteria. Fidaxomicin acts like a doorstop to jam the RNA polymerase in an open state that cannot bind to DNA and transcribe genes. Medicinal chemists could now build on these findings to develop new drugs that might treat TB, either by modifying fidaxomicin or designing new antibiotics that bind to the same region of the RNA polymerase. Because the fidaxomicin-binding region of the RNA polymerase is specific to M. tuberculosis new antibiotics could be tailored towards the bacteria that have a minimal effect on a patient’s normal gut bacteria.
Collapse
Affiliation(s)
- Hande Boyaci
- The Rockefeller University, New York, United States
| | - James Chen
- The Rockefeller University, New York, United States
| | | | - Margaret Palka
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, United States
| | - Seth A Darst
- The Rockefeller University, New York, United States
| | | |
Collapse
|
17
|
Abstract
Transcription and genome stability have somewhat of a love-hate relationship. In a recent issue of Cell, Ohle et al. (2016) demonstrate a previously unappreciated mechanism by which transcription and RNA contribute to genome stability.
Collapse
Affiliation(s)
- Brian S Plosky
- Molecular Cell, Cell Press, 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Vitelli V, Galbiati A, Iannelli F, Pessina F, Sharma S, d'Adda di Fagagna F. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks. Annu Rev Genomics Hum Genet 2017; 18:87-113. [PMID: 28859573 DOI: 10.1146/annurev-genom-091416-035314] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.
Collapse
Affiliation(s)
- Valerio Vitelli
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | | | - Fabio Iannelli
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | - Fabio Pessina
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | - Sheetal Sharma
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | - Fabrizio d'Adda di Fagagna
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy; .,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (CNR), Pavia 27100, Italy
| |
Collapse
|
19
|
Sebastian R, Oberdoerffer P. Transcription-associated events affecting genomic integrity. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160288. [PMID: 28847825 PMCID: PMC5577466 DOI: 10.1098/rstb.2016.0288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 12/25/2022] Open
Abstract
Accurate maintenance of genomic as well as epigenomic integrity is critical for proper cell and organ function. Continuous exposure to DNA damage is, thus, often associated with malignant transformation and degenerative diseases. A significant, chronic threat to genome integrity lies in the process of transcription, which can result in the formation of potentially harmful RNA : DNA hybrid structures (R-loops) and has been linked to DNA damage accumulation as well as dynamic chromatin reorganization. In sharp contrast, recent evidence suggests that active transcription, the resulting transcripts as well as R-loop formation can play multi-faceted roles in maintaining and restoring genome integrity. Here, we will discuss the emerging contributions of transcription as both a source of DNA damage and a mediator of DNA repair. We propose that both aspects have significant implications for genome maintenance, and will speculate on possible long-term consequences for the epigenetic integrity of transcribing cells.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Robin Sebastian
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, Room B907, Bethesda, MD 20892, USA
| | - Philipp Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, Room B907, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
A Process of Resection-Dependent Nonhomologous End Joining Involving the Goddess Artemis. Trends Biochem Sci 2017; 42:690-701. [PMID: 28739276 PMCID: PMC5604544 DOI: 10.1016/j.tibs.2017.06.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 01/13/2023]
Abstract
DNA double-strand breaks (DSBs) are a hazardous form of damage that can potentially cause cell death or genomic rearrangements. In mammalian G1- and G2-phase cells, DSBs are repaired with two-component kinetics. In both phases, a fast process uses canonical nonhomologous end joining (c-NHEJ) to repair the majority of DSBs. In G2, slow repair occurs by homologous recombination. The slow repair process in G1 also involves c-NHEJ proteins but additionally requires the nuclease Artemis and DNA end resection. Here, we consider the nature of slow DSB repair in G1 and evaluate factors determining whether DSBs are repaired with fast or slow kinetics. We consider limitations in our current knowledge and present a speculative model for Artemis-dependent c-NHEJ and the environment underlying its usage. A c-NHEJ pathway has been defined involving resection of DSB ends prior to their ligation in G1. Thus, the two main pathways for repairing DSBs in G1 human cells are resection-independent and resection-dependent c-NHEJ. The resection process in G1 uses many of the same factors used for resection during homologous recombination in G2 but orchestrates them in a manner suited to a c-NHEJ process. Since Artemis is the only identified factor involved in the resection process whose loss leads to unrepaired DSBs, we refer to this process as Artemis- and resection-dependent c-NHEJ. Loss of other resection factors prevents the initiation of resection but allows resection-independent c-NHEJ. Artemis- and resection-dependent c-NHEJ makes a major contribution to translocation formation and can lead to previously described microhomology-mediated end joining.
Collapse
|
21
|
Catania F. From intronization to intron loss: How the interplay between mRNA-associated processes can shape the architecture and the expression of eukaryotic genes. Int J Biochem Cell Biol 2017; 91:136-144. [PMID: 28673893 DOI: 10.1016/j.biocel.2017.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 12/29/2022]
Abstract
Transcription-coupled processes such as capping, splicing, and cleavage/polyadenylation participate in the journey from genes to proteins. Although they are traditionally thought to serve only as steps in the generation of mature mRNAs, a synthesis of available data indicates that these processes could also act as a driving force for the evolution of eukaryotic genes. A theoretical framework for how mRNA-associated processes may shape gene structure and expression has recently been proposed. Factors that promote splicing and cleavage/polyadenylation in this framework compete for access to overlapping or neighboring signals throughout the transcription cycle. These antagonistic interactions allow mechanisms for intron gain and splice site recognition as well as common trends in eukaryotic gene structure and expression to be coherently integrated. Here, I extend this framework further. Observations that largely (but not exclusively) revolve around the formation of DNA-RNA hybrid structures, called R loops, and promoter directionality are integrated. Additionally, the interplay between splicing factors and cleavage/polyadenylation factors is theorized to also affect the formation of intragenic DNA double-stranded breaks thereby contributing to intron loss. The most notable prediction in this proposition is that RNA molecules can mediate intron loss by serving as a template to repair DNA double-stranded breaks. The framework presented here leverages a vast body of empirical observations, logically extending previous suggestions, and generating verifiable predictions to further substantiate the view that the intracellular environment plays an active role in shaping the structure and the expression of eukaryotic genes.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany.
| |
Collapse
|
22
|
Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair. Cell 2016; 167:1001-1013.e7. [DOI: 10.1016/j.cell.2016.10.001] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/16/2016] [Accepted: 09/29/2016] [Indexed: 11/19/2022]
|
23
|
Crickard JB, Fu J, Reese JC. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest. J Biol Chem 2016; 291:9853-70. [PMID: 26945063 DOI: 10.1074/jbc.m116.716001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II (RNAPII) undergoes structural changes during the transitions from initiation, elongation, and termination, which are aided by a collection of proteins called elongation factors. NusG/Spt5 is the only elongation factor conserved in all domains of life. Although much information exists about the interactions between NusG/Spt5 and RNA polymerase in prokaryotes, little is known about how the binding of eukaryotic Spt4/5 affects the biochemical activities of RNAPII. We characterized the activities of Spt4/5 and interrogated the structural features of Spt5 required for it to interact with elongation complexes, bind nucleic acids, and promote transcription elongation. The eukaryotic specific regions of Spt5 containing the Kyrpides, Ouzounis, Woese domains are involved in stabilizing the association with the RNAPII elongation complex, which also requires the presence of the nascent transcript. Interestingly, we identify a region within the conserved NusG N-terminal (NGN) domain of Spt5 that contacts the non-template strand of DNA both upstream of RNAPII and in the transcription bubble. Mutating charged residues in this region of Spt5 did not prevent Spt4/5 binding to elongation complexes, but abrogated the cross-linking of Spt5 to DNA and the anti-arrest properties of Spt4/5, thus suggesting that contact between Spt5 (NGN) and DNA is required for Spt4/5 to promote elongation. We propose that the mechanism of how Spt5/NGN promotes elongation is fundamentally conserved; however, the eukaryotic specific regions of the protein evolved so that it can serve as a platform for other elongation factors and maintain its association with RNAPII as it navigates genomes packaged into chromatin.
Collapse
Affiliation(s)
- J Brooks Crickard
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| | - Jianhua Fu
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Joseph C Reese
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| |
Collapse
|
24
|
Pilsl M, Merkl PE, Milkereit P, Griesenbeck J, Tschochner H. Analysis of S. cerevisiae RNA Polymerase I Transcription In Vitro. Methods Mol Biol 2016; 1455:99-108. [PMID: 27576713 DOI: 10.1007/978-1-4939-3792-9_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RNA polymerase I (Pol I) activity is crucial to provide cells with sufficient amounts of ribosomal RNA (rRNA). Synthesis of rRNA takes place in the nucleolus, is tightly regulated and is coordinated with synthesis and assembly of ribosomal proteins, finally resulting in the formation of mature ribosomes. Many studies on Pol I mechanisms and regulation in the model organism S. cerevisiae were performed using either complex in vitro systems reconstituted from more or less purified fractions or genetic analyses. While providing many valuable insights these strategies did not always discriminate between direct and indirect effects in transcription initiation and termination, when mutated forms of Pol I subunits or transcription factors were investigated. Therefore, a well-defined minimal system was developed which allows to reconstitute highly efficient promoter-dependent Pol I initiation and termination of transcription. Transcription can be initiated at a minimal promoter only in the presence of recombinant core factor and extensively purified initiation competent Pol I. Addition of recombinant termination factors triggers transcriptional pausing and release of the ternary transcription complex. This minimal system represents a valuable tool to investigate the direct impact of (lethal) mutations in components of the initiation and termination complexes on the mechanism and regulation of rRNA synthesis.
Collapse
Affiliation(s)
- Michael Pilsl
- Biochemie-Zentrum Regensburg (BZR), Lehrstuhl Biochemie III, Universität Regensburg, 93053, Regensburg, Germany
| | - Philipp E Merkl
- Biochemie-Zentrum Regensburg (BZR), Lehrstuhl Biochemie III, Universität Regensburg, 93053, Regensburg, Germany
- Department of Microbiology and Immunobiology, Harvard Medical School, New Research Building Room 954, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Philipp Milkereit
- Biochemie-Zentrum Regensburg (BZR), Lehrstuhl Biochemie III, Universität Regensburg, 93053, Regensburg, Germany
| | - Joachim Griesenbeck
- Biochemie-Zentrum Regensburg (BZR), Lehrstuhl Biochemie III, Universität Regensburg, 93053, Regensburg, Germany
| | - Herbert Tschochner
- Biochemie-Zentrum Regensburg (BZR), Lehrstuhl Biochemie III, Universität Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
25
|
Manfrini N, Clerici M, Wery M, Colombo CV, Descrimes M, Morillon A, d'Adda di Fagagna F, Longhese MP. Resection is responsible for loss of transcription around a double-strand break in Saccharomyces cerevisiae. eLife 2015; 4. [PMID: 26231041 PMCID: PMC4541074 DOI: 10.7554/elife.08942] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/30/2015] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence indicate that the mammalian checkpoint kinase ATM induces transcriptional silencing in cis to DNA double-strand breaks (DSBs) through a poorly understood mechanism. Here we show that in Saccharomyces cerevisiae a single DSB causes transcriptional inhibition of proximal genes independently of Tel1/ATM and Mec1/ATR. Since the DSB ends undergo nucleolytic degradation (resection) of their 5'-ending strands, we investigated the contribution of resection in this DSB-induced transcriptional inhibition. We discovered that resection-defective mutants fail to stop transcription around a DSB, and the extent of this failure correlates with the severity of the resection defect. Furthermore, Rad9 and generation of γH2A reduce this DSB-induced transcriptional inhibition by counteracting DSB resection. Therefore, the conversion of the DSB ends from double-stranded to single-stranded DNA, which is necessary to initiate DSB repair by homologous recombination, is responsible for loss of transcription around a DSB in S. cerevisiae.
Collapse
Affiliation(s)
- Nicola Manfrini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Maxime Wery
- Institut Curie, Dynamics of Genetic Information: Fundamental Basis and Cancer, Université Pierre et Marie Curie, Paris, France
| | | | - Marc Descrimes
- Institut Curie, Dynamics of Genetic Information: Fundamental Basis and Cancer, Université Pierre et Marie Curie, Paris, France
| | - Antonin Morillon
- Institut Curie, Dynamics of Genetic Information: Fundamental Basis and Cancer, Université Pierre et Marie Curie, Paris, France
| | | | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
26
|
Rudra P, Prajapati RK, Banerjee R, Sengupta S, Mukhopadhyay J. Novel mechanism of gene regulation: the protein Rv1222 of Mycobacterium tuberculosis inhibits transcription by anchoring the RNA polymerase onto DNA. Nucleic Acids Res 2015; 43:5855-67. [PMID: 25999340 PMCID: PMC4499140 DOI: 10.1093/nar/gkv516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
We propose a novel mechanism of gene regulation in Mycobacterium tuberculosis where the protein Rv1222 inhibits transcription by anchoring RNA polymerase (RNAP) onto DNA. In contrast to our existing knowledge that transcriptional repressors function either by binding to DNA at specific sequences or by binding to RNAP, we show that Rv1222-mediated transcription inhibition requires simultaneous binding of the protein to both RNAP and DNA. We demonstrate that the positively charged C-terminus tail of Rv1222 is responsible for anchoring RNAP on DNA, hence the protein slows down the movement of RNAP along the DNA during transcription elongation. The interaction between Rv1222 and DNA is electrostatic, thus the protein could inhibit transcription from any gene. As Rv1222 slows down the RNA synthesis, upon expression of the protein in Mycobacterium smegmatis or Escherichia coli, the growth rate of the bacteria is severely impaired. The protein does not possess any significant affinity for DNA polymerase, thus, is unable to inhibit DNA synthesis. The proposed mechanism by which Rv1222 inhibits transcription reveals a new repertoire of prokaryotic gene regulation.
Collapse
Affiliation(s)
- Paulami Rudra
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata-700009, India
| | | | - Rajdeep Banerjee
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata-700009, India
| | - Shreya Sengupta
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata-700009, India
| | | |
Collapse
|
27
|
Lin C, Yang L, Rosenfeld MG. Molecular logic underlying chromosomal translocations, random or non-random? Adv Cancer Res 2012; 113:241-79. [PMID: 22429857 DOI: 10.1016/b978-0-12-394280-7.00015-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chromosomal translocations serve as essential diagnostic markers and therapeutic targets for leukemia, lymphoma, and many types of solid tumors. Understanding the mechanisms of chromosomal translocation generation has remained a central biological question for decades. Rather than representing a random event, recent studies indicate that chromosomal translocation is a non-random event in a spatially regulated, site-specific, and signal-driven manner, reflecting actions involved in transcriptional activation, epigenetic regulation, three-dimensional nuclear architecture, and DNA damage-repair. In this review, we will focus on the progression toward understanding the molecular logic underlying chromosomal translocation events and implications of new strategies for preventing chromosomal translocations.
Collapse
Affiliation(s)
- Chunru Lin
- Howard Hughes Medical Institute, University of California, San Diego, School of Medicine, La Jolla, California, USA
| | | | | |
Collapse
|
28
|
Ivančić-Baće I, Al Howard J, Bolt EL. Tuning in to interference: R-loops and cascade complexes in CRISPR immunity. J Mol Biol 2012; 422:607-616. [PMID: 22743103 DOI: 10.1016/j.jmb.2012.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/13/2012] [Accepted: 06/16/2012] [Indexed: 12/26/2022]
Abstract
Stable RNA-DNA hybrids formed by invasion of an RNA strand into duplex DNA, termed R-loops, are notorious for provoking genome instability especially when they arise during transcription. However, in some instances (DNA replication and class switch recombination), R-loops are useful so long as their existence is carefully managed to avoid them persisting. A recent flow of research papers establishes a newly discovered use for R-loops as key intermediates in a prokaryotic immune system called CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats). Structures and mechanism of ribonucleoprotein complexes ("Cascades") that form CRISPR R-loops highlight precision targeting of duplex DNA that has sequence characteristics marking it as foe, enabling nucleolytic destruction of DNA and recycling the Cascade. We review these significant recent breakthroughs in understanding targeting/interference stages of CRISPR immunity and discuss questions arising, including a possible link between targeting and adaptive immunity in prokaryotes.
Collapse
Affiliation(s)
- Ivana Ivančić-Baće
- Department of Molecular Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Jamieson Al Howard
- School of Biomedical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Edward L Bolt
- School of Biomedical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
29
|
Cheung ACM, Sainsbury S, Cramer P. Structural basis of initial RNA polymerase II transcription. EMBO J 2011; 30:4755-63. [PMID: 22056778 PMCID: PMC3243610 DOI: 10.1038/emboj.2011.396] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/10/2011] [Indexed: 01/22/2023] Open
Abstract
Several RNA polymerase II–nucleic acid crystal structures reveal the transition of the initiating polymerase from the open complex (OC) state to the initially transcribing complex (ITC) containing several RNA nucleotides. During transcription initiation by RNA polymerase (Pol) II, a transient open promoter complex (OC) is converted to an initially transcribing complex (ITC) containing short RNAs, and to a stable elongation complex (EC). We report structures of a Pol II–DNA complex mimicking part of the OC, and of complexes representing minimal ITCs with 2, 4, 5, 6, and 7 nucleotide (nt) RNAs, with and without a non-hydrolyzable nucleoside triphosphate (NTP) in the insertion site +1. The partial OC structure reveals that Pol II positions the melted template strand opposite the active site. The ITC-mimicking structures show that two invariant lysine residues anchor the 3′-proximal phosphate of short RNAs. Short DNA–RNA hybrids adopt a tilted conformation that excludes the +1 template nt from the active site. NTP binding induces complete DNA translocation and the standard hybrid conformation. Conserved NTP contacts indicate a universal mechanism of NTP selection. The essential residue Q1078 in the closed trigger loop binds the NTP 2′-OH group, explaining how the trigger loop couples catalysis to NTP selection, suppressing dNTP binding and DNA synthesis.
Collapse
Affiliation(s)
- Alan C M Cheung
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | |
Collapse
|
30
|
Molina-Navarro MM, Martinez-Jimenez CP, Rodriguez-Navarro S. Transcriptional elongation and mRNA export are coregulated processes. GENETICS RESEARCH INTERNATIONAL 2011; 2011:652461. [PMID: 22567364 PMCID: PMC3335577 DOI: 10.4061/2011/652461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/10/2011] [Indexed: 01/06/2023]
Abstract
Chromatin structure complexity requires the interaction and coordinated work of a multiplicity of factors at different transcriptional regulation stages. Transcription control comprises a set of processes that ensures proper balance in the gene expression under different conditions, such as signals, metabolic states, or development. We could frame those steps from epigenetic marks to mRNA stability to support the holistic view of a fine-tune balance of final mRNA levels through mRNA transcription, export, stability, translation, and degradation. Transport of mRNA from the nucleus to the cytoplasm is a key process in regulated gene expression. Transcriptional elongation and mRNA export are coregulated steps that determine the mature mRNA levels in the cytoplasm. In this paper, recent insights into the coordination of these processes in eukaryotes will be summarised.
Collapse
|
31
|
Újvári A, Pal M, Luse DS. The functions of TFIIF during initiation and transcript elongation are differentially affected by phosphorylation by casein kinase 2. J Biol Chem 2011; 286:23160-7. [PMID: 21566144 DOI: 10.1074/jbc.m110.205658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA polymerase II (pol II) initiation and elongation factor elongation factor TFIIF can be extensively phosphorylated in vivo, although the significance of this modification has not been clear. We now show that phosphorylation of recombinant TFIIF by casein kinase 2 (CK2) reduces or eliminates some of the functions of TFIIF while paradoxically leaving others intact. Phospho-IIF is fully functional in binding to free pol II and is able to support the initiation of transcription. However, the phosphorylated factor does not bind to stalled elongation complexes as measured in a gel mobility shift assay. Significantly, phosphorylation strongly reduces (or for some truncated versions of RAP74, eliminates) stimulation of transcript elongation by TFIIF. Thus, although TFIIF must participate at the initiation of transcription, its ability to continue its association with pol II and stimulate transcript elongation can be specifically regulated by CK2. This is particularly interesting because CK2 is required for initiation at a subset of pol II promoters. Modulation of TFIIF function could be important in controlling promoter-proximal pausing by pol II during the early stage of transcript elongation.
Collapse
Affiliation(s)
- Andrea Újvári
- Department of Molecular Genetics, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
32
|
A novel assay identifies transcript elongation roles for the Nup84 complex and RNA processing factors. EMBO J 2011; 30:1953-64. [PMID: 21478823 DOI: 10.1038/emboj.2011.109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 03/09/2011] [Indexed: 01/30/2023] Open
Abstract
To clarify the role of a number of mRNA processing factors in transcription elongation, we developed an in vivo assay for direct analysis of elongation on chromatin. The assay relies on two substrates containing two G-less cassettes separated by either a long and GC-rich or a short and GC-poor DNA sequence (G-less-based run-on (GLRO) assay). We demonstrate that PAF, THSC/TREX-2, SAGA, the exosome component Rrp6 and two subunits of cleavage factor IA (Rna14 and Rna15) are required for efficient transcription elongation, in contrast to some results obtained using other assays. Next, we undertook a mutant screen and found out that the Nup84 nucleoporin complex is also required for transcription elongation, as confirmed by the GLRO assay and RNA polymerase II chromatin immunoprecipitations. Therefore, in addition to showing that the GLRO assay is a sensitive and reliable method for the analysis of elongation in vivo, this study provides evidence for a new role of the Nup84 complex and a number of mRNA processing factors in transcription elongation that supports a connection of pre-mRNA processing and nuclear export with transcription elongation.
Collapse
|
33
|
Larson MH, Landick R, Block SM. Single-molecule studies of RNA polymerase: one singular sensation, every little step it takes. Mol Cell 2011; 41:249-62. [PMID: 21292158 DOI: 10.1016/j.molcel.2011.01.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/09/2010] [Accepted: 01/05/2011] [Indexed: 11/17/2022]
Abstract
Transcription is the first of many biochemical steps that turn the genetic information found in DNA into the proteins responsible for driving cellular processes. In this review, we highlight certain advantages of single-molecule techniques in the study of prokaryotic and eukaryotic transcription, and the specific ways in which these techniques complement conventional, ensemble-based biochemistry. We focus on recent literature, highlighting examples where single-molecule methods have provided fresh insights into mechanism. We also present recent technological advances and outline future directions in the field.
Collapse
Affiliation(s)
- Matthew H Larson
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
34
|
Titov DV, Gilman B, He QL, Bhat S, Low WK, Dang Y, Smeaton M, Demain AL, Miller PS, Kugel JF, Goodrich JA, Liu JO. XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat Chem Biol 2011; 7:182-8. [PMID: 21278739 DOI: 10.1038/nchembio.522] [Citation(s) in RCA: 362] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/06/2011] [Indexed: 11/09/2022]
Abstract
Triptolide (1) is a structurally unique diterpene triepoxide isolated from a traditional Chinese medicinal plant with anti-inflammatory, immunosuppressive, contraceptive and antitumor activities. Its molecular mechanism of action, however, has remained largely elusive to date. We report that triptolide covalently binds to human XPB (also known as ERCC3), a subunit of the transcription factor TFIIH, and inhibits its DNA-dependent ATPase activity, which leads to the inhibition of RNA polymerase II-mediated transcription and likely nucleotide excision repair. The identification of XPB as the target of triptolide accounts for the majority of the known biological activities of triptolide. These findings also suggest that triptolide can serve as a new molecular probe for studying transcription and, potentially, as a new type of anticancer agent through inhibition of the ATPase activity of XPB.
Collapse
Affiliation(s)
- Denis V Titov
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Luse DS, Spangler LC, Újvári A. Efficient and rapid nucleosome traversal by RNA polymerase II depends on a combination of transcript elongation factors. J Biol Chem 2010; 286:6040-8. [PMID: 21177855 DOI: 10.1074/jbc.m110.174722] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The nucleosome is generally found to be a strong barrier to transcript elongation by RNA polymerase II (pol II) in vitro. The elongation factors TFIIF and TFIIS have been shown to cooperate in maintaining pol II in the catalytically competent state on pure DNA templates. We now show that although TFIIF or TFIIS alone is modestly stimulatory for nucleosome traversal, both factors together increase transcription through nucleosomes in a synergistic manner. We also studied the effect of TFIIF and TFIIS on transcription of nucleosomes containing a Sin mutant histone. The Sin point mutations reduce critical histone-DNA contacts near the center of the nucleosome. Significantly, we found that nucleosomes with a Sin mutant histone are traversed to the same extent and at nearly the same rate as equivalent pure DNA templates if both TFIIS and TFIIF are present. Thus, the nucleosome is not necessarily an insurmountable barrier to transcript elongation by pol II. If unfolding of template DNA from the nucleosome surface is facilitated and the tendency of pol II to retreat from barriers is countered, transcription of nucleosomal templates can be rapid and efficient.
Collapse
Affiliation(s)
- Donal S Luse
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | |
Collapse
|
36
|
Cheng B, Price DH. Isolation and functional analysis of RNA polymerase II elongation complexes. Methods 2009; 48:346-52. [PMID: 19409997 DOI: 10.1016/j.ymeth.2009.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/23/2009] [Accepted: 02/26/2009] [Indexed: 10/20/2022] Open
Abstract
The elongation phase of transcription by RNA polymerase II (RNAP II) is tightly controlled by a large number of transcription elongation factors. Here we describe experimental approaches for the isolation of RNAPII elongation complexes in vitro and the use of these complexes in the examination of the function of a variety of factors. The methods start with formation of elongation complexes on DNA templates immobilized to paramagnetic beads. Elongation is halted by removing the nucleotides and the ternary elongation complexes are then stripped of factors by a high salt wash. The effect of any factor or mixture of factors on elongation is determined by adding the factor(s) along with nucleotides and observing the change in the pattern of RNAs generated. Association of a factor with elongation complexes can be examined using an elongation complex-electrophoretic mobility shift assay (EC-EMSA) in which elongation complexes that have been liberated from the beads are analyzed on a native gel. Besides being used to dissect the mechanisms of elongation control, these experimental systems are useful for analyzing the function of termination factors and mRNA processing factors. Together these experimental systems permit detailed characterization of the molecular mechanisms of elongation, termination, and mRNA processing factors by providing information concerning both physical interactions with and functional consequences of the factors on RNAPII elongation complexes.
Collapse
Affiliation(s)
- Bo Cheng
- Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
37
|
Mukhopadhyay J, Das K, Ismail S, Koppstein D, Jang M, Hudson B, Sarafianos S, Tuske S, Patel J, Jansen R, Irschik H, Arnold E, Ebright RH. The RNA polymerase "switch region" is a target for inhibitors. Cell 2008; 135:295-307. [PMID: 18957204 PMCID: PMC2580802 DOI: 10.1016/j.cell.2008.09.033] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 07/28/2008] [Accepted: 09/11/2008] [Indexed: 01/22/2023]
Abstract
The alpha-pyrone antibiotic myxopyronin (Myx) inhibits bacterial RNA polymerase (RNAP). Here, through a combination of genetic, biochemical, and structural approaches, we show that Myx interacts with the RNAP "switch region"--the hinge that mediates opening and closing of the RNAP active center cleft--to prevent interaction of RNAP with promoter DNA. We define the contacts between Myx and RNAP and the effects of Myx on RNAP conformation and propose that Myx functions by interfering with opening of the RNAP active-center cleft during transcription initiation. We further show that the structurally related alpha-pyrone antibiotic corallopyronin (Cor) and the structurally unrelated macrocyclic-lactone antibiotic ripostatin (Rip) function analogously to Myx. The RNAP switch region is distant from targets of previously characterized RNAP inhibitors, and, correspondingly, Myx, Cor, and Rip do not exhibit crossresistance with previously characterized RNAP inhibitors. The RNAP switch region is an attractive target for identification of new broad-spectrum antibacterial therapeutic agents.
Collapse
Affiliation(s)
- Jayanta Mukhopadhyay
- Howard Hughes Medical Institute, Rutgers University, Piscataway NJ 08854
- Waksman Institute, Rutgers University, Piscataway NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854
| | - Kalyan Das
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854
| | - Sajida Ismail
- Howard Hughes Medical Institute, Rutgers University, Piscataway NJ 08854
- Waksman Institute, Rutgers University, Piscataway NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854
| | - David Koppstein
- Howard Hughes Medical Institute, Rutgers University, Piscataway NJ 08854
- Waksman Institute, Rutgers University, Piscataway NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854
| | - Minyoung Jang
- Howard Hughes Medical Institute, Rutgers University, Piscataway NJ 08854
- Waksman Institute, Rutgers University, Piscataway NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854
| | - Brian Hudson
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854
| | - Stefan Sarafianos
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854
| | - Steven Tuske
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854
| | - Jay Patel
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854
| | - Rolf Jansen
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Herbert Irschik
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854
| | - Richard H. Ebright
- Howard Hughes Medical Institute, Rutgers University, Piscataway NJ 08854
- Waksman Institute, Rutgers University, Piscataway NJ 08854
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854
| |
Collapse
|
38
|
Dermody JL, Dreyfuss JM, Villén J, Ogundipe B, Gygi SP, Park PJ, Ponticelli AS, Moore CL, Buratowski S, Bucheli ME. Unphosphorylated SR-like protein Npl3 stimulates RNA polymerase II elongation. PLoS One 2008; 3:e3273. [PMID: 18818768 PMCID: PMC2538588 DOI: 10.1371/journal.pone.0003273] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 09/01/2008] [Indexed: 01/04/2023] Open
Abstract
The production of a functional mRNA is regulated at every step of transcription. An area not well-understood is the transition of RNA polymerase II from elongation to termination. The S. cerevisiae SR-like protein Npl3 functions to negatively regulate transcription termination by antagonizing the binding of polyA/termination proteins to the mRNA. In this study, Npl3 is shown to interact with the CTD and have a direct stimulatory effect on the elongation activity of the polymerase. The interaction is inhibited by phosphorylation of Npl3. In addition, Casein Kinase 2 was found to be required for the phosphorylation of Npl3 and affect its ability to compete against Rna15 (Cleavage Factor I) for binding to polyA signals. Our results suggest that phosphorylation of Npl3 promotes its dissociation from the mRNA/RNAP II, and contributes to the association of the polyA/termination factor Rna15. This work defines a novel role for Npl3 in elongation and its regulation by phosphorylation.
Collapse
Affiliation(s)
- Jessica L. Dermody
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan M. Dreyfuss
- Harvard-Partners Center for Genetics and Genomics, Boston, Massachusetts, United States of America
| | - Judit Villén
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Babatunde Ogundipe
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter J. Park
- Harvard-Partners Center for Genetics and Genomics, Boston, Massachusetts, United States of America
| | - Alfred S. Ponticelli
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, United States of America
| | - Claire L. Moore
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Miriam E. Bucheli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
Human capping enzyme promotes formation of transcriptional R loops in vitro. Proc Natl Acad Sci U S A 2007; 104:17620-5. [PMID: 17978174 DOI: 10.1073/pnas.0708866104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cap formation is the first step of pre-mRNA processing in eukaryotic cells. Immediately after transcription initiation, capping enzyme (CE) is recruited to RNA polymerase II (Pol II) by the phosphorylated carboxyl-terminal domain of the Pol II largest subunit (CTD), allowing cotranscriptional capping of the nascent pre-mRNA. Recent studies have indicated that CE affects transcription elongation and have suggested a checkpoint model in which cotranscriptional capping is a necessary step for the early phase of transcription. To investigate further the role of the CTD in linking transcription and processing, we generated a fusion protein of the mouse CTD with T7 RNA polymerase (CTD-T7 RNAP). Unexpectedly, in vitro transcription assays with CTD-T7 RNAP showed that CE promotes formation of DNA.RNA hybrids or R loops. Significantly, phosphorylation of the CTD was required for CE-dependent R-loop formation (RLF), consistent with a critical role for the CTD in CE recruitment to the transcription complex. The guanylyltransferase domain was necessary and sufficient for RLF, but catalytic activity was not required. In vitro assays with appropriate synthetic substrates indicate that CE can promote RLF independent of transcription. ASF/SF2, a splicing factor known to prevent RLF, and GTP, which affects CE conformation, antagonized CE-dependent RLF. Our findings suggest that CE can play a direct role in transcription by modulating displacement of nascent RNA during transcription.
Collapse
|
40
|
Banks CAS, Kong SE, Spahr H, Florens L, Martin-Brown S, Washburn MP, Conaway JW, Mushegian A, Conaway RC. Identification and Characterization of a Schizosaccharomyces pombe RNA Polymerase II Elongation Factor with Similarity to the Metazoan Transcription Factor ELL. J Biol Chem 2007; 282:5761-9. [PMID: 17150956 DOI: 10.1074/jbc.m610393200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
ELL family transcription factors activate the rate of transcript elongation by suppressing transient pausing by RNA polymerase II at many sites along the DNA. ELL-associated factors 1 and 2 (EAF1 and EAF2) bind stably to ELL family members and act as strong positive regulators of their transcription activities. Orthologs of ELL and EAF have been identified in metazoa, but it has been unclear whether such RNA polymerase II elongation factors are utilized in lower eukaryotes. Using bioinformatic and biochemical approaches, we have identified a new Schizosaccharomyces pombe RNA polymerase II elongation factor that is composed of two subunits designated SpELL and SpEAF, which share weak sequence similarity with members of the metazoan ELL and EAF families. Like mammalian ELL-EAF, SpELL-SpEAF stimulates RNA polymerase II transcription elongation and pyrophosphorolysis. In addition, like many yeast RNA polymerase II elongation factors, deletion of the SpELL gene renders S. pombe sensitive to the drug 6-azauracil. Finally, phylogenetic analyses suggest that the SpELL and SpEAF proteins are evolutionarily conserved in many fungi but not in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Charles A S Banks
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Carey M, Li B, Workman JL. RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol Cell 2006; 24:481-7. [PMID: 17081996 PMCID: PMC1847601 DOI: 10.1016/j.molcel.2006.09.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/05/2006] [Accepted: 09/20/2006] [Indexed: 10/24/2022]
Abstract
The coordinated action of histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling enzymes in promoter-dependent transcription initiation represents a paradigm for how epigenetic information regulates gene expression. However, little is known about how such enzymes function during transcription elongation. Here, we investigated the role of RSC, a bromodomain-containing ATPase, in nucleosome transcription in vitro. Purified S. cerevisiae RNA polymerase II (Pol II) arrests at two primary locations on a positioned mononucleosome. RSC stimulates passage of Pol II through these sites. The function of RSC in elongation requires the energy of ATP hydrolysis. Moreover, the SAGA and NuA4 HATs strongly stimulated RSC's effect on elongation. The stimulation correlates closely with acetyl-CoA-dependent recruitment of RSC to nucleosomes. Thus, RSC can recognize acetylated nucleosomes and facilitate passage of Pol II through them. These data support the view that histone modifications regulate accessibility of the coding region to Pol II.
Collapse
Affiliation(s)
- Michael Carey
- Stowers Medical Research Institute 1000 East 50 St. Kansas City, MO 816-926-4317
- Department of Biological Chemistry David Geffen School of Medicine at UCLA 10833 LeConte Ave Los Angeles, CA 90095
| | - Bing Li
- Stowers Medical Research Institute 1000 East 50 St. Kansas City, MO 816-926-4317
| | - Jerry L. Workman
- Stowers Medical Research Institute 1000 East 50 St. Kansas City, MO 816-926-4317
| |
Collapse
|
42
|
Abstract
Numerous studies support the idea that the complex process of gene expression is composed of multiple highly coordinated and integrated steps. While such an extensive coupling ensures the efficiency and accuracy of each step during the gene expression pathway, recent studies have suggested an evolutionarily conserved function for cotranscriptional processes in the maintenance of genome stability. Specifically, such processes prevent a detrimental effect of nascent transcripts on the integrity of the genome. Here we describe studies indicating that nascent transcripts can rehybridize with template DNA, and that this can lead to DNA strand breaks and rearrangements. We present an overview of the diverse mechanisms that different species employ to keep nascent RNA away from DNA during transcription. We also discuss possible mechanisms by which nascent transcripts impact genome stability, as well as the possibility that transcription-induced genomic instability may contribute to disease.
Collapse
Affiliation(s)
- Xialu Li
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
43
|
Kalogeraki VS, Tornaletti S, Cooper PK, Hanawalt PC. Comparative TFIIS-mediated transcript cleavage by mammalian RNA polymerase II arrested at a lesion in different transcription systems. DNA Repair (Amst) 2006; 4:1075-87. [PMID: 16046193 DOI: 10.1016/j.dnarep.2005.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 11/26/2022]
Abstract
Upon prolonged arrest at a cyclobutane pyrimidine dimer (CPD), RNAPII can reverse-translocate, misaligning the 3'-end of the RNA from its active site. Transcription factor SII (TFIIS) is required for cleavage of the disengaged 3'-end and restoration of its correct positioning. We have previously shown in vitro that when RNAPII is arrested at a CPD, TFIIS-induced cleavage results in shortened transcripts. Here, we hypothesized that the pattern of transcript cleavage does not depend solely upon TFIIS itself, but also on some other general transcription factors (GTFs) and/or their effects on RNAPII. To test this hypothesis we compared three in vitro transcription systems which differ with respect to the mode of initiation and the requirement for GTFs. The first consisted of RNAPII and GTFs from rat liver, and required a eukaryotic promoter for initiation. The other two supported transcription in the absence of any GTFs or promoter sequences. In each case, a CPD on the transcribed strand was a complete block for RNAPII translocation. However, the effect of TFIIS on transcript cleavage varied. In the promoter-initiated system, distinct transcripts up to about 20 nucleotides shorter than the uncleaved original one were produced. In the other two systems, the transcripts were degraded nearly completely. Introduction of GTFs partially interfered with cleavage, but failed to reproduce the pattern of transcript lengths observed with the promoter-initiated system. Our results suggest that the extent of TFIIS-mediated transcript cleavage is a well-orchestrated process, depending upon other factors (or their effects on RNAPII), in addition to TFIIS itself.
Collapse
Affiliation(s)
- Virginia S Kalogeraki
- Department of Biological Sciences, Stanford University, 371 Serra MAll, Stanford, CA 94305-5020, USA
| | | | | | | |
Collapse
|
44
|
Tornaletti S. Transcription arrest at DNA damage sites. Mutat Res 2005; 577:131-45. [PMID: 15904937 DOI: 10.1016/j.mrfmmm.2005.03.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 03/08/2005] [Accepted: 03/08/2005] [Indexed: 11/16/2022]
Abstract
Transcription arrest by RNA polymerase II at a DNA damage site on the transcribed strand is considered an essential step in initiation of transcription-coupled repair (TCR), a specialized repair pathway, which specifically removes lesions from transcribed strands of expressed genes. To understand how initiation of TCR occurs, it is necessary to characterize the properties of the transcription complex when it encounters a lesion in its path. The analysis of different types of arrested complexes should help us understand how an arrested RNA polymerase may signal the repair proteins to initiate a repair event. This article will review the recent literature describing how the presence of DNA damage along the DNA affects transcription elongation by RNA polymerase II and its implications for the initial steps of TCR.
Collapse
Affiliation(s)
- Silvia Tornaletti
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
45
|
Li X, Manley JL. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 2005; 122:365-78. [PMID: 16096057 DOI: 10.1016/j.cell.2005.06.008] [Citation(s) in RCA: 573] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 01/18/2005] [Accepted: 06/06/2005] [Indexed: 01/10/2023]
Abstract
SR proteins constitute a family of pre-mRNA splicing factors now thought to play several roles in mRNA metabolism in metazoan cells. Here we provide evidence that a prototypical SR protein, ASF/SF2, is unexpectedly required for maintenance of genomic stability. We first show that in vivo depletion of ASF/SF2 results in a hypermutation phenotype likely due to DNA rearrangements, reflected in the rapid appearance of DNA double-strand breaks and high-molecular-weight DNA fragments. Analysis of DNA from ASF/SF2-depleted cells revealed that the nontemplate strand of a transcribed gene was single stranded due to formation of an RNA:DNA hybrid, R loop structure. Stable overexpression of RNase H suppressed the DNA-fragmentation and hypermutation phenotypes. Indicative of a direct role, ASF/SF2 prevented R loop formation in a reconstituted in vitro transcription reaction. Our results support a model by which recruitment of ASF/SF2 to nascent transcripts by RNA polymerase II prevents formation of mutagenic R loop structures.
Collapse
Affiliation(s)
- Xialu Li
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
46
|
Werner F, Weinzierl ROJ. Direct modulation of RNA polymerase core functions by basal transcription factors. Mol Cell Biol 2005; 25:8344-55. [PMID: 16135821 PMCID: PMC1234337 DOI: 10.1128/mcb.25.18.8344-8355.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 06/23/2005] [Accepted: 07/05/2005] [Indexed: 11/20/2022] Open
Abstract
Archaeal RNA polymerases (RNAPs) are recruited to promoters through the joint action of three basal transcription factors: TATA-binding protein, TFB (archaeal homolog of TFIIB), and TFE (archaeal homolog of TFIIE). Our results demonstrate several new insights into the mechanisms of TFB and TFE during the transcription cycle. (i) The N-terminal Zn ribbon of TFB displays a surprising degree of redundancy for the recruitment of RNAP during transcription initiation in the archaeal system. (ii) The B-finger domain of TFB participates in transcription initiation events by stimulating abortive and productive transcription in a recruitment-independent function. TFB thus combines physical recruitment of the RNAP with an active role in influencing the catalytic properties of RNAP during transcription initiation. (iii) TFB mutations are complemented by TFE, thereby demonstrating that both factors act synergistically during transcription initiation. (iv) An additional function of TFE is to dynamically alter the nucleic acid-binding properties of RNAP by stabilizing the initiation complex and destabilizing elongation complexes.
Collapse
Affiliation(s)
- Finn Werner
- Department of Biological Sciences, Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
47
|
Kong SE, Banks CAS, Shilatifard A, Conaway JW, Conaway RC. ELL-associated factors 1 and 2 are positive regulators of RNA polymerase II elongation factor ELL. Proc Natl Acad Sci U S A 2005; 102:10094-8. [PMID: 16006523 PMCID: PMC1177379 DOI: 10.1073/pnas.0503017102] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In human cells, the ELL family of transcription factors includes at least three members, which are all capable of stimulating the overall rate of elongation by RNA polymerase II by suppressing transient pausing by the enzyme at many sites along DNA. In this report, we identify the ELL-associated factors (EAF)1 and EAF2 as strong positive regulators of ELL elongation activity. Our findings provide insights into the structure and function of ELL family transcription factors, and they bring to light direct roles for the EAF proteins in regulation of RNA polymerase II transcription.
Collapse
Affiliation(s)
- Stephanie E Kong
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
48
|
Wang YV, Tang H, Gilmour DS. Identification in vivo of different rate-limiting steps associated with transcriptional activators in the presence and absence of a GAGA element. Mol Cell Biol 2005; 25:3543-52. [PMID: 15831460 PMCID: PMC1084279 DOI: 10.1128/mcb.25.9.3543-3552.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Accepted: 01/19/2005] [Indexed: 11/20/2022] Open
Abstract
We analyzed the impact of a GAGA element on a transgenic promoter in Drosophila melanogaster that was activated by proteins composed of the Tet(on) DNA binding domain and either the heat shock factor (HSF) activation domain or a potent subdomain of VP16. Permanganate footprinting was used to monitor polymerase II (Pol II) on the transgenic promoters in vivo. Activation by Tet(on)-HSF but not by Tet(on)-VP16(A2) required the GAGA element; this correlated with the ability of the GAGA element to establish a paused Pol II. Although the GAGA element was not required for activation by Tet(on)-VP16(A2), the GAGA element greatly accelerated the rate of activation. The permanganate data also provided evidence that Pol II encountered different rate-limiting steps, following initiation in the presence of Tet(on)-HSF and Tet(on)-VP16(A2). The rate-limiting step in the presence of Tet(on)-HSF was release of Pol II paused about 20 to 40 nucleotides downstream from the start site. The rate-limiting step in the presence of Tet(on)-VP16(A2) occurred much closer to the transcription start site. Several biochemical studies have provided evidence for a structural transition shortly after Pol II initiates transcription. The behavior of Pol II in the presence of Tet(on)-VP16(A2) provides the first evidence that this transition occurs in vivo.
Collapse
Affiliation(s)
- Yunyuan Vivian Wang
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
49
|
Affiliation(s)
- Claudio Rivetti
- Dipartimento di Biochimica e Biologia, Molecolare Universita degli Studi, di Parma Parco Area, delle Scienze 23/A 43100, Parma, Italy
| | | |
Collapse
|
50
|
Neuman KC, Abbondanzieri EA, Landick R, Gelles J, Block SM. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 2004; 115:437-47. [PMID: 14622598 DOI: 10.1016/s0092-8674(03)00845-6] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RNA polymerase (RNAP) transcribes DNA discontinuously, with periods of rapid nucleotide addition punctuated by frequent pauses. We investigated the mechanism of transcription by measuring the effect of both hindering and assisting forces on the translocation of single Escherichia coli transcription elongation complexes, using an optical trapping apparatus that allows for the detection of pauses as short as one second. We found that the vast majority of pauses are brief (1-6 s at 21 degrees C, 1 mM NTPs), and that the probability of pausing at any particular position on a DNA template is low and fairly constant. Neither the probability nor the duration of these ubiquitous pauses was affected by hindering or assisting loads, establishing that they do not result from the backtracking of RNAP along the DNA template. We propose instead that they are caused by a structural rearrangement within the enzyme.
Collapse
Affiliation(s)
- Keir C Neuman
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|